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Abstract: Hydrogen is a zero-carbon footprint energy source with high energy density that could be
the basis of future energy systems. Membrane-based water electrolysis is one means by which to
produce high-purity and sustainable hydrogen. It is important that the scientific community focus
on developing electrolytic hydrogen systems which match available energy sources. In this review,
various types of water splitting technologies, and membrane selection for electrolyzers, are discussed.
We highlight the basic principles, recent studies, and achievements in membrane-based electrolysis
for hydrogen production. Previously, the Nafion™ membrane was the gold standard for PEM
electrolyzers, but today, cheaper and more effective membranes are favored. In this paper, CuCl–HCl
electrolysis and its operating parameters are summarized. Additionally, a summary is presented of
hydrogen production by water splitting, including a discussion of the advantages, disadvantages,
and efficiencies of the relevant technologies. Nonetheless, the development of cost-effective and
efficient hydrogen production technologies requires a significant amount of study, especially in terms
of optimizing the operation parameters affecting the hydrogen output. Therefore, herein we address
the challenges, prospects, and future trends in this field of research, and make critical suggestions
regarding the implementation of comprehensive membrane-based electrolytic systems.

Keywords: membrane; electrolysis; hydrogen production; electrolysis technologies; zero-carbon
footprint; water splitting technologies; membrane-based electrolysis; electrolyzer; efficient

1. Introduction

The world’s population as of August 2021 is almost 7.9 billion, as reported by the
United Nations, surpassing the earlier prediction of 7.5 billion by 2025 [1]. The world needs
enough food for the entire population. To fulfill this need, energy resources are required
to move people around, powering agriculture and agro-based industries, as well as other
activities [2–4]. It is anticipated that the world’s energy demand will be in the range of
600 to 1000 EJ by 2050 [5–7]. A smart approach is essential to balance power demands and
effective management of produced energy [8,9]. Due to the intense usage of conventional
fuels in the production of electricity, the depletion of ozone layer is now at an alarming
level because of the effect of the greenhouse gas (GHG) emissions like carbon dioxide and
methane [10–12]. As the world is united and committed to reducing GHG emissions, the
Montreal Protocol (1987), Kyoto Protocol (1997) and Paris Agreement (2015) have been
signed in the hope of preventing further damage to the ozone layer and reducing the impact
of climate change by 2050 [13–16]. Unlike the Montreal and Kyoto protocols (that targeted
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only developed nations), the Paris Agreement (2015) is more universal in its ambition
to reduce GHG emissions, setting a target of a maximum of a 2 ◦C temperature increase
through the collective commitment of all nations to cut their pollution levels [17,18].

One of the most promising clean and green energy sources, i.e., without any GHG
emission and with a zero carbon footprint, is green hydrogen [19,20]. Hydrogen does
not occur naturally in a gas form; rather, it always occurs as a compound in compounds
such as water (H2O), methane (CH4), butane (CH4H10), or other liquids and hydrocarbon
gases [21,22]. There are many techniques to produce hydrogen. For example, it can be
produced from renewable sources as in the biomass [23] and water splitting processes (ther-
molysis, photolysis, electrolysis) [18,24]. Electrolysis can be further divided into alkaline,
solid oxide, PEM, AEM, acidic–alkaline amphoteric, microbial and photoelectrochemical,
as depicted in Figure 1.
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Figure 1. Water splitting electrolysis technologies for hydrogen production.

At present, nonrenewable, fossil fuel-based processes, specifically, steam reforming of
methane, coal gasification and other chemical processes, account for 96% of worldwide
hydrogen generation, with electrolysis contributing just 4% [25–28]. Nonetheless, hydrogen
originating from fossil fuels is low in purity and leads to the release of greenhouse gases
including carbon monoxide, sulfur oxides, nitrogen oxides and carbon dioxide [19,29,30].
Hydrogen has several appealing features as an energy vector, including a high heat-
ing value (140 MJ/kg) that is almost three times that of conventional petroleum fuels
(50 MJ/kg) [9,19]. Currently, global hydrogen production is estimated to be approximately
500 billion cubic meters per year. Hydrogen is widely utilized in a variety of sectors,
including in the production of fertilizers, petrochemical processes, energy generation from
fuel cells, and in various chemical industries [20,23,31].

There is also a need for innovative energy techniques with zero carbon footprint because
of ever-increasing global energy demands and the limited supply of fossil fuels [7,23,32].
Environmentally friendly energy solutions are gaining traction today as viable alternatives
to fossil fuel-based systems. It is estimated that less than 1% of the world’s hydrogen
consumption is met by green hydrogen, i.e., which used renewable sources in its produc-
tion [9,33]. One ecological method is polymer electrolyte water electrolysis; this approach
yields hydrogen with a purity of hydrogen up to 99.999% [33–35].

Green hydrogen is produced from 100% renewable sources in an electrolysis process
that uses fully renewable power and generates pure oxygen and hydrogen [25,35]. Gray
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hydrogen refers to the hydrogen synthesized via the steam methane reforming (SMR)
method, as well as the residual hydrogen from chemical processes in chlor-alkali plants.
Blue hydrogen refers to a gray hydrogen that has undergone a postproduction step called
carbon capture and utilization (CCU) process [25,35,36].

