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ABSTRACT  

Background: Patient surges beyond hospital capacity during the initial phase of the 

COVID-19 pandemic emphasized a need for clinical laboratories to prepare test 

processes to support future patient care. The objective of this study was to determine if 

current instrumentation in local hospital laboratories can accommodate the anticipated 

workload from COVID-19 infected patients in hospitals and a proposed field hospital in 

addition to testing for non-infected patients. 

Methods:  Simulation models predicted instrument throughput and turn-around-time for 

chemistry, ion-selective-electrode and immunoassay tests using vendor-developed 

software with different workload scenarios.  The expanded workload included tests from 

anticipated COVID patients in two local hospitals and a proposed field hospital with a 

COVID-specific test menu in addition to the pre-pandemic workload.  

Results:  Instrumentation throughput and turn-around time at each site was predicted. 

With additional COVID-patient beds in each hospital the maximum throughput was 

approached with no impact on turnaround time.  Addition of the field hospital workload 

led to significantly increased test turnaround times at each site.  

Conclusions:  Simulation models depicted the analytic capacity and turn-around times 

for laboratory tests at each site and identified the laboratory best suited for field hospital 

laboratory support during the pandemic.   
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IMPACT STATEMENT 

Healthcare professionals rely on the timely delivery of clinical laboratory test results to 

triage patients and make decisions that affect treatment.   This vital role has been 

accentuated during the COVID-19 pandemic as critical care bed numbers are expanded 

and field hospitals are established to support patient care.  In this study, simulation 

models were used to predict if current instrumentation in local hospital laboratories 

could accommodate the anticipated workload.  Simulation models depicted the analytic 

capacity and turn-around times for laboratory tests at each site and identified the 

laboratory best suited for field hospital laboratory support during the pandemic.   

  



4 
 

INTRODUCTION  

The rapid emergence of coronavirus disease 2019 (COVID-19) has had a profound 

effect on the delivery of clinical laboratory medicine.  Many organizations have created 

surge capacity planning committees to organize and optimize local healthcare resources 

in response to the COVID pandemic.  Bed number has traditionally been the metric of 

hospital capacity, although it does not directly capture the complexity of a healthcare 

system organization (1).  Modern capacity planning has advanced to anticipate increased 

demand on hospital laboratories using the “Four-S” interdisciplinary approach which 

accounts for relationships and dependencies among staff, stuff, structures and systems 

(2). Computer simulation models have aided in projecting hospital wide surge capacity 

during extended periods of operational stress (3,4).  Unfortunately, during a crisis there 

is seldom time to develop appropriate computer models to assist in surge planning. 

The increasing demand for timely, accurate and precise methods to detect the 

presence of SARS-CoV-2 viral RNA has strained operations in many microbiology 

laboratories.  Concurrent expectations for core clinical laboratories to support increasing 

numbers of COVID patients, in addition to non-COVID patients, have contributed to the 

stress on healthcare systems.  For pandemic planning, laboratory test capacity (i.e. 

maximum number of tests per hour or day) is an important and dynamic metric to 

evaluate, complicated by varying parameters such as reaction time for each assay, 

analyzer processing (throughput) speed, automated track throughput, and laboratory staff 

dependent manual processes, etc.  To this end, many clinical laboratory vendors have 

developed software to simulate and predict throughput, turn-around-time (TAT) and 

capacity throughout the workday with different analyzer configurations and volumes of 
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tests.  The objective of this study was to use a pre-existing simulation model developed 

by a manufacturer to predict the throughput and TATs for chemistry and immunoassay 

instruments in two local hospital laboratories with scenarios of increasing workload 

derived during the COVID pandemic (up to 914 additional inpatients) in addition to the 

pre-pandemic workload.    

