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Abstract

Forest tree species of temperate and boreal regions have undergone a long history

of demographic changes and evolutionary adaptations. The main objective of this

study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst), at

different sampling-scales and to investigate, accounting for population structure,

the effect of environment on species genetic diversity. A total of 384 single

nucleotide polymorphisms (SNPs) representing 290 genes were genotyped at two

geographic scales: across 12 populations distributed along two altitudinal-transects

in the Alps (micro-geographic scale), and across 27 populations belonging to the

range of Norway spruce in central and south-east Europe (macro-geographic

scale). At the macrogeographic scale, principal component analysis combined with

Bayesian clustering revealed three major clusters, corresponding to the main areas

of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The

populations along the altitudinal transects were not differentiated. To assess the

role of selection in structuring genetic variation, we applied a Bayesian and

coalescent-based FST-outlier method and tested for correlations between allele

frequencies and climatic variables using regression analyses. At the macro-

geographic scale, the FST-outlier methods detected together 11 FST-outliers. Six

outliers were detected when the same analyses were carried out taking into

account the genetic structure. Regression analyses with population structure

correction resulted in the identification of two (micro-geographic scale) and 38

SNPs (macro-geographic scale) significantly correlated with temperature and/or

precipitation. Six of these loci overlapped with FST-outliers, among them two loci

encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase.

The results of this study indicate a strong relationship between genetic and
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environmental variation at both geographic scales. It also suggests that an

integrative approach combining different outlier detection methods and population

sampling at different geographic scales is useful to identify loci potentially involved

in adaptation.

Introduction

Adaptation of forest tree species to their environment is of great interest in forest

management, as climate change is considered to be a major threat to forest health

and sustainability [1]. Forest tree species of temperate and boreal regions have

undergone a long history of demographic changes. During glacial maxima, many

of these taxa were restricted to southern refugia, from where they expanded

northwards during interglacials. Range contractions and expansions have been

intensively studied using palaeobotanical and genetic approaches, demonstrating

that past range changes were important determinants of the genetic structure of

extant populations [2, 3, 4]. Genetic structures are likely to have been influenced

also by evolutionary adaptations, enabling populations to adapt to local

environments. In fact, provenance trials and genecological studies have

revealedphenotypic traits with clear clines along diverse environmental gradients,

both across species ranges and at the local scale [5, 6]. Yet, the underlying genes

controlling adaptation remain poorly understood.

The development of forest tree genome sequences, single nucleotide

polymorphisms (SNPs) databases and high-throughput genotyping platforms

have facilitated the use of multi-locus scan approaches to identify loci involved in

adaptation [7]. Two main groups of methods are currently used to identify loci

related to adaptation. A first group is based on population differentiation and

provides tools to detect loci that show significantly higher FST values than neutral

expectations [8–11]. The second group of methods is based on correlations

between allele frequencies and environmental variables and can be used to detect

selection along gradients or in heterogeneous environments [12]. An important

limitation of these methods is that they are sensitive to other evolutionary forces

that can mimic selection, such as demographic history and population structure

[11, 13].

Molecular studies in conifers, incorporating both population history and

landscape features, have identified numerous loci, likely to be involved in

adaptation [14–22]. These studies were mainly designed to investigate genetic

diversity at the macro-geographic scale, i.e. across entire species ranges. Few

studies have focused on a local scale, where gene flow is more effective and

population structures are weak. On the other hand, gene flow can constrain

adaptive divergence through homogenizing allele frequencies across space [23].

Nevertheless, when selection pressure is high, local adaptation may occur also at

the local scale. For example, tree populations along altitudinal gradients often

preparation of the manuscript.
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show pronounced clines in phenotypic traits [5], and thus may be well suited for

detecting adaptive loci.

Norway spruce (Picea abies L. Karst.) is a broadly distributed European conifer

of great ecological and economic importance. Its range is divided into two major

regions, a northern, boreal region and a central and south-eastern European

region [24]. In the southern region, Norway spruce mainly grows in mountains

with widespread population occurrences found in the Alps, Carpathians, and

Hercynia, the latter including the Bohemian massif and its surrounding

mountains [24, 25]. The biogeography of Norway spruce has been intensively

studied using fossil pollen [26] and genetic markers [27–31]. Surveys of genetic

variation consistently revealed two distinct genetic lineages, separating popula-

tions of the north from those of the south [27, 28, 32]. Fossil pollen data

combined with mitochondrial DNA data have shown that Norway spruce in the

north is derived from a single large refugium, while in the south it persisted

during the LGM in several distinct refugia [32]. At the phenotypic level, several

potentially adaptive traits have been identified, such as bud set, bud burst [33, 34],

and shoot growth [35], with clear geographic clines along latitudinal and

altitudinal gradients. Notably, a recent study of northern populations using SNPs

in functional genes has identified several components potentially involved in the

control of bud set [19]. Other genes underlying local adaptation, however, remain

unknown [36].

