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ABSTRACT

DNA methylation in repetitive elements (RE) sup-
presses their mobility and maintains genomic sta-
bility, and decreases in it are frequently observed in
tumor and/or surrogate tissues. Averaging methyla-
tion across RE in genome is widely used to quantify
global methylation. However, methylation may vary in
specific RE and play diverse roles in disease devel-
opment, thus averaging methylation across RE may
lose significant biological information. The ambigu-
ous mapping of short reads by and high cost of cur-
rent bisulfite sequencing platforms make them im-
practical for quantifying locus-specific RE methyla-
tion. Although microarray-based approaches (partic-
ularly Illumina’s Infinium methylation arrays) provide
cost-effective and robust genome-wide methylation
quantification, the number of interrogated CpGs in
RE remains limited. We report a random forest-based
algorithm (and corresponding R package, REMP) that
can accurately predict genome-wide locus-specific
RE methylation based on Infinium array profiling
data. We validated its prediction performance using
alternative sequencing and microarray data. Testing
its clinical utility with The Cancer Genome Atlas data
demonstrated that our algorithm offers more com-
prehensively extended locus-specific RE methyla-
tion information that can be readily applied to large
human studies in a cost-effective manner. Our work
has the potential to improve our understanding of the
role of global methylation in human diseases, espe-
cially cancer.

INTRODUCTION

DNA repetitive elements (RE), which account for about
50% of the human genome, are relics of transposons and
can proliferate and mobilize throughout the genome (1).
Alu element (Alu) and long interspersed element-1 (LINE-
1) represent the two most abundant human RE sequences
(2,3), with new insertions occurring in approximately one
out of 20 births for Alu and out of 200 for LINE-1 (3,4). Alu
and LINE-1 often target protein-coding genes for insertion
(5), which may cause genomic instability and contribute to
the development of human diseases, particularly cancer (6–
8). DNA methylation in RE is a key mechanism defending
against these transposition activities, and thus maintaining
genomic integrity in humans (5,9–11).

DNA methylation refers to the addition of a methyl
group to DNA, usually the fifth carbon atom of a cy-
tosine ring at the ‘CG’ dinucleotide sequence. Decreased
DNA methylation in RE, also widely referred as global
hypomethylation, plays an important role in tumorigene-
sis (12–14). Over 90% of methylated CpG sites in the hu-
man genome occur in RE, particularly Alu and LINE-
1 (15). Therefore given their genome-wide ubiquity and
rich CpG content, bulk estimates of methylation in Alu
and/or LINE-1 methylation throughout the genome (16)
have been widely used as surrogate measures of global
DNA methylation content in most human studies (17,18).
Global hypomethylation is predominantly observed in hu-
man tumor and surrogate tissues, particularly blood from
cancer patients (19–21). Accumulating evidence shows that
Alu/LINE-1 methylation at specific genomic loci vary and
exert distinct biological and/or pathological effects in can-
cer (22–28), suggesting that using mean values of methy-
lation in RE as surrogates of global methylation may lead
to biological information loss and hindering scientists from
elucidating the distinct biological roles of DNA methyla-
tion in locus-specific RE. Indeed, previous investigations
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into the roles of RE methylation in cancer have been sub-
stantially inconsistent for both tissue (29) and blood (18),
highlighting the inadequacy of studying mean Alu/LINE-1
methylation. We therefore suspect that the inconsistent re-
sults from previous studies were at least partially due to the
inability to assess RE methylation levels at specific loci.

Whole-genome sequencing may plausibly allow us to
study locus-specific RE methylation. However, single-base
resolution sequencing of locus-specific RE is not optimal
as the repeats create ambiguities in alignment and assem-
bly, which produce biases and errors when interpreting re-
sults (30). Furthermore, profiling methylation in RE using
sequencing is even more challenging as it produces higher
mapping errors due to the reduced complexity reads from
bisulfite conversion (31,32). Finally, sequencing genome-
wide methylation remains prohibitively expensive.

In recent years, microarrays with optimized probes,
such as the Infinium HumanMethylation450 BeadChip
(HM450) and the upgraded Infinium MethylationEPIC
BeadChip (EPIC) (33), have been widely used for robust
genome-wide DNA methylation investigations in human
studies. These array-based DNA methylation data may pro-
vide a cost-effective opportunity to study the role of locus-
specific RE methylation in relation to cancers and other
chronic diseases. However, RE coverage of Infinium methy-
lation arrays are still limited and the profiled CpGs in RE
are generally sparse. We therefore developed a predictive al-
gorithm to computationally extend RE methylation based
on the Infinium methylation array data. We further eval-
uated the prediction performance of our algorithm and
demonstrated the algorithm’s clinical utilities by exploring
the biological implications of locus-specific Alu/LINE-1
methylation in cancer. To facilitate calculations, we devel-
oped an R package, REMP (Repetitive Element Methyla-
tion Prediction), available in Bioconductor repository.