The term “hydrogen economy” was introduced by John Bockris at the General Motors
Technical Centre in 1970, in reference to a potential future method of generating energy [37].
Today, in Malaysia, the same term refers to the distribution of energy derived from hydro-
gen rather than fossil-fuel-based systems [38]. Over the course of the half century since the
term was coined, the hydrogen technology landscape has evolved tremendously. Hydro-
gen is seen by some as the ultimate solution to climate change [14,25]. This is because, by
introducing green hydrogen production, there will be a zero carbon footprint [24,39].

Although there are other methods of producing hydrogen, the advantages of membrane-
based electrolysis include no net carbon release into the atmosphere (only hydrogen, oxygen
and water are generated during the operation), ease of replication and the ability to com-
bine multiple single unit membrane electrodes into a stack. Most of all, membrane-based
electrolysis can be customized according to specific needs, location, and resource avail-
ability [40,41]. Therefore, this paper will review current membrane-based electrolysis for
hydrogen production technologies.

2. Types of Membranes for Hydrogen Production

Membranes come in a solid polymer exchange strip that separates the two electrodes,
acts as an ion conductor and prevents any fuel diffusivity [42–45]. In a membrane-based
electrolysis process, a good quality membrane is vital to ensure durable operation and suf-
ficient purity of the output product. Perfluorinated sulfonic acid (PFSA) type membranes
are now the most frequently utilized solid electrolytes for proton exchange membrane fuel
cell (PEMFCs) and proton exchange membrane electrolyzers (PEMEs) [46–49]. The phase
inversion method is the most frequently used method for the production of polymeric
membranes [50,51]. Below are some of the characteristics of a high-performance membrane
for hydrogen production [21,52,53]:

• High thermal and mechanical stability
• Cost-effective and economic fabrication process
• Excellent ionic conductivity
• Excellent electrical insulation
• High oxidative and hydrolytic stability
• Excellent ability to block ion crossover via membrane/low diffusivity
• Low swelling
• Easy fabrication of the membrane electrode assemblies (MEA)
• High chemical/electrochemical stability

2.1. Nafion™

Nafion™ is a well-known perfluorosulfonic acid (PFSA) membrane that is frequently
utilized in PEM fuel cells and PEM electrolyzers [21,52,54]. Nafion™ functions well and is
currently very popular because of its good ionic conductivity and excellent physicochemical
properties. In 1966, General Electric Co. (Boston, MA, USA) was the first to create a proton
exchange membrane (PEM) electrolyzer from a solid polymer electrolyte; it consisted of a
membrane, an anode, and a cathode. DuPont’s Nafion™ membrane is the most well-known
membrane; it is composed of a perluorinated polymer with sulfonic acid functionalization,
as shown in Figure 2.

The significance of Nafion™ in the field of fuel cells and electrolyzers is apparent.
It has excellent mechanical strength, proton conductivity, and chemical and thermal
stability [56–58]. However, its apparent flaw, which has yet to be resolved, is the high
fuel permeability, which causes PEM fuel cell and direct methanol fuel cell systems to
lose a lot of fuel, reducing performance [42,52,59]. There are also ion crossovers in PEM
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electrolyzers which decrease the hydrogen yield. Furthermore, Nafion™ is very expensive
due to the high production cost of the membrane [60,61].
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Recently, many attempts have been made to address these shortcomings, including
the introduction of inorganic fillers, acid doping and the introduction different polymer
backbones into the Nafion™ membrane [27,62]. Moreover, operating an electrolyzer cell at
higher temperatures induces more efficient hydrogen production due to the increase in
ionic conductivity and a reduction in the anode and cathode activation overpotential [63].
In PEM fuel cells, operating at higher temperatures improves performance by decreasing
carbon monoxide (CO) emissions; however, it also accelerates the degradation of the fuel
cell components [64]. In the electrolyzer, a higher operating temperature results in an
increased hydrogen yield [65].

2.2. Polybenzimidazole (PBI)

Polybenzimidazole (PBI) is a term denoting the presence of several benzimidazole
units in the structure of aromatic heterocyclic polymers. Compared to Nafion™ membranes,
PBI offers a few benefits, including high tensile strength, good chemical stability, and
exclusive affinity for polyaryletherketone and some other polymers. The production of PBI
is depicted in Figure 3.

The rigid aromatic structure in polybenzimidazole (PBI) contributes to its good chemi-
cal stability, high mechanical strength, and remarkable thermal stability. Owing to these
characteristics, polybenzimidazole-based (PBI-based) membranes have been intensively
explored for use in fuel cells, water electrolysis, and flow batteries [67–69].

Even though Nafion™ membranes are excellent at operating temperatures ranging
from 20 to 80 ◦C, they are not suitable for high-temperature applications (>100 ◦C) due to
their mechanical instability and the considerable drop in proton conductivity that occurs
with elevated temperature [21,44,48]. Wainright first used polybenzimidazole (PBI) for
high-temperature polymer electrolyte membranes in 1995 [27,64]. However, compared to
Nafion™, pure PBI has relatively low conductivity, making it unsuitable as a substitute.