METHODS  

Laboratory locations and Instrumentation:  St. Paul’s hospital (SPH) in Saskatoon, 

Saskatchewan is a 250-bed tertiary care facility consisting of emergency medicine, 

medical units, critical care, regional kidney health and provincial transplant programs. The 

SPH biochemistry service supports hospitalized patients however eighty percent of the 

test workload is derived from out-patients that attend clinics as well as analysis of 

outreach community-patient tests ordered by family medicine.  Functionally, this 

translates into an approximate pre-COVID workload of 2,900 patient specimens and 

21,000 automated chemistry, ion selective electrode (ISE) and immunoassay tests per 

day. The SPH laboratory instrumentation consists of a single automated track that links 

a Roche® c8100 pre-analytic module with two groups of ISEs, model c702 and c502 

spectrophotometric chemistry analyzers, an e801 model immunoassay analyzer, and a 

single p701 model refrigeration unit. Royal University hospital (RUH) and the adjoining 

Jim Pattison Children’s Hospital (JPCH) together represent a 606 bed trauma center for 

the province that provides acute care services, maternal and child services, neurosurgery 

and cardiovascular surgery.  The biochemistry service for these hospitals is centralized 

at RUH where the pre-COVID workload is 1,200 patient specimens with 8,000 automated 

chemistry, ISE and immunoassay tests per day. The RUH instrumentation consists of a 
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single automated track that links a Roche® c8100 pre-analytic module with two pairs of 

ion selective electrodes, model c502 spectrophotometric chemistry analyzers and a 

model e801 immunoassay analyzer.  

Dataset:   De-identified patient data from 2016 was extracted from the laboratory 

information system (LIS) for a representative 24-hour period for the following parameters: 

site, specimen accession number, test code(s) ordered per specimen, specimen and 

container type, time of collection and arrival in the laboratory.  Extracted data was 

increased by a 15% volume, proportionately distributed throughout the day, to reflect the 

pattern of the current workload.  

Cobas Total Workflow Simulator:  A simulation software application was developed by 

Roche® Diagnostics as a tool to predict the ability of instrumentation to meet customer 

workload and TAT requirements. The program was developed in a Simio® discrete event 

simulation environment (Simio LLP, Sewickly, PA, USA), which allows for a dynamic 

simulation of the system behavior, an alternative to WinCAEv previously reported (5,6,7).   

The software relies on libraries of information about Roche® analytical methods 

and configuration of specific automated analytic devices required to mimic real time 

behavior with respect to throughput and TAT assessments. The simulation model 

incorporates logic to control and direct the flow of specimens based on the proposed 

instrumentation, time of receipt of patient specimens, specific patient orders, analytic time 

per method and instrumentation buffer zone capacity.  To mimic real time behavior, the 

duration of instrument daily maintenance (3 hours/day) was also included in the model. 

Simulation output predicts the number of tests performed each hour and the TAT for each 
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specimen at specific times during the 24 hour period.  The 90th centile of TATs were 

determined each hour and for each simulation condition for spectrophotometric chemistry, 

immunoassay (IA) and ISE tests. The 90th centile was selected to reduce the influence of 

low frequency high TAT predictions.  Throughput testing capacity was calculated as 

(number of test requests/hour divided by the manufacturer identified maximal 

throughout/hour)*100. 

Model Assumptions: During a pandemic, the workflow pattern of patient management and 

laboratory specimen collection would be subject to change. To simulate a worst-case 

scenario, we assumed the pre-pandemic volume and test pattern for each hospital at 

100% occupancy and that community clinics continued prior to adding workload for 

additional pandemic hospital beds and a field hospital.   In line with current processes, it 

was assumed that one fifth of specimens at the SPH derived from inpatients would require 

centrifugation (community derived specimens arrive pre-centrifuged), and all specimens 

would require centrifugation at RUH.  To simulate workload capacity during the pandemic, 

incremental increases of planned additional COVID beds were evaluated for each 

hospital site (256 bed expansion for RUH, 364 bed expansion for SPH).  Table 1 outlines 

the six simulation conditions in terms of bed number and predicted total tests performed 

per day.   