MATERIALS AND METHODS

Data sources

First, for RE identification and annotation, we used the Re-
peatMasker (34) and NCBI RefSeqGene databases (35) to
identify and annotate candidate RE loci for methylation
prediction. We obtained the RepeatMasker Library (build
hg19) and RefSeqGene annotation database (build hg19)
through the R package AnnotationHub (36) (record num-
ber AH5122 and AH5040, respectively).

Second, for algorithm development and validation, we
used data on HapMap (The International HapMap Project)
lymphoblastoid cell line (LCL) GM12878, a Tier-1 sample
from a female Utah resident with ancestry from Northern
and Western Europe (37,38). There are extensive publicly-
accessible methylation data on GM12878, making it an
ideal sample for model development and validation. The
HM450 data, Reduced Representation Bisulfite Sequenc-
ing (RRBS) (39), and Whole Genome Bisulfite Sequencing
(WGBS) (40) data on GM12878 were downloaded from the
ENCODE (The Encyclopedia of DNA Elements) (41); the
EPIC data were the means of three technical replicates of
GM12878 obtained from R package minfiDataEPIC (42).
The NimbleGen SeqCap Epi 4M CpGiant (NimbleGen)
(43) profiling data are courtesy of Roche Sequencing. Raw

NimbleGen sequencing data processing followed the man-
ufacturer’s recommended workflow (44). For NimleGen,
RRBS, and WGBS the processed BAM files of two repli-
cates were united into a single dataset using R package
methylKit (45). The ratio of methylated read counts (i.e.
count of cytosine) to sequencing depth (i.e. count of cy-
tosine + thymine) was calculated to represent methylation
level. CpG sites with greater than 30 × sequencing depth
were retained.

Finally, for algorithm application to clinical samples, we
used The Cancer Genome Atlas (TCGA) database. We fo-
cused on four common types of cancer in the US (46): breast
invasive carcinoma (BRCA, 90 tumor samples), Prostate
adenocarcinoma (PRAD, 50 tumor samples), Lung squa-
mous cell carcinoma (LUSC, 40 tumor samples), and Colon
and rectal adenocarcinoma (COAD, 38 tumor samples). We
selected primary tumor tissue with available paired nor-
mal solid tissue collected from the same individual. Pro-
cessed and normalized (level 3) HM450 methylation data
and RNA-Seq gene expression data were downloaded from
the TCGA open-access database using the R package TC-
GAbiolinks (47).

Development of prediction algorithm

Structure of algorithm. Previous studies have shown that
the methylation levels of two nearby CpG sites are more
likely to be co-methylated (48–51). Therefore, we proposed
to predict the methylation levels of the target CpGs in RE
using neighboring profiled CpGs within a flanking win-
dow (Figure 1). Within the flanking window of target RE
CpGs with at least two neighboring profiled CpGs were
considered to improve prediction reliability. Based on previ-
ous work in predictor prioritization (50) and our extensive
experiments in selecting contributive predictors, we con-
structed the following primary predictors for each target
CpG:

• Methylation level of the closest and second-closest pro-
filed CpGs in the flanking region of the target CpG.

• Genomic distance in base pair (bp) from the closest and
second-closest profiled CpGs to the target CpG.

• Mean and variance of methylation levels at all neighbor-
ing profiled CpGs.

• Mean and variance of genomic distance between all
neighboring profiled CpGs and the target CpG.

We also constructed the following supporting predictors
to better model local genomic characteristics of the target
CpGs and their relationships with RE methylation:

• RE CpG density: CpG density is correlated with DNA
methylation across various tissues (49,52). For CpGs in
RE, methylation level showed a reverse U-shaped rela-
tionship with increasing CpG density (53). We defined
RE CpG density as the number of CpGs within RE di-
vided by the length of RE.

• RE length: Full-length RE sequences tend to be more ac-
tive, usually representing more recently-evolved elements
(particularly for LINE-1) (54). Increasing DNA methyla-
tion has been shown to correlate with younger evolution-
ary age of RE (55).
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Figure 1. Diagram of the RE methylation prediction algorithm. For each un-profiled CpGs identified within a RE sequence, the neighboring profiled
CpGs are identified within a given flanking window, where the primary and supporting predictors are collected. Those profiled CpGs in RE with sufficient
neighboring information are included as a set for model training whereas CpGs not profiled in RE will be predicted using the trained model.

• Smith-Waterman (SW) score: The RepeatMasker
database employed a SW alignment algorithm (56) to
computationally identify Alu and LINE-1 sequences in
the reference genome. A higher score indicates fewer in-
sertions and deletions in query RE sequences compared
to consensus RE sequences. We included this factor to
account for potential bias induced by SW alignment.

• Number of neighboring profiled CpGs: More neighbor-
ing CpG profiles results in more reliable and informative
primary predictors. We included this predictor to account
for potential bias due to profiling platform design.

• Genomic region of the target CpG: It is well-known
that methylation levels differ by genomic regions. Our al-
gorithm included a set of seven indicator variables for
genomic region (as annotated by RefSeqGene) includ-
ing: 2000 bp upstream of transcript start site (TSS2000),
5′UTR (untranslated region), coding DNA sequence,
exon, 3′UTR, protein-coding gene, and noncoding RNA
gene. Note that intron and intergenic regions can be in-
ferred by the combinations of these indicator variables.

