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OBJECTIVE—The objective of this study is to examine the relationship among serum levels of
25-hydroxyvitamin D (25[OH]D), polymorphisms in vitamin D-associated genes, and the pres-
ence and progression of coronary artery calcification (CAC) in adults with type 1 diabetes.

RESEARCH DESIGN AND METHODS—This prospective study included 374 non-
Hispanic white individuals with type 1 diabetes (mean age 40 6 9 years; 46% were male).
CAC was measured at the baseline and 3- and 6-year follow-up visits were determined by
electron beam computed tomography. Serum 25[OH]D levels were measured by liquid chro-
matography tandem mass spectrometry at the 3-year visit.

RESULTS—Normal (.30 ng/mL), insufficient (20–30 ng/mL), and deficient (,20 ng/mL) 25-
[OH]D levels were present in 65%, 25%, and 10% of the individuals with type 1 diabetes,
respectively. 25[OH]D deficiency was associated with the presence of CAC at the 3-year visit,
odds ratio (OR) = 3.3 (95% CI 1.6–7.0), adjusting for age, sex, and hours of daylight. In subjects
free of CAC at the 3-year visit, 25[OH]D deficiency predicted the development of CAC over the
next 3 years in those with the vitamin D receptor M1T CC genotype (OR = 6.5 [1.1–40.2], P =
0.04) than in those with the CT or TT genotype (OR = 1.6 [0.3–8.6], P = 0.57).

CONCLUSIONS—Vitamin D deficiency independently predicts prevalence and develop-
ment of CAC, a marker of coronary artery plaque burden, in individuals with type 1 diabetes.
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Coronary artery disease (CAD) is the
major cause of morbidity and mor-
tality in patients with type 1 diabetes

(1,2). Coronary artery calcification
(CAC), a marker of coronary artery
plaque burden, predicts coronary events
in persons with type 1 diabetes (3). The
presence and progression of CAC have
become useful surrogate CAD end points
in evaluating novel CAD risk factors (3,4).

Vitamin D deficiency has been asso-
ciated with increased risk of CAD (5–7) in
people without diabetes, as well as cardio-
vascular mortality (8). Studies have also
shown that vitamin D levels are lower in
individuals with type 1 diabetes (9,10),
although whether this relationship holds

for different geographic populations is
unclear (11). Vitamin D regulates calcium
blood levels and affects vascular smooth
muscle cell proliferation (12), inflamma-
tion (13), and the renin-angiotensin sys-
tem (14), all of which have cardiovascular
effects and could lead to coronary calcifi-
cation. Serum level of 25-hydroxyvitamin
D (25[OH]D) assesses vitamin D status
best. 25[OH]D is the major circulating
form of vitamin D and the precursor of
the active form 1,25[OH]D. This active
form binds in the circulation to vitamin
D-binding protein (VDBP), to be trans-
ported to target organs where it mediates
its biological effects by binding to the vi-
tamin D receptor (VDR).

Cross-sectional studies of the rela-
tionship between 25[OH]D levels and
CAC have been inconclusive. A study of
650 Amish subjects found no association
(15); lower 25[OH]D levels were associ-
ated with carotid and aortal, but not with
coronary artery, calcified plaques in 340
African Americans with type 2 diabetes
(16). The Multi-Ethnic Study of Athero-
sclerosis (MESA) study (17) reported that
lower 25[OH]D levels predicted develop-
ment of CAC, but not progression of
CAC. Our study examined the cross-
sectional and longitudinal relationship
between 25[OH]D levels and CAC in
adults with type 1 diabetes. We also ex-
plored whether the potential relationship
between 25[OH]D levels and CAC dif-
fered by polymorphisms in the VDBP
and VDR genes.

RESEARCH DESIGN AND
METHODS—The Coronary Artery
Calcification in Type 1 Diabetes (CACTI)
study population has been described pre-
viously (4). In brief, 652 men and women
with type 1 diabetes and 764 nondiabetic
control subjects aged 19–56 years, with
no history of CAD, were enrolled in a pro-
spective follow-up of the development
and progression of CAC. Patients with
type 1 diabetes had long-standing diabe-
tes (mean duration 23 years, range 4–52
years) on enrollment. Control subjects
had not been diagnosed with diabetes of
any type, had fasting blood glucose in the
normal range, and were generally spouses,
friends, or neighbors of the patients. All
subjects provided informed consent, and
the study was approved by the Colorado
Multiple Institutional Review Board.