 The workload derived from patients admitted to COVID dedicated beds assumed 

a 100% physician adoption of tier 1 COVID tests once per day in addition to a 10% 

adoption of daily tier 2 test orders.   Field hospital simulations assumed maximal 

occupancy of each hospital (SPH, RUH & JPCH) and all field hospital patients had tier 1 

and one tenth had tier 2 COVID menu tests and that all specimens would require 
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centrifugation at the hospital.  Weekly and monthly maintenance was not accounted for 

in the simulations.     

Model Validation: The baseline workload was audited at each site in November 2019 and 

observed to be within 15% of the predicted baseline workload used in the model.  Recent 

turn-around time was extracted from the Cobas® IT middleware to compare with the turn-

around times predicted by the simulation software and validate the baseline conditions. 

On-analyzer 90th percentile turn-around time each hour was assessed separately for the 

RUH and SPH sites.  The hourly pattern on 90th percentile turn-around times agreed well 

throughout the 24-hour interval for the RUH site. At the peak of community lab workload 

12:00-14:00 the actual 90th percentile of hourly turnaround time pattern at the SPH site 

exceeded the simulation baseline by 20 minutes and the reason for this discrepancy was 

not investigated.  

COVID Test Menu: Tier 1 chemistry testing included daily monitoring of electrolytes and 

CO2, creatinine, urea, calcium, magnesium, phosphate, AST, ALT, ALP, GGT, total 

bilirubin, lipase, creatine kinase and high sensitivity cardiac troponin T.  Tier 2 chemistry 

testing comprised total LDH, high sensitivity CRP, procalcitonin, ferritin and NT-proBNP.   

Statistical and Calculation Methods: For each simulation condition, the hourly predicted 

90th centile TATs and the daily (24 hr) mean of the hourly predicted 90th percentile TATs 

were calculated.  TAT was determined from when the specimen was introduced onto the 

pre-analytic module to when the analysis was complete and the result ready for reporting.  

The change in this index was determined by subtracting the simulation condition daily 

mean from the baseline condition daily mean.   The mean changes (in minutes) were 
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compared by ANOVA (n=24).  Confidence intervals for the mean changes in 90th 

percentile TATs for each simulation condition were also determined.     

RESULTS  

During the initial phase of the COVID-19 pandemic, laboratory leaders were asked 

to plan how to deliver services with expanded populations of patients in the local hospitals 

and in a field hospital.  We approached the vendor of our automated laboratory systems 

to ask if the proprietary software used to simulate laboratory workflow for marketing could 

be adapted to predict workflow with expanded COVID patient populations during the 

pandemic.  In a vendor–academic partnership, we simulated module capacities at both 

the RUH and SPH sites for chemistry, immunoassay and ISE for a 24-hour period for 

each of the six simulation conditions, Table 1.  

Royal University Hospital:  Figure 1 panel A shows the percentage of maximal test 

throughput anticipated per hour for chemistry assays at RUH for the series of simulation 

conditions.  The baseline level occupancy condition consistently showed the lowest 

anticipated throughput during the 24-hour period. The extent of test throughput capacity 

consumed increased in a sequential manner with additional pandemic bed occupancy, 

with baseline being the lowest and 100% occupancy of both RUH and the field hospital 

being the highest. All simulations demonstrated the highest anticipated workload occurred 

between 7am and noon, reaching the highest point at 10am.  

Immunoassay (IA) module capacity as a function of time is shown in Figure 1 panel 

B for baseline and each progressive simulation stress condition. Similar to the chemistry 

module capacity, the percentage IA capacity utilized increased with the simulation stress 
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condition in a sequential manner throughout the 24 -hour period. However, all simulation 

conditions were well within the 100% capacity of the IA module at RUH. Under baseline 

conditions, IA throughput capacity consumed slowly rose at 7am and maintained at 

approximately between 10% and 15% levels until 6pm. This general pattern of capacity 

consumption remained consistent with all simulated conditions.  Predictably, the degree 

of module throughput capacity consumed increased with the increasing patient 

occupancy conditions.   