For a given flanking window size, we generated these pre-
dictors and trained a model to predict methylation levels of
the target CpGs. We considered the following approaches:

• Naı̈ve method: This approach takes the methylation level
of the closest neighboring CpG profiled by HM450 or
EPIC as that of the target CpG. We treated this method
as our ‘control’.

• Support Vector Machine (SVM) (57): SVM has been ex-
tensively used for predicting methylation status (methy-
lated vs. unmethylated) (58–63). We considered two dif-
ferent kernel functions to determine the underlying SVM
architecture: the linear kernel and the radial basis func-
tion (RBF) kernel (64).

• Random Forest (RF) (65): A competitor of SVM, RF
recently demonstrated superior performance over other
machine learning models in predicting methylation levels
(50).

A 3-time repeated 5-fold cross validation was performed
to determine the best model parameters for SVM and RF

using the R package caret (66). The search grid was Cost =
(2−15, 2−13, 2−11, . . . , 23) for the parameter in linear SVM,
Cost = (2−7, 2−5, 2−3, . . . , 27) and � = (2−9, 2−7, 2−5, . . . ,
21) for the parameters in RBF SVM, and the number of
predictors sampled for splitting at each node (3,6,12) for the
parameter in RF.

We also evaluated and controlled the prediction reliabil-
ity when performing model extrapolation out of training
data. Quantifying prediction reliability in SVM is challeng-
ing and computationally intensive (67). In contrast, pre-
diction reliability can be readily inferred by Quantile Re-
gression Forests (QRF) (68) (available in the R package
quantregForest (69)). Briefly, by taking advantage of the es-
tablished random trees, QRF estimates the full conditional
distribution for each of the predicted values. We therefore
defined prediction error using the standard deviation (SD)
of this conditional distribution to reflect variation in the
predicted values. Less reliable RF predictions (results with
greater prediction error) can be trimmed off (RF-Trim).

Performance evaluation. To evaluate and compare the pre-
dictive performance of different models, we conducted an
external validation study. We prioritized Alu and LINE-1
for demonstration due to their high abundance throughout
the genome as well as their biological relevance. We chose
the HM450 as the primary platform for evaluation. We
traced model performance using incremental window sizes
from 200 to 2000 bp for Alu and LINE-1 and employed two
evaluation metrics: Pearson’s correlation coefficient (r) and
root mean square error (RMSE) between predicted and pro-
filed CpG methylation levels. Predicted RE methylation us-
ing the HM450 and EPIC were validated by NimbleGen.
To account for evaluation bias (caused by the inherent vari-
ation between the HM450/EPIC and the sequencing plat-
forms), we calculated ‘benchmark’ evaluation metrics (r and
RMSE) between both types of platforms using the common
CpGs profiled in Alu/LINE-1 as the best theoretically pos-
sible performance the algorithm could achieve. Since the
EPIC covers twice as many CpGs in Alu/LINE-1 as the
HM450 (Table 1), we also used EPIC to validate the HM450
prediction results.
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Table 1. Alu/LINE-1 coverage with single-base profiling platforms and predictions

# of RE # of RE CpGs # of genes covereda # of RE subfamilies covered

Alu
Profiling Platforms
HM450 12255 13155 14276 37
EPIC 21300 23784 19856 40
NimbleGen 1289 2463 2178 31
RRBS 2985 5902 3266 34
WGBS 929874 3652457 40870 41
Prediction
GM12878 (HM450) 33407 202731 22561 41
GM12878 (EPIC) 80131 481780 31163 41
Breast cancer (BRCA) 38848 235533b 22924 41
Lung cancer (LUSC) 37647 225367b 22786 41
Colon cancer (COAD) 34605 209313b 21046 41
Prostate cancer (PRAD) 36224 219007b 21533 41

LINE-1
Profiling Platforms
HM450 8309 9797 7399 115
EPIC 24713 29404 15558 116
NimbleGen 4667 13376 4617 115
RRBS 753 2023 663 94
WGBS 586345 2141737 31928 117
Prediction
GM12878 (HM450) 4597 22968 4140 109
GM12878 (EPIC) 10133 31374 9544 115
Breast cancer (BRCA) 9174 44185b 6897 116
Lung cancer (LUSC) 8928 43308b 6824 115
Colon cancer (COAD) 6768 34595b 5388 113
Prostate cancer (PRAD) 7715 37096b 6021 115

aRefSeq genes, including gene proximal promoter region (i.e. 2000 bp upstream of the transcription start site).
bCpG sites with reliable prediction across >80% of the samples were retained.