In this study, we focus on Norway spruce of central and south-easter Europe

with the primary research goal of identifying adaptive loci through screening SNP

markers at different geographic scales, taking into account population structures.

SNP markers, representing 290 genes, were used to examine the role of genetic

structure and environmental variation in shaping the distribution of species

genetic variation and its adaptation. To achive this purpose, the sampling was

designed at micro-geographic scale, where trees were sampled along two

altitudinal gradients within the Alps and at macro-geographic scale, where trees

were sampled in 27 natural populations across the southern range of Norway

spruce. First, population structure was estimated to assess the possible presence of

different genetic pools at micro- and macro-geographic scales. Second, to assess

the role of selection in structuring genetic variation, we applied FST-outlier

methods taking into account the population structure, and tested for correlations

between allele frequencies and climatic variables at both geographic scales.

Materials and Methods

Plant Material

Norway spruce is a very common and not endangered tree species in Europe. For

each tree, approximately 500 mg of needle tissue was sampled. No specific

permissions were required for these locations/activities and we did not sample in

any protected areas. The geographic coordinates are reported in Table 1 and

Table 2.
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The micro-geographic scale study included two altitudinal transects on south-

west (Celentino-Pejo) and north (Mezzana) aspects in the Trentino province

(Italy) (Table 1). Six populations were sampled along each transect, with each of

the populations separated by 200 m of altitude. On average, 25 adult trees (60–70

years old) were sampled from each site, for a total of 300 trees (Table 1).

The macro-geographic scale sampling consisted of 27 putatively natural

populations, distributed across the range of Norway spruce in central- and south-

eastern Europe. Each population was represented by 15–24 individuals, for a total

of 546 trees. Eight of the populations were sampled in the IUFRO 1964/68

provenance test [37] (Table 2). To compare the micro- with the macro-

geographic scale study, the Mezzana site located at 1600 m a.s.l. was included in

the macro-geographic investigation and more sites were sampled in the Alps.

Total DNA was extracted from needles according to Doyle and Doyle [38] or

using the DNeasy 96 Plant Kit or the DNeasy Plant Mini Kit (QIAGEN, Hilden,

Germany) according the manufacturer’s instructions.

Climatic data

In the micro-geographic scale study, two climatic variables were used. Ten years of

average monthly mean temperature and monthly mean precipitation were

obtained from the local spatial database [39] using climatic data collected from

1990 to 1999 by 64 weather-stations distributed in the Trentino province

(Table 1).

In the macro-geographic scale study, we considered 19 bioclimatic variables,

publicly available from the WorldClim - Global Climate Data (Free climate data

for ecological modelling and GIS http://www.worldclim.org). Based on the species

distribution and its ecological preferences, and to describe the sampling site

climate, five bioclimatic variables were integrated in the analyses: mean annual

temperature (bio01), temperature seasonality (bio04), mean temperature of the

warmest quarter (bio09), mean temperature of the coldest quarter (bio11), and

annual precipitation (bio12) (Table 2). Climatic data were collected from a 30

second GIS layer using Quantum GIS (Q-GIS) [40].

SNP discovery and genotyping

SNP discovery was based on Sanger re-sequencing of a panel of 12 unrelated trees

using primers derived from almost 1000 loblolly pine expressed sequence tags

(ESTs), representing genes having various biological functions (http://dendrome.

ucdavis.edu/NealeLab/crsp/overview.php). DNA was extracted from the haploid

megagametophyte, obtained from one seed per sampled tree. Individual sequence

alignment and SNP identification were performed using PineSAP [41]. A final set

of 384 SNPs among those having quality design scores above 0.6, were selected for

the genotyping, considering a maximum of two SNPs per locus, and preferring

SNPs determining a change in predicted proteins (92 non-synonymous SNPs were

selected). A total of 846 trees were genotyped. The SNP genotyping was performed
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at the Piattaforma Tecnologica Padana (Lodi, Italy) using the Illumina SNP bead

array platform (Illumina, San Diego, USA) and the GoldenGate assay.