Participants were examined at a base-
line visit in 2000–2002. Data used in
these analyses are from the second (3-
year) and third (6-year) follow-up visits,
both conducted approximately 2.56 0.4
years after each prior visit. For these anal-
yses, all subjects with type 1 diabetes who
had complete data at the 3-year visit were
included. A total of 374 non-Hispanic
white subjects with type 1 diabetes were
analyzed. Anthropometric measurements
were obtained, including height, weight,
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minimal waist circumference, and hip cir-
cumference. BMI was calculated in kilo-
grams/meters squared. Resting systolic
blood pressure and fifth-phase diastolic
blood pressure were measured three
times while the patients were seated
after a 5-min rest, and the second and
third measurements were averaged. Hy-
pertension was defined as a blood pres-
sure $140/90 mmHg or participant
receiving current antihypertensive treat-
ment. Current medication, tobacco use,
and family medical history were obtained
by standardized questionnaire. Vitamin D
and calcium intake were obtained by a
validated food frequency questionnaire
(Harvard 1988) and included the use of
supplements.

Laboratory measures
Total, HDL-cholesterol, and triglycerides
were measured by standard enzymatic
methods, and LDL-cholesterol was calcu-
lated by the Friedewald formula. Albumin
excretion rate (AER) was calculated from
urinary albumin measured in two timed
overnight urine samples, and the results
from the two nights were averaged. 25
[OH]D levels were measured by liquid
chromatography tandem mass spectrom-
etry by Quest Diagnostics on samples
collected at the 3-year visit. Season of
blood drawwas classified as fall/winter for
blood drawn during the months of Octo-
ber to March and spring/summer as April
to September, and the number of hours of
average daylight over the 2 weeks before
the study visit was calculated on the basis
of study date and latitude of the study visit
(Denver, CO, latitude 39° 45’N). Individ-
uals were categorized as vitamin D suffi-
cient (25[OH]D .30 ng/mL), insufficient
(20–30 ng/mL), or deficient (,20 ng/mL),
according to current clinical guide-
lines (18).

Genomic DNA was extracted from
leukocytes by the salting out method.
Vitamin D-binding protein (VDP) gene
polymorphisms 420 (C/A) and 416 (T/G)
and vitamin D receptor (VDR) gene poly-
morphism M1T (T/C) and Bsm1 (G/A)
were genotyped in a multiplex dot-blot
sequence-specific oligonucleotide poly-
merase chain reaction (SSO-PCR) assay
(RocheMolecular Systems, Pleasanton,CA).

Coronary artery calcification
Two sets of high-resolution noncontrast
contiguous 3-mm tomographic images
were acquired at 0.1-s exposure on an
Imatron C-150XLP electron-beam CT
scanner (Imatron, San Francisco, CA) as

described previously (4). The two sets of
scans were acquired within 5 min, and
CAC scores were averaged. Calcium vol-
ume scores (CVS) were square root trans-
formed, and the difference in square
root transformed CVS between the
3- and 6-year examinations was calcu-
lated. Progression of CAC was defined
as a change in square root transformed
CVS of $2.5 (19).

Statistical analyses
All statistical analyses were conducted in
the SAS 9.2 system (SAS Institute, Cary,
NC). Statistical significance was defined
as P, 0.05. The association of 25[OH]D
level with genotype was determined af-
ter adjustment for age, sex, hours of

daylight, AER, vitamin D intake, and cal-
cium intake. The association of vitamin D
deficiency with the presence of CAC at the
3-year follow-up visit was examined in a
multiple logistic regression model ini-
tially adjusted for age, sex, and hours of
daylight. Additional models were run ad-
justing for BMI, HDL-cholesterol, LDL-
cholesterol, and triglycerides. Models
adjusted for factors that may affect vita-
min D levels (AER, total vitamin D intake,
and total calcium intake) were also run to
examine the precision of our estimates. Ge-
notypic data were added to these models.