RUH ISE capacities (figure 1 panel C) showed a similar pattern of increments to 

the chemistry and IA assays for each progressive simulated condition, with the important 

distinction that less than 13% of maximum throughput was consumed.  

St Paul’s Hospital   

SPH showed a slightly different daily pattern of throughput consumption compared 

to RUH. Laboratory workload at the SPH site is largely derived from community-based 

patients collected throughout the daytime hours. Figure 2 panel A shows the incremental 

rise for chemistry module throughput consumed for each simulation condition throughout 

the 24hr time period, similar to that seen at the RUH. For the baseline condition, 

capacities peaked at 10am (~60%), and progressively declined until 2pm, where another 

small peak (~20%) was observed at 4pm, and then generally remained low for the 

remainder of the day. This pattern was consistent for the simulation conditions although 

the peaks increased approximately 2-3% respectively as bed occupancy increased up to 

100%.  Predictably, the condition simulating maximal COVID occupancy at SPH and the 

field hospital generated an 10am peak of ~75% followed by a 4pm peak of ~50%. 
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The simulation conditions for immunoassays (figure 2 panel B) depict a similar 

pattern to the chemistry module capacity (figure 2 panel A). Two peaks of IA capacity 

consumption were noted.   The initial peak magnitude was observed at 10am and the 

second occurred between 4 to 6pm.  The baseline condition had an initial 10am peak of 

~65% throughput capacity consumed and a second peak of 50% at 6pm.  IA throughput 

did not exceed the maximum module capacity.  The final condition with field hospital 

workload generated an 11am peak of ~90% and a second peak of ~85% capacity 

consumption. 

The anticipated ISE workload (figure 2 panel C) demonstrated a major peak 

between 9 to 10am and it generally decreased throughout the day for all stress conditions. 

For the baseline condition, the 9am peak consumed ~15% ISE module capacity. Each 

COVID stress condition increased the workload and required more throughput capacity, 

to a maximum of 20% with addition of the field hospital workload. Unlike RUH, the 

capacity consumed for the chemistry, IA and ISE modules at SPH resembled a more 

bimodal distribution, with the major increase in volumes occurring between 8am and noon 

and a subsequent smaller peak occurring between 4 to 6pm.   

Turn-Around Times 

 The effect of various simulation conditions on the hourly 90th centile TAT is shown 

in Figure 3 for RUH and SPH. Simulations indicated that only the addition of the field 

hospital workload influenced the anticipated 90th percentile for TAT at each site. Tables 

2 and 3 illustrate the statistically significant mean changes in the 90th centile TAT over a 

24 hour period at each site.  Maximal occupancy of field hospital COVID beds started to 
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lengthen hourly TATs by 7am which remained lengthened until midnight at RUH (Figure 

3 panel A).  A similar lengthened TAT pattern was observed at SPH that resolved by 6pm 

(Figure 3 panel B).  As test volumes increased with the scenario of maximum patient 

numbers, TATs were predicted to significantly lengthen causing tubes to remain in the 

instrument buffer and be analyzed in the subsequent hour.  The simulations predicted 

that both hospital sites could not accommodate the workload from the field hospital in 

addition to their expanded COVID beds and the pre-pandemic workload without extending 

TATs.  It is anticipated that the 90% percentile TATs will remain constant until the 

maximum throughput of the analytic system is exceeded.  When this occurs, we speculate 

that the 90% TAT will likely begin to increase in a non-linear manner.  However, an 

investigation of the relationship between the specific saturation point and the 90% TAT 

was not conducted.   