For each SNP, the percentage of individuals genotyped (call rate), the minor

allele frequency (maf), the expected (HE) and observed (HO) heterozygosity, and

the Wright’s inbreeding coefficient (FIS) were calculated using the Genepop

4.0.5.3 program [42]. To remove uncertain and rare SNPs, loci with call rates

,90%, maf ,1%, or absolute FIS values .0.25 were discarded. An individual call

rate value was calculated for each sample, and samples with call rates lower than

95% were excluded.

Genetic diversity

For each geographic scale, values of genetic diversity among individuals (FIS),

among populations (FST) and for the total population (FIT) were calculated for

each locus using Genepop (S1B Supporting Material). With the same software,

fixation index (FIS) statistics per population were calculated over all loci with the

gene diversity among individuals within population (1-Qinter). Differences among

populations were tested using the pairwise FST analysis in Arlequin 3.5 [43].

FST-outlier detection

To identify FST outliers, both Bayesian and coalescent simulations were applied.

The first method considers individual locus effect and specific population,

focusing on a genome scan for positive and balancing selection, as implemented in

BayeScan 2.1 [11]. The method tests two alternative models and assigns a Bayes

factor to each locus. We used a prior odd equal 10 and a false discovery rate FDR

50.001. The second method proposed by Excoffier [44] assumes two possible

situations: an equal probability of migration between populations (finite island

model) and the presence of structured populations (hierarchical island model).

Both approaches were applied twice: using populations assigned according to

their geographic position and according to STRUCTURE clustering.

Regression analysis

To identify loci with extreme correlations between allele frequencies and climatic

variables, regression analyses were carried out. We used linear regression models

where the dependent variable was the arcsine-transformed major allele frequency

(MAF) of each SNP, and the independent variables were climatic variables,

ancestry coefficients, and an error term. The ancestry coefficients that describe the

population structure were included as covariates, as suggested by Korves [45]. In

the micro-geographic study, each SNP was tested in three models, considering the

mean temperature, mean precipitation, and mean temperature and precipitation

combined as independent variables (S1 Table). In the macro-geographic study,

each SNP was tested in 9 models. Four models included a temperature variable

(bio01, bio04, bio09, or bio11), one model the precipitation variable (bio12), and

Norway Spruce Outlier Detection at Micro- & Macro-Geographic Scale
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four models a temperature variable plus the precipitation variable (S1 Table). For

each SNP, the model showing the minimum Akaike’s Information Criterion

(AIC) was selected as the best fit of the data. Using this model, the proportion of

SNP variation explained by the climatic variables was estimated. FDR-corrected P-

values (Q-values) were estimated using the software Q-value [46] implemented in

R [47]. Correlations with Q-value ,0.05 were considered as significant.

Population structure

Patterns of population structure were analysed by principal component analysis

(PCA) and by Bayesian cluster analysis. To further characterize population

structures, hierarchical F-statistics and analysis of molecular variance (AMOVA)

were applied [43]. The PCA was performed on the normalized genotypic data

matrix. To identify the top k significant PCs, each PC eigenvalue was standardized

and compared to the Tracy-Widom distribution (TW statistics) [48]. A

significance cut-off of 5% was used to determine the significant PCs representing

population structure. Then, hierarchical fixation indices were calculated from

variance components according to Yang [49] as applied in the HIERFSTAT

library [50] in R. Bayesian cluster analysis was performed on the SNP data matrix

using the program STRUCTURE ver.2.2 [51] on Bioportal (www.bioportal.uio.

no). STRUCTURE runs were performed with a Markov Chain Monte Carlo

(MCMC) burn in of 500,000 steps, followed by an MCMC of 600,000 steps. An

admixture model was used in the simulations. Each analysis was replicated 10

times for each K, with K ranging from 1 to 12 and from 1 to 30 at the micro- and

macro-geographical scale, respectively. The best K was assigned using the log

likelihood value, and populations were assigned to each genetic cluster

considering the assignment of the majority of individuals within each population.

To investigate partitioning of genetic variation at different hierarchical levels,

and to corroborate the results obtained with HIERFSTAT and STRUCTURE, an

AMOVA analysis was performed at both geographic scales, assuming the presence

of four genetic groups (see Results) at the macro-geographic scale, and two

groups (transects) at the micro-geographic scale. The AMOVA was performed

using Arlequin software [43].