The proton conductivity of pure PBI can be improved by treating it with a variety of
inorganic acids via hybrid membrane synthesis methods. For example, ion cross-linked
structures can be prepared by blending PBI with sulfonated polyether ether ketone (SPEEK),
sulfonated polysulfone, or sulfonated partially fluorinated arylene polyether [30,70]. The
proton conductivity of phosphoric acid (PA) -doped PBI membranes is significantly de-
pendent on the acid doping level, which is defined as the number of PA molecules per
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polymer repeating unit. The proton conductivities of acid-doped PBI membranes are also
influenced by the doping acids in the following order: H2SO4 > H3PO4 > HClO4 > HNO3
> HCl. Due to the presence of more effective acid sites, sulfonated PBI membranes have
greater proton conductivity than pure PBI membranes [71].
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2.3. Sulfonated Polyether Ether Ketone (SPEEK)

Victrex is now the world’s top producer of PEEK polymers. In the sulfonation pro-
cedure for SPEEK membranes (Figure 4), sulfonic acid groups (SO3H) are attached, via
alteration or polymerization of sulfonated monomers, to the backbone structure of the
PEEK polymer [72]. The excess acid in the form of sulfonic acid groups in the PEEK
polymer is the basis for the hydrophilic properties of the membrane. The sulfonic acid
groups serve as hydrogen bonding sites between the polymer and the water [52,70]. Proton
charge carriers are formed in PEEK hydrated membranes as a result of sulfonic acid group
segregation and proton conductivity due to water activity [73,74].
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Previous research has demonstrated that PEEK polymers with altered characteristics
can be used to replace Nafion™ membranes in PEMFC, DEMFC, and PEME systems [27,50].
PEEK electrophilic sulfonation (S-PEEK), SPEEK and nonfunctional polymer mixing, and
SPEEK heteropolycompounds with poly-etherimide doping with organic acids are all
required in order to PEM from PEEK polymer [50,73]. Therefore, controlling the degree of
sulfonation (DS) is critical, since this affects the thermochemical stability of PEEK-based
membranes [76,77].

2.4. Others

Apart from Nafion™, PBI, and SPEEK, other base membranes could be used in
hydrogen production processes. For example, other polymers with aromatic rings, such as
polyoxadiazole, polysulfone (PSf), and polyimides, could reduce production costs while
providing adequate physicochemical properties; however, these compounds need further
improvements and investigation. Additionally, the physicochemical properties of these
membranes could further be improved by hybrid membrane preparation (solution mixing,
acid doping etc). Currently, these polymers and their derivatives (e.g., polyimides/SPAES,
polysulfone/PEEK) are mainly used in fuel cell applications and, occasionally, in water
electrolysis [31,78].

3. Types of Water Electrolysis Technologies

Electrolysis technologies have existed for more than 100 years. At present, fuel
cells (which use the opposite process to electrolyzers) are more popular than traditional
hydrogen conversion tools for applications in the automobile industry. In the hydrogen
production process, the electrolyzer is the most important component, as it determines the
production efficiency [79].

3.1. Nonmembrane-Based Electrolysis
Alkaline Electrolysis

Hydrogen production by electrolysis of alkaline water is now a mature technology
that is economical, durable, and has been widely used in chlor-alkali chemical industries
for more than 100 years [79,80]. The drawbacks of having an alkaline electrolysis system are
low hydrogen purity, limited current density (below 400 mA/cm2), low range of operating
pressure with low energy efficiency [81–83]. The schematic for alkaline electrolysis is
shown in Figure 5.
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The half-cell reaction at the anode in an alkaline electrolysis is shown in Equation (1):

Anode: 2OH− → H2O +
1
2

O2 + 2e− (1)

As for the cathode, the half-cell reaction in alkaline electrolysis is depicted in Equation (2).

Cathode: 2H2O + 2e− → H2O + 2OH− (2)

The overall reaction for alkaline electrolysis is represented by Equation (3):

Overall: H2O→ H2 +
1
2

O2 (3)

The hydrogen evolution reaction (HER) starts when the water molecule is reduced at
the cathode, producing one hydrogen (H2) molecule and two hydroxyl ions (OH-) [34,84].
The hydroxyl ions then move to the anode via the porous diaphragm due to the electrical
potential which is applied at both electrodes, releasing half a molecule of oxygen (O2)
and one molecule of water (H2O) [82]. Typically, alkaline electrolyzers use 30 wt% KOH
solution or 25 wt% NaOH solution and operate at 30–80 ◦C. These devices are able to
produce hydrogen which is up to 99% pure with an efficiency of around 60–80% [79,83].

3.2. Membrane-Based Electrolysis
3.2.1. Proton Exchange Membrane Electrolysis

Proton exchange membranes (PEMs) are widely used in fuel cells to produce electricity
and in electrolyzers to produce hydrogen. PEMs also act as a means of separating the
anode from the cathode. Nafion™ and Nafion™-based membranes are the most popular
PEMs due to their high ionic conductivity, thermostability, good mechanical strength,
excellent chemical stability, and durability at low temperature under high levels of relative
humidity [56,84–86]. However, Nafion™ has two major problems, i.e., a time-consuming
synthesis procedure and poor proton conductivity at high-temperatures in low humidity
environments [62,87]. Moreover, the main obstacles for the use of Nafion™ membranes
are their exorbitant price, the unsafe membrane synthesis process, and the fact that ionic
conductivity drops when the operating temperature exceeds 90 ◦C under low relative
humidity [49,88,89].

The advantages of PEM electrolyzers are their abilities to operate at high current
densities with high voltage and to produce a very pure hydrogen gas, i.e., up to 99.995% [90].
The downsides of using a PEM electrolysis system are the high cost of the catalyst and the
need for an expensive membrane which has only average durability. Furthermore, PEM
electrolyzer stack materials are more costly than those of alkaline electrolyzers [21,30]. A
schematic of the PEM electrolysis process is shown in Figure 6.