Proof of concept. We designed a proof-of-concept study
to test whether predicted Alu/LINE-1 methylation can
correlate with the evolutionary ages of Alu/LINE-1 from
the HapMap LCL GM12878 sample. The evolutionary
age of Alu/LINE-1 is inferred from the divergence of
copies from the consensus sequence as new base substitu-
tions, insertions, or deletions accumulate in Alu/LINE-1
through ‘copy and paste’ retrotransposition activity. Older
Alu/LINE-1 copies are in general inactive since more
mutations were induced (partially by CpG methylation).
Younger Alu/LINE-1, especially currently active RE, have
fewer mutations and thus CpG methylation is a more im-
portant defense mechanism for suppressing retrotranspo-
sition activity. Therefore, we would expect DNA methyla-
tion level to be lower in older Alu/LINE-1 than in younger
Alu/LINE-1. We calculated and compared the average
methylation level across three evolutionary subfamilies in
Alu (ranked from young to old): AluY, AluS and AluJ,
and five evolutionary subfamilies in LINE-1 (ranked from
young to old): L1Hs, L1P1, L1P2, L1P3 and L1P4. We
tested trends in average methylation level across evolution-
ary age groups using linear regression models.

Applications in clinical samples

Next, to demonstrate our algorithm’s utility, we set out to
investigate (a) differentially methylated RE in tumor ver-
sus normal tissue and their biological implications and (b)
tumor discrimination ability using global methylation sur-
rogates (i.e. mean Alu and LINE-1) versus the predicted

locus-specific RE methylation. To best utilize data, we con-
ducted these analyses using the union set of the HM450 pro-
filed and predicted CpGs in Alu/LINE-1, defined here as
the extended CpGs.

For (a), differentially methylated CpGs in Alu and LINE-
1 between tumor and paired normal tissues were identi-
fied via paired t-tests (R package limma (70)). Tested CpGs
were grouped and identified as differentially methylated re-
gions (DMR) using R package Bumphunter (71) and family
wise error rates (FWER) estimated from bootstraps to ac-
count for multiple comparisons. Regulatory element enrich-
ment analyses were conducted to test for functional enrich-
ment of significant DMR. We used DNase I hypersensitiv-
ity sites (DNase), transcription factor binding sites (TFBS),
and annotations of histone modification ChIP peaks pooled
across cell lines (data available in the ENCODE Analysis
Hub at the European Bioinformatics Institute). For each
regulatory element, we then calculated the number of over-
lapping regions amongst the significant DMR (observed)
and 10 000 permuted sets of DMR markers (expected). We
calculated the ratio of observed to mean expected as the
enrichment fold and obtained an empirical p-value from
the distribution of expected. We then focused on gene re-
gions and conducted KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway enrichment analysis using hyperge-
ometric tests via the R package clusterProfiler (72). To min-
imize bias in our enrichment test, we extracted genes tar-
geted by the significant Alu/LINE-1 DMR and used genes
targeted by all bumps tested as background. False discovery
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rate (FDR) <0.05 was considered significant in both enrich-
ment analyses.

For b), we employed conditional logistic regression with
elastic net penalties (R package clogitL1) (73) to select
locus-specific Alu and LINE-1 methylation for discriminat-
ing tumor and normal tissue. Missing methylation data due
to insufficient data quality were imputed using KNN im-
putation (74). We set the tuning parameter � = 0.5 and
tuned � via 10-fold cross validation. To account for over-
fitting, 50% of the data were randomly selected to serve as
the training dataset with the remaining 50% as the testing
dataset. We constructed one classifier by using the selected
Alu and LINE-1 to refit the conditional logistic regression
model, and another using the mean of all Alu and LINE-1
methylation as a surrogate of global methylation. Finally,
using R package pROC (75), we performed receiver oper-
ating characteristic (ROC) analysis and computed the area
under the ROC curves (AUC) to compare the performance
of each discrimination method in the testing dataset via De-
Long tests (76).

RESULTS

Single-base methylation profiling approaches

Based on the reference genome and the RepeatMasker li-
brary, about 35% of all 28 million CpG sites are in Alu
(∼25%) and LINE-1 (∼10%). The RepeatMasker repeat li-
brary mapped 1 175 329 Alu and 923 315 LINE-1 loci in
the UCSC hg19 reference genome assembly, correspond-
ing to 9.9% and 16.4% of the human genome respec-
tively. Most Alu and LINE-1 reside in intergenic (48.3%
and 60.5%, respectively) or gene intronic regions (40.0%
and 32.0%, respectively) (Supplementary Figure S1). Using
the HapMap LCL GM12878 sample, we investigated the
CpG coverage in Alu and LINE-1 among the four single-
base methylation profiling approaches, i.e. HM450/EPIC,
NimbleGen, RRBS, and WGBS. While all approaches save
WGBS suffered from depleted coverage in Alu and LINE-
1, all platforms cover a variety of Alu/LINE-1 subfami-
lies (Table 1). HM450/EPIC achieved the second highest
coverage, significantly higher than NimbleGen and RRBS.
To evaluate the reliability of profiled CpGs in Alu/LINE-
1, we calculated inter-platform correlation and error and
compared concordance between Alu/LINE-1 CpGs vs
non-Alu/LINE-1 CpGs (with high concordance indicat-
ing robust methylation profiling). We observed that the
HM450/EPIC achieved high concordance with correla-
tions of 0.93 vs 0.96 and errors of 0.094 vs 0.090 for
Alu/LINE-1 versus non-Alu/LINE-1 CpGs (Figure 2A),
respectively. Hence with HM450/EPIC as the benchmark,
concordance of NimbleGen was the highest, whereas in
RRBS and WGBS correlations decreased and errors in-
creased among Alu/LINE-1 CpGs (Figure 2B), suggesting
potential measurement bias due to the ambiguous mapping
of reads. Therefore, we opted to use the HM450/EPIC as
the input data source for prediction and NimbleGen as the
validation data source.