Results

The 384 SNPs considered represent 290 genes (S1A Supporting Material)

encoding proteins with various biological functions. Among those SNPs, 41 failed

to amplify, 63 were monomorphic in all samples, and 54 SNPs (micro-geographic

scale) and 43 (macro-geographic scale) did not pass the quality control. A total of

226 SNPs across 224 genes (micro-geographic scale) and 237 SNPs across 247

genes (macro-geographic scale) were successfully genotyped.
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Table 4. Summary of significant regression models according to the FDR (False Discovery Rate) method [66].

Locus Putative function model P R Pvar1 Pvar2

Micro-geographic scale

2_2960_02-335 NA M3 0.0004 0.8254 0.0005 0.0044

2_5636_01-399 pentatricopeptide (PPR) repeat-containing protein M1 0.0017 0.6447 0.0017 NS

Macro-geographic scale

0_13913_02-313 exocyst subunit EXO70 family proteinG1 M1 0.0005 0.469 0.0063 NA

0_17215_01-108 magnesium chelatase H-like protein M1 0.0030 0.384 0.4669 NA

0_7844_01-303 vernalization insensitive 3 M1 0.0000 0.5767 0.4052 NA

0_9922_01-345 UBX domain-containing protein M1 0.0000 0.5760 0.2303 NA

2_2937_01-127 unknown protein M1 0.0025 0.3931 0.0007 NA

2_4029_01-212 receptor protein kinase, putative M1 0.0012 0.4308 0.0325 NA

2_6491_01-360 unknown protein M1 0.0001 0.5291 0.1651 NA

2_8491_01-519 acyl-CoA thioesterase, putative M1 0.0021 0.4025 0.2968 0.1965

CL71Contig1_04-119 disease resistance associated protein M1 0.0000 0.6668 0.6560 NA

0_1688_02-505 ATP binding protein, putative M2 0.0023 0.3971 0.0009 NA

0_7471_01-132 NA M2 0.0019 0.4063 0.0087 NA

2_8852_01-381 galactokinase, putative M2 0.0020 0.4049 0.0244 NA

CL3363Contig1_04-
85

GTP binding M2 0.0037 0.3732 0.0050 NA

UMN_1787_01-240 NA M2 0.0008 0.4473 0.1130 0.0021

0_5583_01-181 hypothetical protein M4 0.0005 0.4697 0.0036 NA

CL1688Contig1_01-
463

beta-D-galactosidase M4 0.0001 0.5524 0.0294 NA

CL3602Contig1_03-56 NADPH M4 0.0004 0.4840 0.0497 NA

CL3795Contig1_01-45 C-1-tetrahydrofolate synthase M4 0.0009 0.4401 0.0203 0.0967

0_10910_02-321 unknown protein M5 0.0003 0.4947 0.0065 0.0489

0_12021_01-161 ovule receptor-like kinase 28 M5 0.0001 0.5525 0.0482 NA

0_13552_02-284 hypothetical protein M5 0.0001 0.5272 0.3838 NA

0_2643_01-338 NA M5 0.0019 0.4070 0.0669 NA

0_8642_01-166 translation elongation factor EF-G M5 0.0003 0.4984 0.4477 NA

2_2960_02-335 NA M5 0.0019 0.4078 0.0112 NA

2_3591_03-327 hypothetical protein M5 0.0001 0.5217 0.0133 NA

2_4281_02-310 subtilase family protein M5 0.0024 0.3957 0.3705 NA

2_8852_01-97 galactokinase, putative M5 0.0000 0.6402 0.0114 NA

2_9466_01-179 membrane-associated zinc protease M5 0.0000 0.7174 0.0007 NA

CL4511Contig1_02-
223

oligopeptidase, putative M5 0.0001 0.5304 0.0894 NA

UMN_1908_01-593 adaptin family protein M5 0.0007 0.4522 0.0003 NA

2_6355_02-53 NA M6 0.0001 0.5562 0.1555 NA

CL304Contig1_01-118 oxygen-evolving complex protein 1 M6 0.0005 0.4714 0.0450 NA

2_3867_02-440 profilin M7 0.0018 0.4732 0.3085 0.0035

0_4829_01-288 Aldose 1-epimerase family protein, expressed M8 0.0002 0.5589 0.1058 NA

2_10483_01-340 haloacid dehalogenase-like hydrolase domain-containing protein 1A M8 0.0001 0.5824 0.0278 NA

2_3851_01-280 unknown protein M8 0.0006 0.5219 0.0048 0.1101

CL813Contig1_03-235 sucrose synthase M8 0 0.6415 0.0388
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Genetic diversity

At the micro-geographic scale, the overall genetic diversity (considering all SNPs

together) expressed as observed heterzygosity (HO) per population ranged from

0.230 (M18) to 0.259 (C14) with a grand mean of 0.248 (¡ SD 50.168)

(Table 1). At the macro-geographic scale (Table 2), HO was between 0.206

(population X141) and 0.243 (X267) with a grand mean of 0.229 (¡ SD 50.159).