The oxygen evolution reaction (OER) starts when hydrogen ions move to the cathode
via the PEM due to an electrical potential applied at both electrodes releasing half a
molecule of oxygen (O2) and electrons via the water splitting process. The hydrogen
evolution reaction (HER) starts when hydrogen ions are reduced at the cathode, liberating
one hydrogen (H2) molecule.
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The half-cell reaction at the anode in PEM water electrolysis is shown in Equation (4):

Anode: H2O→ 2H+ +
1
2

O2 + 2e− (4)

The half-cell reaction at the cathode in PEM water electrolysis is shown in Equation (5).

Cathode: 2H+ + 2e− →H2 (5)

The overall reaction for PEM electrolysis is represented by Equation (3):

Overall: 2H2O→ H2 +
1
2

O2 (6)

Apart from traditional PEM water electrolysis, another type exists which utilizes
copper chloride-hydrochloric acid (CuCl-HCl) as the electrolytes. In the past decade,
studies carried out on CuCl-HCl electrolysis at low operating temperature (<80 ◦C) using
a Nafion™ and Nafion™-based membranes revealed promising hydrogen production
results [91–97]. A schematic of the CuCl-HCl electrolysis process is shown in Figure 7. The
reaction for CuCl electrolysis produces two CuCl2 molecules and one H.2 molecule.
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One study revealed that Nafion™ functions as an exceptional intermediate for ionic
transfer without material compatibility issues in CuCl-HCl electrolytic systems when
0.2–1 M CuCl is added to the 2–10 M HCl electrolytes [92]. In some studies, milder elec-
trolytes were utilized, with CuCl concentrations ranging from 0.01 to 0.2 M and HCl
concentrations of 0.5–1 M [21,48]. However, some issues have been reported with Nafion™
membranes, namely, high copper diffusion, swelling, and the need for expensive mem-
branes [97,98]. In contrast, a polybenzimidazole (PBI) membrane doped with phosphoric
acid offers superior thermochemical and mechanical stabilities for working temperatures
over 80 ◦C [21,98].

The half-cell reaction at the anode in CuCl-HCl electrolysis is shown in Equation (7):

Anode: 2CuCl + 2Cl− → 2CuCl2 + 2e− (7)

The half-cell reaction at the cathode in CuCl-HCl electrolysis is depicted in Equation (8).

Cathode: 2H+ + 2e− → H2 (8)

The overall reaction for an alkaline electrolysis is represented by Equation (9):

Overall: 2CuCl + 2Cl− + 2H+ → 2CuCl2 + H2 (9)

Recent findings suggested that high-temperature CuCl-HCl electrolysis using hybrid
PBI/zirconium phosphate (PBI/ZrP) can increase the hydrogen production; therefore, this
approach has the potential to make Nafion™ membranes redundant [21,48,98]. Kamarod-
din et al. (2020) reported high-temperature CuCl-HCl electrolysis for hydrogen production
at a temperature range of 100–130 ◦C with lower HCl concentration and electrolyte flowrate
using a hybrid PBI/ZrP membrane [21]. Theirs was the first study that used a non-Nafion™
membrane in high-temperature CuCl-HCl electrolysis for hydrogen production. In another
study, manipulations of the electrolyte concentrations and current densities were shown to
increase hydrogen production, although this requires further investigation [48]. A sum-
mary of a CuCl-HCl electrolysis system for hydrogen production via Nafion™ and hybrid
PBI/ZrP membrane is depicted in Table 1.

Table 1. CuCl-HCl electrolysis system for hydrogen production via hybrid PBI/ZrP and Nafion™ membrane.

Authors
Electrolyte(s)

Concentration
(M)

Temperature
(◦C) Membrane Electrolyte Flowrate

(cm3 min−1)

Kamaroddin M.F.A et al.,
2020 [21]

0.01–0.2 M CuCl 100–130 PBI/ZrP CuCl: 3–30
HCl: 3–30

1 M HCl

Abdo & Easton 2016 [95]
0.2 M CuCl, 2 M HCl 25 Nafion™/Polyaniline

(PANI)
CuCl/HCl: 60
DI water: 60

DI water

Naterer et al., 2015 [94]
0.5–1.0 M CuCl 45–60 Nafion™ 117 CuCl: 600

6–10 M HCl HYDRion HCl: 600

Aghahosseini et al., 2013
[99]

0.5–1.0 M CuCl 25–60 Nafion™ 117 CuCl: 100–500
6–10 M HCl HCl: 100–500

Edge 2013 [91] 0.002–0.2 M CuCl 25–80 Nafion™ CuCl: 40–200
2 M HCl HCl: 40–200

Schatz et al., 2013 [100] 1–2 M CuCl 80 Nafion™ CuCl: 59
6 M HCl HCl: 130

Balashov 2011 [92] 0.2–1.0 M CuCl 22–30 Nafion™ 115 CuCl: 30 & 68
2 M HCl HCl: 28.5

Gong et al., 2010 [100] 0.2–1.0 M CuCl 24–65 Nafion™ CuCl: 3.4–22
2–6 M HCl HCl: 4.4–27
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Choosing the right process using CuCl2 with spent residues can increase the yield
of the electrolysis process [21,101]. CuCl2 can be further recycled to generate CuCl for
the next round of electrolysis. Despite the challenges, hydrogen production via high-
temperature electrolysis of CuCl-HCl can be seen as a suitable option because hydrogen is
a clean, energy dense substance and a nontoxic energy source [48,102]. Therefore, high-
temperature electrolysis of CuCl-HCl is a potential alternative to fossil fuels which may
reduce the production costs of hydrogen by utilizing a cheaper membrane.