Figure 2. Reliability of the profiling platforms interrogating CpG sites in
Alu and LINE-1. If probes or reads targeting RE regions such as Alu
and LINE-1 are affected by ambiguous mapping, methylation readings
on these CpGs are more likely to yield different values for the same sam-
ple across different platforms. (A) Plot showing high correlation between
CpGs profiled using both HM450 and EPIC, with CpGs in Alu/LINE-1
showing slightly smaller r and larger RMSE (root mean square error). (B)
Evaluation of the reliability of the three sequencing-based platforms (us-
ing Infinium methylation arrays as the benchmark): NimbleGen (green),
RRBS (blue), and WGBS (red). NimbleGen shows the highest concor-
dance between both Alu/LINE-1 and non-Alu/LINE-1 CpGs.
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Predicting locus-specific methylation of Alu and LINE-1 in
GM12878

Validation results showed that RF had the best prediction
performances. After trimming off less reliable predictions
(RF-Trim, error ≤ 1.7), it achieved higher correlations and
lower errors that approached the best theoretically possi-
ble performance. As window size increased above 1000 bp,
prediction performances for Alu declined (Figure 3A) and
the number of reliable predictions for LINE-1 leveled off
(Figure 3B). These observations were consistent with the
previous findings that two nearby CpG sites within 1000
bp are more likely to be co-methylated (48–51,77). We ob-
served similar prediction performance using the EPIC (Sup-
plementary Figure S2). We further validated the HM450
predicted results using the EPIC. RF-Trim (error ≤ 1.7)
achieved the highest accuracy with Person’s correlation co-
efficient (r) = 0.86 and 0.89 and root mean square error
(RMSE) = 0.12 and 0.12 for Alu and LINE-1, respectively
(Supplementary Figure S3). The cutoff of 1.7 for prediction
error in RF-Trim is empirical, to balance the tradeoff be-
tween coverage and accuracy (i.e. more stringent prediction
error threshold led to higher accuracy but lower Alu/LINE-
1 coverage, Supplementary Figure S3).

Taken altogether, RF-Trim with a 1000 bp window is our
preferred method as it offers more accurate prediction and
enables prediction quality control. Compared with the pro-
filed Alu/LINE-1 methylation using the HM450/EPIC, our
algorithm predicted 2.7–3.7 times as many Alu and about
20% more LINE-1; predictions based on the EPIC yielded
nearly 2–3 times as many Alu/LINE-1 coverage than those
based on the HM450 (Figure 4A). Moreover, our algorithm
improved the CpG density in Alu/LINE-1. For example,
using the HM450, each Alu contained 6.1 reliable predicted
CpGs and each LINE-1 contained 5.0 reliable CpGs pre-
dicted, both 5–6 times higher than the HM450 and compa-
rable with the average CpG density calculated in the full RE
database (Figure 4B).

Proof-of-concept: methylation and evolutionary age of Alu
and LINE-1

Using GM12878 data, we observed that HM450 pre-
dicted methylation level as associated with an inverse dose-
response relationship with evolutionary age, indicating the
defensive role of DNA methylation in RE (Figure 5). A
similar relationship was evident among Alu and full-length
(>6000 bp) LINE-1 but not truncated LINE-1; we found
similar relationships using EPIC predicted values as well
(Supplementary Figure S4).

Application 1: predicting Alu and LINE-1 methylation en-
ables more comprehensive differential methylation analyses

Using RF-Trim, we predicted about 37 000 Alu and 8000
LINE-1 across the genome in TCGA samples (Table 1).
Most Alu and LINE-1 loci showed a unimodal distribution
centered at a high methylation level (� ∼ 0.9) in both tumor
and paired normal tissues, but was relatively lower and more
widely dispersed in tumors (Supplementary Figure S5).

On average, around 77 000 extended (i.e. union set of pro-
filed and predicted) CpGs (98%) in Alu and 15 000 (90%)

in LINE-1 were hypomethylated across all four types of
tumor tissues, with a general overall trend towards global
hypomethylation (exemplified by breast cancer, Figure 6A,
Supplementary Figure S6 for other cancers). In contrast,
using only the profiled CpGs we found that ∼2500 (∼88% of
profiled CpGs) in Alu or LINE-1 were hypomethylated. We
conducted regional analysis to summarize significant DMR
(FWER < 0.05) in Alu/LINE-1 using extended CpGs (see
complete results in Supplementary Spreadsheet) and com-
pared the results using profiled CpGs. The genomic distri-
bution of all Alu/LINE-1 CpGs, all identified bumps, and
significant DMR had similar proportions observed using
both profiled and extended CpGs (exemplified by breast
cancer, Figure 6B, Supplementary Figure S7 for other can-
cers). Therefore, it is unlikely that the prediction introduces
any artificial bias towards specific genomic regions. Fur-
thermore, due to the higher density of the predicted CpGs
in Alu/LINE-1 there were more bumps detected using the
extended CpGs compared to the profiled CpGs, particu-
larly in Alu. Similarly compared to the profiled CpGs, the
extended CpGs yielded nearly twice as many Alu/LINE-
1 with significant DMR, especially in the intron and inter-
genic regions.