The effect of vitamin D deficiency on
progression of CAC from the 3- to 6-year
visit was examined in a multiple logistic
regression model adjusted for age, sex,

Table 1—Characteristics of study participants with type 1 diabetes at the 3-year visit

Subjects with type 1 diabetes (N = 374)

25[OH]D level (ng/mL): mean 6 SD (median) 35.4 6 13.0 (34.0)
Vitamin D status
Normal (.30 ng/mL) 244 (65.2%)
Insufficient (20–30 ng/mL) 92 (24.6%)
Deficient (,20 ng/mL) 38 (10.2%)

Age at 3-year visit: mean 6 SD (median) 39.7 6 8.9 (39.7)
Female 202 (54.0%)
Male 172 (46.0%)
BMI (kg/m2): mean 6 SD (median) 26.2 6 4.3 (25.5)
Current smoker†
Yes 29 (8.3%)
No 321 (91.7%)

Total cholesterol (mg/dL) 175.7 6 32.2 (172.3)
HDL-cholesterol (mg/dL) 62.3 6 19.5 (59.0)
LDL-cholesterol (mg/dL) 99.3 6 26.6 (98.2)
Triglycerides (mg/dL) 70.2 6 47.4 (59.0)
Systolic blood pressure (mmHg) 111.6 6 12.6 (110.0)
Diastolic blood pressure (mmHg) 74.2 6 8.7 (74.0)
HypertensiveU
Yes 175 (46.9%)
No 198 (53.1%)

Coronary artery calcification
Yes 170 (45.5%)
No 204 (54.5%)

VDR 420 CC 196 (59.2%)
CA 111 (33.5%)
AA 24 (7.3%)
VDR 416 TT 132 (41.1%)
TG 126 (39.3%)
CC 63 (19.6%)
VDR M1T TT 64 (17.1%)
CT 178 (47.6%)
CC 132 (35.3%)
VDR Bsm1 GG 123 (32.9%)
GA 178 (47.6%)
AA 73 (19.5%)
†Smoking status is missing for 25 participants. ¥Hypertensive is defined as blood pressure$140/90 mmHg
or current hypertensive treatment. Hypertensive is missing for two participants.
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hours of daylight, presence of CAC at the
3-year visit, AER, total vitamin D intake,
and total calcium intake. An interaction
term for vitamin D deficiency and presence
of CAC at the 3-year visit was included to
examine incident compared with prevalent
CAC. In addition, an interaction term for
vitamin D deficiency and the VDR geno-
type M1T was included to explore a possi-
bility of gene–environment interaction on
CAC progression.

RESULTS—Characteristics of study
participants at the 3-year visit are sum-
marized in Table 1. Age- and sex-adjusted
mean 25[OH]D levels for type 1 diabetes
subjects were 35.4 6 0.7 ng/mL. Normal
(.30 ng/mL), insufficient (20–30 ng/mL),
and deficient (,20 ng/mL) 25-[OH]D lev-
els were present in 65%, 25%, and 10% of
the patients with diabetes, respectively.

Polymorphisms in the VDP and VDR
genes were associated with levels of 25
[OH]D after adjusting for age, sex, hours
of daylight, AER, total vitamin D intake,
and total calcium intake (Fig. 1). Levels of
25[OH]D were higher among individuals
with the CC (37.66 1.0 ng/mL) genotype
at VDP 420 compared with those with the
CA (34.36 1.2 ng/mL, P = 0.03) and AA
(32.3 6 2.8 ng/mL, P = 0.08) genotypes.
At VDP 416, levels of 25[OH]D were sig-
nificantly higher among individuals with
the TT (38.4 6 1.0 ng/mL) genotype

compared with those with the TG
(35.1 6 1.2 ng/mL, P = 0.04) and
GG (32.7 6 1.1 6 1.7 ng/mL, P =
0.007) genotypes. Of the polymorphisms
studied in the VDR gene, only those at
VDRM1T showed significant associations
with level of 25[OH]D. Levels of 25[OH]
D were significantly higher among indi-
viduals with the TT (40.0 6 1.7 ng/mL)
genotype at VDR M1T compared with
those with the CT (36.0 6 1.1 ng/mL,
P = 0.05) and CC (33.7 6 1.0 ng/mL,
P = 0.002) genotypes.