3.2.2. Anion Exchange Membrane (AEM) Electrolysis

AEM water electrolysis is a hybrid method that combines the advantages of having
PEM and alkaline electrolysis in a cell made up of a hydrocarbon-based anion exchange
membrane and two transition metal (e.g., iridium (Ir), platinum (Pt), etc.) catalyst-based
electrodes [71,81,103]. The advantages of this process compared to alkaline electrolysis are
the use milder alkaline electrolytes or distilled water instead of a concentrated KOH solu-
tion and the possibilities of using a cheaper catalyst and an inexpensive nickel-based stack
components [81,104]. However, current AEM electrolyzers shows low ionic conductivity,
low power efficiency, medium range membrane stability with large Ohmic resistance loss
and significant catalyst loading [81,105]. There is growing interest among the scientific
community in developing a solid polymer anion exchange membrane, but more efforts are
required regarding the catalyst design and synthesis [103,106]. A schematic and the overall
cell reaction for AEM electrolysis are shown in Figure 8.
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The half-cell reaction at the anode in an AEM electrolysis is shown in Equation (10):

Anode: 4OH− → 2H2O + O2 + 4e− (10)

The half-cell reaction at the cathode is depicted in Equation (11).

Cathode: 4H2O + 4e− → 4OH− + 2H2 (11)

The overall reaction for an AEM electrolysis is represented by Equation (12):

Overall: 4H2O→ 2H2O + O2 + 2H2 (12)

A summary of the AEM electrolysis system is shown in Table 2.
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Table 2. Summary of the AEM electrolysis system for hydrogen production.

Authors
Membrane Electrode

Assembly GDL *
(anode/cathode)

Temperature
(◦C) Membrane Electrolyte Voltage (V)

Leng et al., 2012 [108] Ti foam/Ti foam 50 A-201, Takuyama Deionized water 1.8

Pavel et al., 2014 [109] Ni foam/carbon cloth 50 A-201 Takuyama 1%
K2CO3/KHCO3

1.9

Xiao et al., 2012 [110] Ni form/stainless steel
fiber felt 70 xQAPS Ultrapure water 1.85

Wu et al., 2011 [111]
Stainless steel

mesh/stainless steel
mesh

25 Quaternary
ammonium 1 M KOH 1.8

Seetharaman et al.,
2013 [112] NiO/NiO 80 Selemion AMV 0–5.36 M KOH 1.9

Joe et al., 2014 [113] Ni oxide/Ni 30 Selemion AMV Deionized water 2.0

* GDL—gas diffusion layer.

The above summary provides an overview of the type of membrane electrode assem-
blies, temperatures, membrane, types of electrolyte and voltages of the system. Common
membranes used for AEM electrolysis are A-201, Takuyama, and Selemion AMV; a volt-
age range of 1.8–2.0 V is sufficient to produce hydrogen in the AEM electrolysis process.
Currently, research on AEM is still at the laboratory scale, but recent studies have yielded
significant information regarding the AEM electrolysis mechanism, as well as improve-
ments of the electrocatalysts, membranes, electrodes, and membrane electrode assemblies
(MEA) [27,81].

3.2.3. Solid Oxide Electrolysis

Solid oxide electrolysis (SOE) has received a lot of attention, as it is regarded as a
high-efficiency process that converts electrical energy into chemical energy and produces
high purity hydrogen [114]. Donitz and Erdle invented the technique in 1980, although it
is still undergoing refinement [114]. SOE works at a high temperatures, i.e., 500–1000 ◦C,
or the same as the output temperature of a nuclear reactor. SOE uses a solid ceramic
membrane, which makes it compact and gives it a fast response time, i.e., comparable
to that of a PEM electrolyzer cell. The advantages of having a solid-oxide electrolyzer
include the fact that it can be a dual-function fuel cell/electrolyzer, and its superior ionic
conductivity [29]. However, solid oxide electrolysis comes with a few disadvantages, e.g.,
the relative immaturity of the technology, the energy intensive nature of the process, high
cost, low durability, and the need for ultrahigh operating temperatures [44,100]. Solid
oxide electrolyzers (Figure 9) are unique on account of their need for high temperature
operation, as extra heat input is required in addition to electrical input [29,114,115].

Half-cell reaction at the anode in solid oxide electrolysis is shown in Equation (13):

Anode: O2− → 1
2

O2 + 2e− (13)

Half-cell reaction at the cathode is depicted in Equation (14).

Cathode: H2O + 2e− → H2 + O2- (14)

The overall reaction for a solid oxide electrolysis is represented by Equation (15):

Overall: H2O→ H2 +
1
2

O2 (15)
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A summary of a SOE system for membrane-based electrolysis is shown in Table 3.
SOE operating temperatures and voltages range from 700 to 800 ◦C and 0.95 to 1.40 V,
respectively. The majority of the SOE systems use water as the electrolysis reactant.

Table 3. Summary of SOE system for hydrogen production.