To explore the functional insights of locus-specific RE
methylation in tumor tissue, we conducted the regulatory
elements and KEGG enrichment analyses based on the sig-
nificant hypo- and hyper-methylated Alu/LINE-1 DMR
from the extended CpGs. Due to the limited number of hy-
permethylated DMR, only hypomethylated DMR yielded
significant results. The enrichment can be found in regu-
latory elements including TFBS; active chromatin mark-
ers including DNase, H2A.Z and H3K4me3; and repressive
chromatin markers such as H3K9me3 and H3K27me3. We
found no enrichment found in the remaining active chro-
matin marks (H3K4me1, H3K9ac, H3K27ac, H3K36me3,
H3K79me2 and H4K20me1) (Figure 7A). Common path-
ways across the four cancers were identified including olfac-
tory transduction and axon guidance (Figure 7B). Higher
enrichment fold in regulatory elements analysis and gene
count ratio in KEGG analysis were observed in LINE-1
than in Alu, indicating a more active functional role for
LINE-1 hypomethylation. Two full-length LINE-1 loci in
the introns of SEMA3A (Semaphorin 3A) (a gene in the
axon guidance pathway) were hypomethylated in breast,
colon, and lung tumor tissues (Supplementary Figure S8).
SEMA3A can inhibit angiogenesis and endothelial cell mi-
gration and its downregulation has been identified in breast
cancer development (78). Using TCGA gene expression
data, we confirmed that SEMA3A gene expression was sig-
nificantly downregulated in breast tumor tissues in relative
to the matched normal tissues. This could be attributed
to the hypomethylated LINE-1 loci as we observed signif-
icant positive correlation between methylation at each of
the LINE-1 loci and SEMA3A gene expression in the nor-
mal tissues, but substantially attenuated and non-significant
correlation in the tumor tissues (Supplementary Figure S9).
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Figure 3. Performance of RE methylation prediction algorithm in different prediction models. Comparison of correlation and RMSE between measured
(NimbleGen) and predicted (based on HM450) values for five prediction models (Naı̈ve, RF, RF-Trim, SVM-Linear, and SVM-RBF) relative to the best
theoretically possible performance (dashed line). RF-Trim achieved the best performance for both Alu (A) and LINE-1 (B) and approach to the best
theoretical level. Compared with RF, RF-Trim removed more unreliable predictions, leading to less coverage but superior performance. RF: random
forest; SVM-Linear: support vector machine with linear kernel; SVM-RBF: support vector machine with radial basis function kernel.

Application 2: predicting Alu and LINE-1 methylation im-
proves power to discriminate tumor from normal tissue

Finally, we implemented an ROC plot to compare the power
of locus-specific Alu and LINE-1 methylation versus mean
global methylation to discriminate between tumor and the
paired normal samples. Mean methylation of CpGs in each
Alu and LINE-1 locus were calculated to represent locus-
specific methylation level. We demonstrated the discrimi-
nation power using extended or profiled Alu and LINE-1
in breast tumors, as other three tumors failed to yield con-
vergent results due to limited sample sizes. The surrogate
global methylation was computed by averaging all extended
or profiled CpG methylation in Alu and LINE-1. We ob-
served that locus-specific methylation achieved AUC of 98.3
(95% CI: 96.1–100.0), which was higher than that using the
surrogate global methylation (74.1; 95% CI: 64.1–84.2; P <
0.001) in the extended Alu and LINE-1 (Figure 8A). For the
profiled Alu and LINE-1 methylation, we observed lower
AUC of 87.6 (95% CI: 80.6–94.6) for locus-specific methy-
lation, which was again higher than the AUC using surro-
gate global methylation (76.9; 95% CI: 67.4–86.5), but not
significantly so (Figure 8B).

DISCUSSION

We developed a prediction algorithm and corresponding
R package REMP to predict locus-specific RE methyla-
tion by mining methylation information from neighboring
CpG sites profiled in Infinium methylation arrays. We vali-
dated the reliability of our algorithm using both sequenc-
ing (i.e. NimbleGen) and EPIC array (covering over 850
000 CpGs) data, further verifying the algorithm’s prediction
performance by demonstrating the inverse relationships be-
tween Alu/LINE-1 methylation and evolutionary age pre-
viously observed. More importantly, we tested the clinical
use of our algorithm in TCGA data to examine epigenome-
wide associations and distinguish tumor from normal tis-
sues. Our algorithm may help address current challenges in
studying the role of RE methylation in human diseases. It
also directly addresses the assumption of a uniform methy-
lation profile in RE with similar biological or pathologi-
cal effects, which may have caused information loss in ex-
tant studies and hindered our understanding of the exact
role that RE methylation plays in human diseases. Further-
more as technologies for epigenomic profiling continue to
improve, our algorithm can serve as an important frame-
work for later expanding RE coverage. This will enhance
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Figure 4. Comparisons of Alu and LINE-1 coverage and CpG density using the prediction algorithm versus profiling platforms. (A) Alu and LINE-1
actual versus predicted coverage based on HM450 and EPIC. (B) Density of CpGs interrogated per Alu and LINE-1 locus of predicted vs. profiled values.
The prediction algorithm enhanced CpG density by 5–6-fold, more comparable with the natural level of Alu/LINE-1 methylation.
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Figure 5. Inverse relationship between evolutionary ages of Alu and LINE-1 and mean methylation level based on predicted values. We considered three
evolutionary subfamilies in Alu, from young to old: AluY, AluS, and AluJ, and five evolutionary subfamilies in LINE-1, from young to old: L1Hs, L1P1,
L1P2, L1P3 and L1P4. The histograms and error bars represent the average and standard deviation of methylation level, respectively.