DISCUSSION  

The World Health Organization (WHO) classified the COVID-19 outbreak as a 

pandemic in March, 2020 and, as of October 26th , more than 43.1 million COVID-19 

cases and over 1,155,438 deaths have been reported globally. Our local pandemic 

planning interdisciplinary team has been preparing new wards for an additional 250 

patients at RUH, 364 patients at SPH and a nearby field hospital, a renovated hockey 

facility, for up to 550 patients.  The impact of adding this patient workload to the existing 

tertiary care hospitals was unknown.  For effective planning, it was necessary to assure 

that hospital laboratory services could accommodate this increased workload and existing 

pre-COVID clinical monitoring requirements would not be compromised.  In this study, we 

used the simulation software application developed by Roche Diagnostics to determine 
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the ability of current chemistry instrumentation to meet the heightened COVID workload 

expectations.  

 Six workload conditions were simulated to assess chemistry, IA and ISE module 

capacities and anticipated TATs during a 24 hour time period at our two hospital clinical 

biochemistry laboratories.  In general, all RUH chemistry, IA and ISE module capacities 

were able to accommodate the simulated COVID workloads.  TAT data were determined 

by the length of time it took for test analysis to be complete and results ready for reporting 

from when the specimen was first introduced onto the pre-analytic module.   We 

expressed TAT data for each hour as 90th centiles which are more representative values 

than the infrequent maximum values. When both RUH and the field hospitals were 

completely filled with COVID patients, the anticipated workload for the chemistry module 

at RUH reached 88% of the maximum throughput by 10am and the overall TAT exceeded 

120 minutes and progressively worsened to over 360 minutes at 3pm.  Both the IA and 

ISE module capacities were also able to accommodate all simulation conditions but the 

chemistry module capacity (maximal throughput of 1200 tests/ hour) appeared to be the 

rate limiting step that lengthened TATs.  The baseline pre-COVID workload at SPH was 

about 2.5 times larger than for RUH.  Recognizing this, larger capacity chemistry, IA and 

ISE instrumentation had been implemented at SPH.  SPH instrumentation was more 

suited to accommodate the simulated COVID conditions than instrumentation at RUH.  

Interestingly, the IA modules and not the chemistry modules were the rate limiting step 

that affected TAT at SPH. Under the condition of complete SPH and field COVID hospital 

occupancy, the IA module anticipated capacity peaked at 88% maximum throughput by 

11am that was associated with TATs of 75 minutes at 8am that progressively increased 
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to 180 minutes by 2pm. The simulation analysis revealed an unexpected outcome that 

the RUH site had limited capacity of additional chemistry tests and the SPH had limited 

capacity for additional IA tests as pandemic workload increased.  At this time between 

the first pandemic infection wave and forecast of a second wave, based on this simulation 

we will direct future field hospital chemistry and IA tests to the SPH site and will plan to 

move a portion of the immunoassay test volume from SPH to the RUH site if a long term 

strategy is required.    

 Simulation studies also prompted a re-assessment of our scheduled instrument 

daily maintenance times.  Our current practice, at both hospitals, is to perform 

maintenance of one analyzer line during the middle of the day (noon to 3pm) which 

translates into peak workload time and the second line maintenance is scheduled for 

midnight to 3am.   Workload efficiencies can be gained if instrument maintenance were 

instead conducted during “off peak” times.  Such changes in maintenance times however 

will impact technologist/operator shift scheduling.   

 Simulation modeling and its forecasts are not without limitations.  The usefulness 

of simulations will be dependent upon parameters, such as physician ordering patterns 

for management of COVID as well as non-COVID patients during peak pandemic that 

were estimated for this study.  This study assumed that existing laboratory staff levels 

would be sufficient to accommodate the additional workload.  A major limitation of this 

study was the use of proprietary vendor-provided simulation software that has not been 

described in peer-reviewed publications and had a limited evaluation under baseline 

conditions for this study. At this time, local emergency medicine, hospital admissions and 

laboratory workload during the COVID-19 pandemic has not exceeded capacity or 
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exceeded the baseline workload described in this study.  It remains a limitation that the 

impact of elevated workload has not been assessed.  In spite of these caveats, our 

simulation findings have been helpful to identify instrumentation capacity issues that could 

affect our ability to delivery timely test results during a pandemic surge in our organization.  