No significant differences were found in FST value between population pairs at

the micro-geographic scale (S2A Table). At the macro-geographic scale, several

population pairs had a significant FST-value (P,0.0001) according to the

permutation test (S2B Table) and the FST values were between 0.012 (X350 and

S1U) and 0.680 (BOE and MN).

FST-outliers detection

FST values were calculated for each locus at both geographic scales following Weir

and Cockerham [52]. At the micro-geographic scale, no outliers were detected

using either the Bayesian simulation or considering the neutral island model.

At the macro-geographic scale, FST-values calculated among populations varied

between -0.008 and 0.36 (S1B Supporting Material; mean FST50.024). The

BayeScan simulation was run twice: using populations assigned according to their

geographic position and according to STRUCTURE clustering. The first

simulation detected 8 outlier loci (Table 3 and S1A Fig.). The outlier with the

highest FST-value (0.234), SNP locus 2_10483_01-340, encodes a haloacid

dehalogenase-like hydrolase and was detected only in Alpine populations (S2

Fig.). The other SNP loci encode a sucrose synthase (CL813Contig1_03), a

transcription factor (0_10267_01), translation-elongation factor (0_8642_01),

UBX domain-containing protein (0_9922_01), acyl-CoA thioesterase

(2_8491_01), acetyltransferase component (CL866Contig1_01) and an unknown

protein (2_5073_01-321). BayeScan simulations taking into account the four

STRUCTURE clusters identified a single outlier (1_3086_01-101; FST50.128; S1B

Fig.) that was not detected in the first simulation (S1A Fig.). This locus encodes a

protein of unknown function (Table 3).

Among the outliers detected by coalescent simulations assuming a neutral

island model, five were highly significant (P,0.0001; Table 3). Three of them

(2_10483_01-340, CL813Contig1_03-235, 1_3086_01-101) overlapped with those

identified by BayeScan. The other two encode an ovule receptor-like kinase

(0_12021_01) and a protein with unknown function (CL4578Contig1_02).

Table 4. Cont.

Locus Putative function model P R Pvar1 Pvar2

CL3862Contig1_06-
366

mitogen-activated protein kinase 4 M9 0.0008 0.5105 0.0690 NA

P is the test probability for the selected model, Pvar is the variable (var) probability, R is the linear correlation coefficient. NS: not significant, NA5not present.
Loci with a Pvar,0.01 are in bold.

doi:10.1371/journal.pone.0115499.t004
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Simulations considering the four STRUCTURE clusters identified the same five

outliers and an additional outlier (UMN_4091_02-458), with its locus encoding

an F-box family protein.

Environmental associations

Associations between allele frequencies and climatic variables were analysed with

linear regression models taking into account ancestry coefficients. At the micro-

geographic scale, the 227 SNPs were analysed with three models, including either

temperature, precipitation, or temperature and precipitation combined. Overall,

two SNP loci showed a significant correlation with climate (Table 4; S2A

Supporting Material). One of them (2_5636_01), encoding a pentatricopeptide

repeat-containing protein, was correlated with annual mean temperature, and the

other (2_9466_01-179) with mean temperature and precipitation combined. The

latter locus was shared with the macro-geographic scale study. The amount of its

frequency variation explained by climate was 83%.

For each of the 237 SNPs used in the macro-geographic scale study, 9 models

were applied, which included one or two climatic variables related to temperature

or precipitation (S1 Table). The analyses resulted in the identification of 38 SNPs

significantly correlated (at Q,0.05) with either temperature, precipitation, or

temperature and precipitation variables combined (Table 4, S2B Supporting

Material). Twelve loci were significant determinants (Pvar,0.01) in the model.