Lower levels of vitamin D as a contin-
uous measure were significantly associated
with presence of CAC at the 3-year visit,
adjusting for age, sex, and hours of day-
light (odds ratio [OR] = 0.98 [95% CI
0.96–1.00; P = 0.02]). Additional ad-
justment for BMI, HDL-cholesterol,
LDL-cholesterol, and triglycerides

attenuated these results (OR = 0.99
[0.97–1.00]; P = 0.21).

Vitamin D deficiency (25[OH]D,20
ng/mL) was associated with the presence
of CAC at the 3-year visit (OR = 3.3 [95%
CI 1.6–7.0; P = 0.002]), adjusting for age,
gender, and hours of daylight (Table 2).
Similar results were found when examin-
ing the same models with vitamin D
insufficiency (,30 ng/mL) (OR = 1.8
[1.1–3.0]). Additional adjustment for
BMI, HDL-cholesterol, LDL-cholesterol,
and triglycerides did not significantly af-
fect the association with vitamin D defi-
ciency and CAC (OR = 2.4 [1.1–5.3]. The
addition of factors that could affect vita-
min D levels (AER, vitamin D intake, and
calcium intake) attenuated the results
only slightly (2.2 [0.8–5.8]). Adjustment
for VDP 420, VDP 416, VDR M1T, and
VDR Bsm1 did not change these findings.

Figure 1—Vitamin D levels by genotype. Least square means adjusted for age, sex, diabetes status, hours of daylight, AER, vitamin D intake,
and calcium intake. Upper left, VDP 420; upper right, VDP 416; lower left, VDR M1T; lower right, VDR Bsm1. *P , 0.05 compared with major
genotype.

Table 2—Association of vitamin D deficiency and presence of CAC at 3-year visit

Model

Vitamin D deficiency
(yes vs. no)
OR (95% CI)

Model 1: Adjusted for age, sex, and hours of daylight 3.3 (1.6–7.0)
Model 1 + AER, vitamin D intake, and total calcium intake 2.8 (1.1–7.0)
Model 1 + BMI, HDL-cholesterol, LDL-cholesterol, and triglycerides 2.4 (1.1–5.3)
Model 1 + BMI, HDL-cholesterol, LDL-cholesterol, triglycerides, AER,
vitamin D intake, and total calcium intake 2.2 (0.8–5.8)
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No polymorphisms were associated with
the presence of CAC at the 3-year visit.

In the longitudinal analyses of the
relationship between vitamin D defi-
ciency and progression of CAC, we first
explored if the effect of vitamin D de-
ficiency differed between persons free of
CAC and those who already had detectable
CAC at the 3-year visit. The interaction
term was borderline significant (P = 0.06),
indicating that vitamin D-deficient sub-
jects without preexisting CAC at the
3-year visit were more likely to develop
CAC than those with sufficient vitamin
D levels, whereas vitamin D-deficient
subjects with CAC already present did
not experience more CAC progression
than those with sufficient vitamin D levels.

The multivariate model that takes
into account the interactions among vita-
min D deficiency, presence/absence of
CAC at 3-year visit, and VDR M1T geno-
type is shown in Table 3. Vitamin D de-
ficiency predicted development of CAC
among subjects free of CAC at the 3-
year visit. Among those, vitamin D defi-
ciency was a stronger risk factor for CAC
in the presence of the VDR M1T CC ge-
notype (OR = 6.5 [1.1–40.2], P = 0.04)
than in the presence of the CT or TT ge-
notype (OR = 1.6 [0.3–8.6], P = 0.57).
Vitamin D deficiency did not predict pro-
gression of CAC among subjects with pre-
existing CAC at the 3-year visit.