our ability to investigate relationships between RE epige-
netic features and complex traits/diseases in a highly cost-
effective manner in large clinical and population studies.

Our algorithm was mainly developed based on the
HM450 and EPIC arrays, since compared to other
sequencing-based approaches the array-based data were the
most robust for Alu/LINE-1 measurement (higher cover-
age in some sequencing platforms, e.g. WGBS, notwith-
standing). In addition, the Infinium methylation array is
the ideal source to provide reliable neighboring information
for methylation prediction. Previous attempts at predicting
methylation suggested that incorporating extensive neigh-
boring information such as profiled CpG sites, genomic po-
sitions, DNA sequence properties, and cis-regulatory ele-
ments could yield highly accurate predictions (50,58,79).
However, in practice obtaining the requisite information
is often impractical and infeasible. By leveraging the co-
methylation features of neighboring CpGs and the struc-
ture of RE sequences, we devised a simpler predictive strat-
egy and achieved high predictive performance for our algo-
rithm. Our algorithm only relies on predictors that are eas-
ily extractable from DNA methylation profiling data, min-
imizing dependence on a reference genome and preserving
individual variability in the human epigenome.

The predictive power of our algorithm was further con-
firmed by testing Alu/LINE-1 methylation in relation to
evolutionary age. Alu and LINE-1 propagated in primate
genomes over the past 65 and 80 million years, respectively,
which resulted in phylogenetic trees of Alu/LINE-1 sub-
families with different evolutionary ages (80,81). One of
our previous studies confirmed this inverse relationship by
bisulfite-PCR-pyrosequencing 10 differentially-evolved RE
subfamilies (82). In accordance with these findings the cur-
rent study also confirmed this hypothesis from a more com-
prehensive genome-wide perspective, which further sup-
ports the reliability of our prediction results. This demon-
strates the potential utility of our algorithm in studying
more specific characteristics of RE methylation throughout
the genome in connection with human diseases and other
phenotypes, which may presently be impossible or imprac-
tical due to data limitations.

Our algorithm offers a more comprehensive perspective
on the RE methylation landscape and biological implica-
tions of RE methylation on an epigenome-wide scale. The
consistent enrichment of hypomethylated Alu and LINE-
1 in regulatory regions (i.e. DNase and TFBS) across all
four types of tested tumors highlights the potential cis-
regulatory roles of Alu/LINE-1 methylation. This is sup-
ported by previous findings that RE derive a wide variety
of gene regulatory regions, including DNase and TFBS in
the human genome, demonstrating the effects of RE on reg-
ulating genes (83–85). The enrichment of hypomethylated
Alu/LINE-1 in the histone modifications that we observed
were largely consistent with a recent sequencing study of
hypomethylated Alu in cancer cells (86). Specifically, the en-
richment of hypomethylated Alu and LINE-1 in H3K4me3
(a marker for transcriptional activation) and H3K9me3 (for
transcriptional repression) suggests possible involvement of
RE methylation in transcription activation events in tu-
mor (87). Ward et al. demonstrated that Alu and LINE-1
are responsible for transcriptional activation and enriched
in regions marked by H3K4me3 (88). DNA hypomethyla-
tion in Alu and LINE-1 in H3K9me3 could be an indi-
cator of decreased H3K9me3, suggesting a less transcrip-
tionally repressive function as H3K9me3 is shown to pro-
mote persistent DNA methylation in RE (89). Furthermore,
hypomethylated Alu/LINE-1 in breast and colon cancer
were overrepresented in H2A.Z, a histone variant that can
potentially alter nucleosome stability (90). It has been hy-
pothesized that adequate genic methylation (mostly in RE)
may stabilize translational control functions such as trans-
lation, ribosome biogenesis, RNA splicing, and protein lo-
calization by antagonizing H2A.Z deposition (91). Thus,
hypomethylation of Alu/LINE-1 in H2A.Z may indicate
dysfunction of translational control functions which are im-
portant to cancer etiology (92).