We anticipate that currently employed simulation software from many different vendors 

could facilitate pandemic planning of laboratory resources.   

 In conclusion, the simulation models provided an in-depth perspective of the 

impact of hospital laboratory resources during various degrees of pandemic-induced 

stress.  This study allowed us to anticipate and plan to direct specimens to the site best 

able to accommodate increased volumes (i.e. the SPH site). The study also suggests 

that to accommodate the acute care COVID hospital beds and the field hospital test 

volume that pre-pandemic community patient workload at the SPH site may need to be 

reduced.   
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Figure 1. Simulation for the RUH site of incrementally increased COVID bed occupancy 

on the percentage maximal test throughput for Panel A chemistry, Panel B IA and Panel 

C ISE tests. Lines: Black: pre-COVID baseline condition; Dark Blue: baseline+ 25% 

COVID beds filled; Dark Green: baseline+ 50% COVID beds filled; Light Green: 

baseline+ 75% COVID beds filled; Maroon: baseline+100% COVID beds filled; Orange: 

baseline+ 100% COVID beds and field hospital filled. 
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Figure 2. Simulation for the SPH site of incrementally increased COVID bed occupancy 

on the percentage maximal test throughput for Panel A chemistry, Panel B IA and Panel 

C ISE tests. Lines: Black: pre-COVID baseline condition; Dark Blue: baseline+ 25% 

COVID beds filled; Dark Green: baseline+ 50% COVID beds filled; Light Green: 

baseline+ 75% COVID beds filled; Maroon: baseline+100% COVID beds filled; Orange: 

baseline+ 100% COVID beds and field hospital filled. 
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Figure 3. Influence of incremental increase of COVID bed occupancy on the 90th 

percentile turnaround time by hour of day for all tests at Panel A: RUH site and Panel B: 

SPH site. Lines: Black: pre-COVID baseline condition; Dark Blue: baseline+ 25% 

COVID beds filled; Dark Green: baseline+ 50% COVID beds filled; Light Green: 

baseline+ 75% COVID beds filled; Maroon: baseline+100% COVID beds filled; Orange: 

baseline+ 100% COVID beds and field hospital filled. 
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Simulation Condition 
Total Bed Number Predicted Total Tests/day 

RUH & 
JPCH 

SPH Field 
Hospital 

RUH & JPCH SPH Field 
Hospital 

Baseline (Pre-COVID) 606 250  8104 21123  
 

Baseline + 25% COVID 
Additional beds/hospital 
 

606+64 250+91  8104+1196 21123+1709  

Baseline + 50% COVID 
Additional beds/hospital 
 

606+128 250+182  8104+2393 21123+3401  

Baseline + 75% COVID 
Additional beds/hospital 
 

606+192 250+273  8104+3589 21123+5093  

Baseline + 100% COVID 
Additional beds/hospital 
 

606+256 250+364  8104+4768 21123+6802  

Baseline + 100% COVID 
Additional beds/hospital 
+100% Field Hospital beds 

606+256 250+364 550 8104+4768 21123+6802 10340 

 

Table 1. Simulation conditions of total bed number and predicted tests per day by site.   