The amount of SNP frequency variation explained by climatic variables ranged

from 37% (CL3363Contig1_04-85) to 72% (2_9466_01-179), the latter locus

encoding a hypothetical protein. Six of the identified loci overlapped with FST-

Fig. 1. Bayesian cluster analysis using STRUCTURE [51]. Log likelihood value (Ln(Pr(X|K)) of Pritchard plot is shown for micro and macro-
geographic scales (A). Macro-geographic populations clustering according to the Bayesian method implemented in STRUCTURE (B). The population dot
colours represent the cluster that includes the majority of individuals within populations. The species distribution range is in green (created using Q-GIS
based on description from [25]).

doi:10.1371/journal.pone.0115499.g001

Norway Spruce Outlier Detection at Micro- & Macro-Geographic Scale

PLOS ONE | DOI:10.1371/journal.pone.0115499 December 31, 2014 13 / 22



outliers (0_9922_01-345, 2_8491_01-519, 0_12021_01-161, 0_8642_01-166,

2_10483_01-340, CL813Contig1_03-235).

Population structure

To examine patterns of population structure, PCA and Bayesian clustering were

applied at both geographic scales. At the micro-geographic scale, PCA identified

only one significant PC according to the TW statistics. The absence of population

stratification was confirmed by HIERFSTAT and STRUCTURE analyses. The

average level of genetic differentiation among sampling sites was extremely low,

both between transects (Ftransect/total50.0002, P50.587) and between sampling

sites within transects (Fsampling_site/transect50.0018, P51) (S3A Table), and no

clusters were identified using STRUCTURE (Fig. 1A). A further confirmation of

the lack of structure at the micro-geographic scale was provided by the AMOVA

(S3B Table).

At the macro-geographic scale, the PCA showed a significant population

structure (S3A Fig.). Three PCs, explaining 13.1% of the total variance, were

significant at the 5% threshold. The first PC was significantly correlated with

longitude (r250.11; P51.9e215) and distinguished between populations of the

Alps from all other populations. The second PC highlighted the peculiarity of a

population (MN) located in Montenegro in the Dinaric Alps; it represented the

southernmost population included in the study, and explained the correlation

between PC2 and latitude (R250.12, P,2.2e216). The Bayesian cluster analysis

with STRUCTURE detected four clusters (Fig. 1B). The population structure was

similar to that of the PCA, but the populations of the Carpathians were separated

from those of Hercynia. All but one of the populations of the Carpathians formed

a first cluster. The second cluster included 11 of the 16 populations of the Alps.

The third cluster was characterised by populations of Hercynia and included the

five remaining populations of the Alps. As the PCA, Bayesian clustering assigned

the Montenegro population to a separate cluster. To further characterize the

population clustering, each population was assigned to the cluster that includes

the majority of the samples, and the percent of variation among the four clusters

was calculated with AMOVA (S3B Table). The analysis revealed that a very low

(1.54%), but highly significant (P,0.0001) portion of the total variation is

explained by differences among clusters, as confirmed by the F-statistics analysis

(S3A Table).

Discussion

This research confirms the findings from previous studies describing the genetic

structure of Norway spruce at the European level and highlights the importance of

integrating the effects of demography in outlier detection studies. The

experimental design we used (micro- and macro-geographic scale) and the

application of different approaches in the data analysis provided new insights into
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the underlying genes that may be responsible for local adaptation. Some potential

adaptive loci were found to be associated to temperature at both geographic

scales, confirming the importance of this factor in driving adaptation in forest

species.

Signature of adaptation

Theoretical [53] and empirical [17] studies show that the demographic history

can inflate the detection of FST outliers. In the macro-geographic scale study, 13%

of the variance was explained by population structure, presumably due to

population demographic changes. Consequently, both BayeScan and Arlequin

simulations were carried out with and without taking into account the population

structure. BayeScan simulations without population structure correction detected

eight outliers, whereas only one locus was detected with structure correction. The

simulation considering the hierarchical island model detected seven outlier loci,

with two of them being found only with this method. Altogether, seven FST

outliers were identified taking into account the population structure, corre-

sponding to 2.95% of the SNPs tested. This discovery rate is comparable to that

observed in other conifers using similar approaches [14, 16, 18], including black

spruce (Picea mariana), where few SNPs were identified as outliers, and only

within a specific lineage [21].

To account for variation along clines due to demographic processes and/or

selection, population structure was included as a covariate in the linear regression

models. In the 27 populations analysed in the macro-geographic scale study, 38

SNP loci were significantly correlated with temperature and/or precipitation

variables, corresponding to a 16% discovery rate. A greater ratio (22%) was

detected in loblolly pine (Pinus taeda) using a different model [16]. The majority

of these SNP loci showed significant correlations in models with temperature

variables, consistent with results observed in a lodgepole pine (Pinus contorta

Dougl. ex Loud) field transplant experiment [54] and in other coniferous species

[6], suggesting that temperature is a significant force in shaping genetic diversity.