References Membrane Temperature (◦C) Durability Test
Time (h)

Electrolysis
Reactant Voltage (V)

[116] YSZ */CGO 750 120 H2O 1.15

[117] SSZ 700 330 H2O 1.30

[118] SSZ 700 1000 H2O 1.30

[119] LDC/LSGM/LDC 800 - H2O 0.95

[120] YSZ * 800 300 H2O/CO2 1.40

* YSZ—Yittria-zirconized zirconia, CGO—Gadolinium doped ceria, SSZ—Scadinia stabilized. zirconia, LDC—lanthanum doped cerium,
LSGM—La0.9Sr0.1Ga0.8Mg0.2O3−δ.

SOE holds great promise if we are able to utilize the waste heat from power plants or
other chemical processes as heat sources.

3.2.4. Microbial Electrolysis

Microbial electrolysis cell (MEC) technology is capable of producing hydrogen from
organic matter, including wastewaters and industrial biomass waste. In MECs, electrical
energy is transformed into chemical energy. MEC technology is very similar to that of
microbial fuel cells (MFCs), except that the operating concept is the opposite [121]. In 2005,
two university groups from Penn State University, USA, and Wageningen University in
the Netherlands, presented the first microbial electrolysis cell (MEC) method [20,122]. A
schematic for microbial electrolysis is shown in Figure 10.

The half-cell reaction at the anode in a microbial electrolysis is shown in Equation (16):

Anode: CH3COO− + 4H2O→ 2HCO3− + 9H+ + 8e− (16)

The half-cell reaction at the cathode is depicted in Equation (17).

Cathode: 8H+ + 8e− →4H2 (17)



Membranes 2021, 11, 810 13 of 27

The overall reaction for a microbial electrolysis is represented by Equation (18):

Overall: CH3COO− + 4H2O→ 2HCO3− + H+ + 4H2 (18)
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The evolution of microbial electrolysis cell technology from 2005 to 2021 is sum-
marized in Table 4. In previous studies, several membranes, e.g., SPEEK, SPEEK/PES,
SPAES/polyimide, SPEEK/PES, Nafion™, AMI-7001, bipolar membranes, charge-mosaic
membranes, and microporous membranes, were tested and showed promising results
in microbial electrolysis cells [123–126]. The advantages of MEC include the fact that
it can generate hydrogen from organic molecules under the influence of a low external
voltage [126,127]. However, there are disadvantages that need to be taken into account,
e.g., it has high internal resistance, a complicated design, high fabrication and operation
costs, and is a technology that is still under development [128].

Table 4. Chronological development of microbial electrolysis cell (MEC) technology from 2005 to 2021.

Year Description References

2005 Hydrogen gas generated from acetate using a full anaerobic microbial fuel cell [129]

2008 Biocathode was used in MEC [130]

2009 Effort to increase the hydrogen production by using an economical cathode SS
A286 and nickel [131]

2010 Establishment of a life cycle assessment for microbial electrolysis cells [132]

2012 Conversion of CO2 to methane using MEC technology [133]

2015 Dark fermentation and MEC were integrated and evaluated by producing
hydrogen from sugar beet juice [134]

2016 Removal of cadmium by using MEC [135]

2018 Prefermentation of MEC as the medium with which to check the role of free
nitrous acid [136]

2019 A method to quantify the internal resistance of MECs was developed [137]

2020 The effectiveness of chloroform as a homoacetogen inhibitor
was demonstrated [138]

2021 The effect of high applied voltages on bioanodes in the presence of chlorides
was studied [81]
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3.2.5. Acid-Alkaline Amphoteric Electrolysis

Large-scale, acid-alkaline amphoteric (AAA) water electrolysis is deemed a promising
method for effective hydrogen generation; however, a functionalized polymer for construct-
ing membranes is still either unable to yield good electrolysis performance or is not durable
enough [34,83]. Current studies on a variety of H2SO4-doped PBI-based membranes for
use in AAA water electrolysis systems (Figure 11), including poly (2,2’(m-phenylene)-5,5’-
bibenzimidazole) (m-PBI), poly (4,4’diphenylether-5,5’-bibenzimidazole) (OPBI), Nafion™
117 (N117) and Nafion™ 115 (N115), are considered to be good potential membranes for
amphoteric electrolysis [83,139].

Membranes 2021, 11, x FOR PEER REVIEW 15 of 30 
 

 

 

Figure 11. Acidic-alkaline amphoteric electrolysis. Reproduced with permission from [34]. 

The summary of acid-alkaline amphoteric electrolysis for hydrogen production is de-

picted in Table 5. The electrolytes used are sulfuric acid (H2SO4) and potassium hydroxide 

(KOH) with operating conditions range from 20 to 60 °C (temperature), 1.98 to 2.2 V (volt-

age) and 200 to 800 A cm−2 (current density). It was reported that the AAA electrolysis 

efficiency can consistently achieved up to 100% with few more advantages which includes 

a reduction in overpotential and energy consumption (30% of pure alkaline electrolysis 

requirement) and up to 4 times more hydrogen production compared to alkaline electrol-

ysis [34]. However, due to characteristic of the AAA, the setup has higher membrane re-

sistance compare to alkaline electrolysis, the need to use bipolar ion-exchange membrane 

and it requires simultaneous usage of acidic and alkaline electrolytes in the system [83]. 

Table 5. Summary of acid-alkaline amphoteric electrolysis for hydrogen production. 