 

  



24 
 

 

 
 
 

Workload 

 
 

Bed 
Number 

 
 
 

Tests/Day 

Chemistry 
Module 

Immunoassay 
Module 

ISE 
Module 

Mean change in  
90th centile TAT/h 

(99% CI) in minutes 

Mean change in  
90th centile TAT/h 

(99% CI) in minutes 

Mean change in  
90th centile TAT/h 

(99% CI) in minutes 
RUH Baseline 606 8,104 

 
   

RUH Baseline +  
25% additional COVID beds 

 
670 

 
9,300 

 
-0.2 (-10 to 5) 

 
-0.5 (-6 to 6) 

 
-0.3 (-5 to 5) 

 
RUH Baseline +  

50% additional COVID beds 
 

734 
 

10,497 
 

1.1 (-4 to5) 
 

0.0 (-4 to 4) 
 

0.2 (-5 to 4) 
 

RUH Baseline +  
75% additional COVID beds 

 
798 

 
11,693 

 
1.6 (-4 to 8) 

 
-0.1 (-7 to 5) 

 
-0.4 (-5 to 5) 

 
RUH Baseline +  

100% additional COVID beds 
 

862 
 

12,872 
 

3.4 (-4 to 18) 
 

-0.8 (-7 to 5) 
 

-0.1 (-5 to 4) 
 

RUH Baseline +  
100% additional COVID beds + 
550 bed COVID Field Hospital 

1,412 23,212 129.7 (-2 to 327) 
p <.001 

50.5 (-7 to 186) 
p <.001 

33.5 (-7 to 162) 
p <.001 

 

Table 2:  Mean changes in turnaround time per hour with increasing workload at the RUH site.  The number of beds and daily test volume is 
shown for each workload condition.   The mean 90th centile turnaround time each hour for the baseline workload was subtracted from the mean 
90th centile turnaround time each hour for the increasing workload conditions for each analyzer module, to detect if increasing workload 
resulted in increased test turnaround time.  Values for each module were assessed by ANOVA and pairwise comparison with Tukey’s post hoc 
analyses and found statistically significant changes  p <.001) with the addition of the field hospital and no statistically significant changes among 
the other workload groups.  
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Workload 

 
 

Bed  
Number 

 
 
 

Tests/Day 

Chemistry 
Module 

Immunoassay 
Module 

ISE 
Module 

Mean change in 90th 
centile TAT/h 
(99th CI) in minutes 

Mean change in 90th 
centile TAT/h 
(99th CI) in minutes 

Mean change in 90th 
centile TAT/h 

(99th CI) in minutes 
Baseline 250 21,123 

 
   

SPH Baseline +  
25% additional COVID beds 

 
341 

 
22,832 

 
0.1 (-5 to 3) 

 
-0.4 (-6 to 4) 

 
0.3 (-3 to 8) 

 
SPH Baseline +  

50% additional COVID beds 
 

432 
 

24,524 
 

0.3 (-3 to 5) 
 

-0.2 (-7 to 12) 
 

0.3 (-3 to 10) 

SPH Baseline +  
75% additional COVID beds 

 
523 

 
26,216 

 
0.3 (-3 to 5) 

 
0.3 (-6 to 9) 

 
1.0 (-2 to 9) 

 
SPH Baseline +  

100% additional COVID beds 
 

614 
 

 
27,925 

 
0.3 (-3 to 5)  

 
0.7 (-7 to 15) 

 
1.2 (-4 to 18) 

SPH Baseline +  
100% additional COVID beds +  
550 bed COVID Field Hospital 

 
800 

 
38,265 

 
30.9 (-2 to 102) 

p <.001 

 
55.2 (-7 to 154) 

p <.001 

 
27.9 (-3 to 102) 

p <.001 

 

Table 3:  Mean changes in turnaround time per hour with increasing workload at the SPH site.  The number of beds and daily test volume is 
shown for each workload condition.   The mean 90th centile turnaround time each hour for the baseline workload was subtracted from the mean 
90th centile turnaround time each hour for the increasing workload conditions for each analyzer module, to detect if increasing workload 
resulted in increased test turnaround time.  Values for each module were assessed by ANOVA and pairwise comparison with Tukey’s post hoc 
analyses and found statistically significant changes  p <.001) with the addition of the field hospital and no statistically significant changes among 
the other workload groups 