In the micro-geographic scale study, the number of loci potentially involved in

adaptation was much smaller: no FST-outliers were detected and the regression

analyses identified only two SNPs significantly correlated with climatic variables.

This finding was unexpected, because Alpine slopes are highly variable

environments, where small changes in altitude can lead to significant variation in

temperature, humidity and soil composition [55]. Adaptation of populations to

such environments is likely to result in genetic clines associated with altitude. The

average differentiation between populations distributed along the two altitudinal

transects was very low, comparable to that previously reported for Norway spruce

at the local scale [56], and is in accordance with estimates of gene flow described

for tree-line ecotones [57]. This low differentiation was confirmed by Bayesian

and PCA clustering, which both revealed absence of population structure.

Assuming high levels of gene flow, it seems likely that gene flow constrained the

effects of selection, at least to some extent. On the other hand, Norway spruce
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populations growing along altitudinal gradients typically show clear clines in

growth and timing of bud set, indicating strong diversifying selection [19]. In our

study, we tested only a limited number of loci, whose selection was largely based

on quality scores derived from the original sequence data, rather than on

functional annotations. Identification of loci involved in growth and bud set

control would require analysis of more genes.

The higher rate of locus discovery at the macro- than at the micro-geographical

scale may also be a result of spatial heterogeneity in selection regimes. In

particular, the Alps, Carpathians and the Bohemian massif differ considerably in

topography and their continental location, and thus are characterised by distinct

climatic conditions. Notably, quantitative traits assessed in provenance trials

revealed clear differences among populations of the Alps, Carpathians, and

Hercynia, supporting different selection regimes for these areas [58]. It is therefore

likely, that heterogeneity in selection regimes contributed to the signatures of

selection we identified at the macro-geographic scale.

Putative adaptive SNPs

The six SNP loci that were identified by both correlation-based and FST-outlier

analyses were considered as ‘putative adaptive loci’. The locus with the highest FST

value (2_10483_01) encodes a haloacid dehaolgenase-like hydrolase, an enzyme

with a putative function in the biosynthetic pathway of the vitamin riboflavin,

playing a role in a variety of redox processes affected in plant defence responses

[59]. The SNP was significantly correlated with combined temperature and

precipitation, and was only found in a subset of Alpine populations, further

supporting its potential role in adaptation. At the micro-geographic scale, the

frequency of its particular allele was very low, possibly explaining why this locus

was not detected as an FST-outlier. An additional candidate locus

(CL813Contig1_03) encodes a sucrose synthase, an enzyme of the primary

metabolism and responsible for energy supply. The expressed sequence tag was

isolated from Aleppo pine (Pinus halepensis) and was shown to be induced by

water stress [60], consistent with our finding, that the SNP was correlated with

annual precipitation. Allelic changes in enyzmes of the primary metabolism are a

general response of plants to stress [61], and in the case of sucrose synthase a

function in water stress tolerance has been proposed [62]. A third locus

(2_8491_01) encodes an acyl-CoA thioesterase and was associated to annual mean

temperature. This enzyme catalyses the hydrolysis of acyl-CoAs to free-fatty-acid

and coenzyme A, and thus regulates the intracellular levels of acyl-CoAs and free-

fatty-acids. In white spruce (Picea glauca), acetoacetyl-CoA thiolase was

demonstrated to be involved in the up-regulation of transcripts in response to

stress [63]. The remaining three loci were a translation elongation factor, an UBX

domain-containing protein, and an ovule receptor-like kinase protein.
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Population structure

Since genetic structure was detected only at macro-geographic scale, we assumed

that both altitudinal transects sampled at micro-geographic scale belonged to the

same gene pool. No structure effects at micro-geographic scale were observed.