References 
Electrolyte(s) Concen-

tration (M) 

Temperature 

(°C) 
Membrane Voltage (V) 

Current Density 

(A cm−2) 

[138] 3 M H2SO4 /6 M KOH 20 
PBI/Graphitic carbon ni-

tride 
1.98 800 

[83] 
1–3 M H2SO4 /6 M KOH 20–60 Nafion 115, 2.0 800 

  OPBI, m-PBI   

[34] 1–2 M H2SO4/2–4 KOH 30–50 Nafion 115 2.2 200 

3.2.6.  Photoelectrochemical Electrolysis 

The first report of photoelectrochemical (PEC) water splitting was published in 1970s, 

when a conductive electrode composed of TiO2 was illuminated in aqueous solution 

[140,141]. Photoelectrochemical (PEC) electrolysis system (Figure 12), which converts so-

lar energy directly to hydrogen by using a direct and simple setup has sparked consider-

able attention in recent years. Water decomposes into hydrogen and oxygen by absorbing 

solar photons in a semiconductor material attached with electrocatalysts [142–144]. 

In the PEC approach, photocatalysts are first produced as electrodes on conductive 

substrates, and a modest bias is then applied for water splitting. The half-cell reaction at 

the anode in PEC electrolysis is shown in Equation (22): 

Anode: 2H2O →  4H+ + O2 + 4e− (22) 

The half-cell reaction at the cathode is depicted in Equation (23). 

Cathode: 4H+ + 4e− →  2H2 (33) 

The overall reaction for a PEC electrolysis is represented by Equation (24): 

Overall: 2H2O + 4H+ →  4H+ + O2 + 2H2 (44) 

Figure 11. Acidic-alkaline amphoteric electrolysis. Reproduced with permission from [34].

The half-cell reaction at the anode in acid-alkaline amphoteric electrolysis is shown in
Equation (19):

Anode: 4OH− → 2H2O + O2 + 4e− (19)

The half-cell reaction at the cathode is depicted in Equation (20).

Cathode: 2H+ + 2e− → H2 (20)

The overall reaction for an acid-alkaline amphoteric electrolysis is represented by
Equation (21):

Overall: 4OH− + 4H+ → 2H2O + O2 + 2H2 (21)

The summary of acid-alkaline amphoteric electrolysis for hydrogen production is
depicted in Table 5. The electrolytes used are sulfuric acid (H2SO4) and potassium hydroxide
(KOH) with operating conditions range from 20 to 60 ◦C (temperature), 1.98 to 2.2 V (voltage)
and 200 to 800 A cm−2 (current density). It was reported that the AAA electrolysis efficiency
can consistently achieved up to 100% with few more advantages which includes a reduction
in overpotential and energy consumption (30% of pure alkaline electrolysis requirement) and
up to 4 times more hydrogen production compared to alkaline electrolysis [34]. However,
due to characteristic of the AAA, the setup has higher membrane resistance compare
to alkaline electrolysis, the need to use bipolar ion-exchange membrane and it requires
simultaneous usage of acidic and alkaline electrolytes in the system [83].

Table 5. Summary of acid-alkaline amphoteric electrolysis for hydrogen production.

References Electrolyte(s) Concentration
(M)

Temperature
(◦C) Membrane Voltage

(V)
Current Density

(A cm−2)

[138] 3 M H2SO4/6 M KOH 20 PBI/Graphitic carbon nitride 1.98 800

[83] 1–3 M H2SO4/6 M KOH 20–60 Nafion 115, 2.0 800
OPBI, m-PBI

[34] 1–2 M H2SO4/2–4 KOH 30–50 Nafion 115 2.2 200
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3.2.6. Photoelectrochemical Electrolysis

The first report of photoelectrochemical (PEC) water splitting was published in 1970s,
when a conductive electrode composed of TiO2 was illuminated in aqueous solution [140,141].
Photoelectrochemical (PEC) electrolysis system (Figure 12), which converts solar energy
directly to hydrogen by using a direct and simple setup has sparked considerable attention
in recent years. Water decomposes into hydrogen and oxygen by absorbing solar photons
in a semiconductor material attached with electrocatalysts [142–144].
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In the PEC approach, photocatalysts are first produced as electrodes on conductive
substrates, and a modest bias is then applied for water splitting. The half-cell reaction at
the anode in PEC electrolysis is shown in Equation (22):

Anode: 2H2O→ 4H+ + O2 + 4e− (22)

The half-cell reaction at the cathode is depicted in Equation (23).

Cathode: 4H+ + 4e− →2H2 (23)

The overall reaction for a PEC electrolysis is represented by Equation (24):

Overall: 2H2O + 4H+ → 4H+ + O2 + 2H2 (24)

Table 6 shows a summary of photoelectrochemical electrolysis for hydrogen produc-
tion in which the membrane is integrated with a semiconductor material in order to activate
the photoelectrochemical reaction when immersed in an appropriate agent (e.g., methanol,
water or ethanol). PEC electrolysis, that can directly use the free energy obtained from
solar panels to produce hydrogen, holds tremendous potential due to its simple setup,
although efficiency remains quite low < 10% due to the fact that the technology is still
in its infancy [142,144]. Therefore, there should be collaborative efforts in the scientific
community to increase the efficiency of PEC electrolysis, with the goal of matching that of
photovoltaic assisted water splitting processes.
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Table 6. Summary of photoelectrochemical electrolysis for hydrogen production.