CONCLUSIONS—The results of this
study are consistent with the growing
body of evidence for the role of vitamin D
deficiency in development of coronary
atherosclerosis. They are also internally
consistent with regard to cross-sectional
and longitudinal analyses. The novel
findings include demonstration of a po-
tential gene–environment interaction ef-
fect between the VDR M1T CC genotype
and vitamin D deficiency on CAC devel-
opment. Furthermore, these results indi-
cate that vitamin D deficiency may be of
particular importance during the early
events leading to development of coro-
nary calcification.

The only other prospective study
(The Multi-Ethnic Study of Atherosclero-
sis [MESA]) has also found that lower 25
[OH]D levels predicted incident but not
prevalent CAC (17). Both studies used
similar methods to measure CAC. 25
[OH]D was measured by radioimmuno-
assay in MESA and by high-performance
liquid chromatography in our study;
however, both studies found similar prev-
alence of vitamin D deficiency (10% with

,20 ng/mL in our study and 10% with
,15 ng/mL in MESA). Dietary vitamin D
intake was available in CACTI and in-
cluded in our analyses, but not in the re-
port from MESA. In contrast with the
MESA study population, the CACTI
participants analyzed all had type 1 di-
abetes. Furthermore, the age of vitamin
D-deficient CACTI participants was lower
(40.16 8.9 years) than that of those in the
MESA study (62.1 6 10.3 years). Despite
these differences in CACTI and MESA
study populations, results were remark-
ably similar, indicating a robust role of
vitamin D deficiency in CAC development.

Our study population was limited to
non-Hispanic white subjects, whereas the
MESA study (17) had a more diverse
study population. African Americans
and Hispanics have an increased preva-
lence of vitamin D deficiency; however,
the MESA study did not find any differ-
ences by race (17). Results of our study
demonstrate that the effects of vitamin D
deficiency on CAC may be modified by
genetic factors, especially the VDR M1T
polymorphism. In our population, the
CC genotype, associated with the low-
est levels of serum 25[OH]D, conferred
increased risk of CAC development
indicating a possible pathway. This find-
ing also is consistent with a previously
reported association between the CC ge-
notype and acute coronary syndrome
(20). Future studies should expand our
understanding of the genetic architecture
of vitamin D metabolism and its implica-
tions to atherosclerosis.

Our study has some limitations that
should be noted. Because wemeasured 25
[OH]D levels only at the 3-year visit, we
do not know whether this measure is a
stable indicator of overall vitamin D sta-
tus. We only studied subjects with type 1
diabetes, so we are uncertain if these
findings differed between subjects with

and without type 1 diabetes. Our study
was also underpowered to test gene–
environment interactions of modest mag-
nitude, so it is possible that such interactions
exist but were not detected in this study.

In the CACTI study, the association of
vitamin D deficiency with prevalent CAC
was independent of known CAD risk
factors, including confounders such as
BMI and mediators such as lipids. This
suggests that vitaminDmay not be related
to CAD through common pathways with
these traditional CAD risk factors but
rather through a unique biologic mecha-
nism. Vitamin D regulates the renin-
angiotensin system (14) and may lower
cardiovascular risk through this mecha-
nism. Cardioprotective effects of 1,25
[OH]2D treatment have been demon-
strated in animal models (21–23). Our
results suggest that vitamin D deficiency
may be involved in the initiation of coro-
nary calcification process. Vitamin D has
an effect on antigen-presenting cells, such
as dendritic cells and macrophages, and
treatment with 1,25[OH]2D can reduce
foamy macrophages and suppress choles-
terol uptake (24).

In conclusion, this study has
strengthened the evidence for the role of
vitamin D deficiency in the development
of coronary atherosclerosis, especially
during the early events leading to devel-
opment of coronary calcification. The
novel findings include demonstration of
this effect in patients with type 1 diabetes
and evidence for a gene–environment in-
teraction between the VDR M1T CC ge-
notype and vitamin D deficiency on CAC
development.
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in those with the VDR M1T CT or TT genotype. Models are adjusted for age, sex, hours of daylight, total
vitamin D intake, total calcium intake, and AER.
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