At the macrogeographic scale, the analysis of population structure using SNPs

of functional genes revealed three major clusters, which were largely congruent

with those delineated in previous studies [32]. The most detailed information

about the glacial and postglacial history of Norway spruce has been provided by

the combined analysis of fossil pollen and mitochondrial DNA [26, 32]. The data

indicate that Norway spruce of the southern part expanded out of three major

refugia, giving rise to populations in the Alps, Hercynia, and the Carpathians. The

cluster with Alpine populations, identified by both PCA and Bayesian clustering,

corresponds to a mitochondrial lineage derived from a refugium probably located

in the south-eastern Alps. Populations of Hercynia and the Carpathians were

delineated only by Bayesian clustering, and probably corresponds to mitochon-

drial lineages derived from refugia located in the southern Bohemian massif and

Carpathians. Both PCA and Bayesian clustering assigned the Montenegro

population to a separate cluster. Compared to other populations, its population

differentiation was quite high, which may be a result of a distinct glacial history

and/or its occurrence at the southern range limit. Norway spruce in the southern

Dinaric Alps typically occurs in scattered populations [24], which may promote

genetic drift and thus population differentiation.

In this study, we confirmed the confounding effect of genetic structure in the

detection of outlier loci (see previous section). Therefore, the estimation of species

genetic structure is a crucial step in the identification of adaptive loci, as

previously reported [16;19;21].

Conclusions

This study indicates that genetic diversity of Norway spruce was shaped by both

demographic and evolutionary processes, confirming the population structure

identified with other marker types, but inferred from a much lower number of

loci. The structure results were taken into account in the detection of selection

and adaptation signs at the molecular level. The combined analyses of FST-outliers

and environmental associations led to the identification of several potential

adaptive genes and corroborates previous suggestions that temperature is an

important factor in shaping genetic diversity in conifers. A strong relation was

found between genetic structure and environmental variables but this correlation

does not allow the identification of the physiological function affected by the

environmental factor. Therefore, in future studies it is crucial to complement

genetic studies with transplant experiments, where the phenotypic variation or the

effect of an environmental stress could be assessed. Finally, our original aspect of

sampling at different spatial scales allowed us to provide insights into the effects of
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gene flow on local adaptation. Moreover, our results highlighted the importance

of combining different approaches to investigate species adaptation [64, 65].

Supporting Information

S1 Fig. BayeScan results at macro-geographic scale: populations assigned

according to their geographic position (A) and according to STRUCTURE

clustering (B).

doi:10.1371/journal.pone.0115499.s001 (TIFF)

S2 Fig. Plots of some loci significantly associated with bioclimatic variables;

colours identify the locus minor allele frequency (m.a.f.) within each

population.

doi:10.1371/journal.pone.0115499.s002 (TIFF)

S3 Fig. Plot of the first two significant principal components (PCs) at micro-

geographic scale: one cluster was identified. (A). Plot of the two first PCs at the

macro-geographic scale (B). Population labels are coloured according to the

populations ID. Eingvalues for all PCs are in the bar plots.

doi:10.1371/journal.pone.0115499.s003 (TIFF)

S1 Table. Models used for the regression analysis at the micro- and the macro-

geographic scale. The letter ‘‘A’’ represents the population structure. The

following variables were used: major allele frequency (MAF) with the arcsin

transformation (asin(MAF)), annual mean temperature (T, bio01), annual

precipitation (P, bio12), temperature seasonality (bio04), mean temperature of

driest quarter (bio09) and mean temperature of coldest quarter (bio11).

doi:10.1371/journal.pone.0115499.s004 (DOC)

S2 Table. Pairwise FST between population-pairs at micro- (A) and macro-

geographic scale (B). Population ID is described in Table 1 and Table 2. Values

in bold are significantly different (P-value ,0.0001) according to a permutation

test (N51000).

doi:10.1371/journal.pone.0115499.s005 (DOC)

S3 Table. Analysis of variance at micro- and macro-geographic scales. F

statistics were calculated at different levels using HIERFSTAT library in R:

between transects or among clusters, among populations, among samples (A).

AMOVA analysis calculated using Arlequin at micro- and macro-geographic

scales. Fixation indexes statistically significant (*** P,0.000) (B).

doi:10.1371/journal.pone.0115499.s006 (DOC)

S1 Supporting Material. SNP position and locus ID with BLAST-N (A). FIT, FST

and FIS values calculated per locus at both scales (B). (XLS)

doi:10.1371/journal.pone.0115499.s007 (XLS)

S2 Supporting Material. Regression model analysis at micro- (A) and macro-

geographic scale (B).

doi:10.1371/journal.pone.0115499.s008 (XLS)
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S3 Supporting Material. Sample by SNP genotyping matrix for micro- (A) and

macro-geographic (B) studies.

doi:10.1371/journal.pone.0115499.s009 (XLS)
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