Our pathway-based analysis further supports the biolog-
ical relevance of our predicted RE methylation. Olfactory
transduction was one of the top-ranked pathways enriched
by our predicted hypomethylated Alu in all four tumor tis-
sues of interest. This pathway contains a large gene fam-
ily of olfactory receptors (ORs), which have been found to
be ectopically expressed in non-olfactory tissues (93) and
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Figure 6. Differentially methylated CpGs/regions in Alu and LINE-1. (A) Scatter plot comparing extended CpGs in Alu and LINE-1 between breast
tumor and matched normal tissue; significant differences at Bonferroni P < 0.05 are colored and n is the number of CpGs (orange: hypermethylated; blue:
hypomethylated). (B) Genome-wide break down of all CpGs tested, bumps formed using bumphunter, and significant DMR (FWER < 0.05) identified in
breast cancer. Genomic distribution of extended CpGs was similar to profiled and identified more DMR of interest, especially in the intron and intergenic
regions.
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Figure 7. Regulatory element enrichment analysis and KEGG pathway enrichment analysis using significant hypomethylated Alu/LINE-1 DMR. Signif-
icant enrichment indicates Alu and LINE-1 DMR that are more likely to appear in regulatory elements (A) or KEGG pathways (B). Hypomethylation of
Alu and LINE-1 may involve in cis-regulatory changes and potential transcription activation events in cancer-related pathways in tumor tissues. DNase:
DNase I hypersensitivity sites; TFBS: transcription factor binding sites; H2A.Z: histone H2A variant; H3: histone H3; H4: histone H4; K: lysine; me1:
monomethylation; me2: demethylation; me3: trimethylation; ac: acetylation.

for some ORs overexpressed in breast (94), colon (95), lung
(96) and prostate tissues (97). In addition, we observed
axon guidance pathway was significantly enriched with hy-
pomethylated LINE-1 in breast, colon, and lung cancers.
Axon guidance has been shown to play an important role
in cancerogenesis (98). Further data analysis of the intronic
locus-specific LINE-1 methylation and the host gene ex-
pression of SEMA3A supported the hypothesis that DNA
methylation in intronic regions may potentially silence RE
to maintain a gene’s efficient transcription, and thus usually
has a positive correlation with gene expression (99).

In the tumor-normal discrimination test, the improved
AUC when using locus-specific Alu and LINE-1 methyla-
tion demonstrated the potential for information loss when
using mean Alu and LINE-1 methylation (both widely used
surrogate global methylation measures). In addition, the
AUC using our extended Alu and LINE-1 methylation out-
performed HM450 profiled methylation, further underscor-
ing the valuable information added by our algorithm.

Several features and caveats of our algorithm are worth
noting. First, our algorithm was not designed to cover
whole-genome RE methylation, but rather to provide a reli-
able extension of RE methylation profiled using Infinium
methylation arrays, which prioritize CpG interrogations
in genes and functional regions. The predicted CpG sites
maintained a similar genomic distribution as those profiled
in the arrays, thus offering extended information on the bi-
ological roles of RE methylation in transcriptional regula-
tion, identifying biomarkers of diseases, and devising useful
clinical tools with minimal artificial bias. Second, our algo-
rithm’s performance can be influenced by methylation data
quality and patterns of RE methylation in different tissues.

However our algorithm allows for convenient evaluation
and control of prediction reliability using the forest-based
model to ensure prediction quality. Incorporating predic-
tion reliability control may lead to missing data, posing po-
tential challenges to downstream data analysis, however im-
putation techniques such as K Nearest Neighbor (KNN)
imputation (74) can be applied to obtain more complete
data if needed. Third, the test of our algorithm’s clinical
utility was conducted only on TCGA HM450 data due to
the lack of more advanced data, such as that from the EPIC
array. Further investigations in larger human studies using
such data to validate the clinical utility of our algorithm are
warranted. Fourth, our algorithm was designed to predict
all types of RE methylation. However, our validation and
clinical application tests only focused on the two most com-
mon human RE, Alu and LINE-1, due to their predomi-
nance throughout the human genome. The algorithm can
be used on other human RE such as long terminal repeats
and tandem repeats (100).

In conclusion, the proposed algorithm can be applied
to the widely used methylation profiling platforms and ex-
tend RE CpG coverage in a highly cost-effective manner.
More importantly it promotes genome-wide, locus-specific
RE methylation association analyses in large human popu-
lation and clinical studies by providing extended coverage of
locus-specific RE methylation. This allows for more precise
investigations into the tumorigenic (and potentially other
etiological) roles of RE methylation, improving the accu-
racy of epigenetic studies. Our work may drive further in-
vestigations on how DNA methylation in RE may differ in
their cis- and/or trans-effects on genomic stability, such as
increasing mutation rates or aberrant gene expression, and
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Figure 8. Discrimination power of locus-specific Alu/LINE-1 methyla-
tion vs surrogate global methylation. (A) extended Alu and LINE-1 methy-
lation. (B) Profiled only. Shaded regions represent 95% confidence inter-
vals of ROC curves. Locus-specific Alu and LINE-1 methylation achieved
higher AUC than that using surrogate global methylation. Our predicted
methylation achieved higher AUC than that using HM450-profiled methy-
lation.

identify novel RE loci that may exert important biological
and pathological effects for cancer early detection and di-
agnosis.
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