References Membrane Agent Reactor

[145] TiO2-Nafion-Pt Methanol -
[146] Pt/SrTiO3Rh-Nafion Water H-type integrated
[147] BiVO4-Nafion Water Dual
[148] Porous Nafion-Pt-TiO2 Ethanol
[149] WO3-TiO2-Pt-Nafion Water H-type
[150] Carbon coated Degussa TiO2-P25 Water -

[151]

Nafion, FKE Fumatech, sulfonated
polyethersulfone (sPES),

sPES/mesoporous-Si-MCM41-
nanoparticles

Water -

3.3. Summary

Various methods of hydrogen production have been discussed above, each of which
has its advantages and disadvantages. At the end of the day, we need to consider the
greenest possible way to generate hydrogen without releasing greenhouse gases into the
atmosphere in an effort to curb climate change. The efficiency of the electrolyzer for
hydrogen production can be determined using the formulae in Equations (25)–(27):

Efficiency (%) = VH2 real/VH2 ideal × 100 (25)

with VH2 real = VH2 measured × Tstandard/Tmeasured and; (26)

VH2 ideal = I × Vm × t/(2 × F) (27)

where I is current (A), Vm is a molar volume of an ideal gas, t is time (s) and F is Faraday’s
constant, i.e., 96485 A.s/mol.

A summary of hydrogen production by water splitting technologies, along with their
advantages, disadvantages and efficiencies, is depicted in Table 7.

Table 7. Summary of hydrogen production by water splitting technologies along with the types of diaphragm/membrane
used, advantages, disadvantages, and efficiencies [19,21,27,34,81,83,114,128,142].

Water Splitting Technologies Advantages Disadvantages Efficiency

Alkaline

Type of diaphragm: porous
inorganic (asbestos,

ceramic, cement)

Well established technology
Economical

Very durable
Operates at low temperature

(30–80 ◦C)
Inexpensive electrocatalyst

High concentration
corrosive electrolytes

Limited current density (below
400 mA/cm2)

Low operating pressure
Low energy efficiency

Low gas purity

60–80%

Solid oxide

Types of membranes:
oxygen ion ceramic electrolyte

membrane, YSZ

Dual-function fuel cell
and electrolyzer

Superior ionic conductivity
Ultrapure hydrogen
Excellent efficiency

Very high operating temperature
(500–850 ◦C)

Energy intensive process and
not economical

Low durability (stability and
degradation)Still immature

technology—lab scale

90–~100%

PEM

Type of membranes: Nafion™,
PBI, SPEEK, polyethylene

High hydrogen purity (up to
99.995%), High current density

High voltage efficiency
Dynamic operation

High-cost catalysts
Mildly durable

Costly membrane
More expensive stack materials

compared to alkaline
Partially established technology

70–90%
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Table 7. Cont.

Water Splitting Technologies Advantages Disadvantages Efficiency

AEM

Types of membranes:
A201 membrane, Selenion

AMV, A901 membrane

Lower cost of catalysts
Inexpensive stack components

-(Nickel-based)

Low ionic conductivity
Early stage of development

Low power efficiency
Low membrane stability

Large Ohmic resistance loss
Large catalyst loading

50–70%

Acid-alkaline amphoteric

Types of membranes: bipolar
membrane, acid-doped

PBI-based
membranes, Nafion™

Reduced energy consumption
Reduced overpotential

Hydrogen production four times that
of alkaline electrolysis

Increased membrane resistance
Need to use bipolar

ion-exchange membrane
Need to use both acidic and

alkaline electrolytes

~100%

Microbial

Types of membranes:
SPAES */polyimide, SPEEK,

SPEEK/PES, Nafion™,
AMI-7001, bipolar

membranes, charge-mosaic
membranes, microporous

membranes

Requires only a low
external voltage

Uses organic materials

Still under development
High internal resistance

Complicated design
Low rates of hydrogen production
Fabrication and operational costs

are high

60–70%

Photoelectrochemical

Types of membranes:
polyamide, Nafion™

based membrane

Direct solar to hydrogen conversion
Simpler setup

Low conversion factor
Low hydrogen production

Still at infancy stage
<10%

* SPAES—sulfonated poly (arylene ether sulfone).

Since water splitting technologies mainly involve either oxygen evolution (OER) or
hydrogen evolution (HER) reactions at their respective electrodes, the electrode potentials
can be summarized for acidic and alkaline media. A summary of electrode half potentials
for various membrane-based electrolysis for hydrogen production is given in Figure 13.
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This is a comprehensive way of visualizing the electrode half potentials for various
membrane-based electrolysis systems, as there are duplications for the anode and cathode
half-cell reactions. Despite using a different type of membrane, the process is nonetheless
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based on the water splitting technologies, and the standard electrode potential is the same
for both acid and alkaline electrolysis (1.23 V), except with amphoteric electrolysis, which
has only 0.401 V.

It can be concluded that each water splitting technology has its advantages and
disadvantages. However, membrane-based electrolysis appears to offer a lot of potential
for hydrogen production. Therefore, the research, development and commercialization of
more economical membranes should be a major focus if we are to exploit the full potential
of these technologies.

4. Parameters Affecting the Membrane-Based Electrolysis

Many factors determine the electrolyzer performance in an electrolysis system [14].
Apart from the selection of an appropriate material for the construction of the electrolyzer,
the operating parameters affecting hydrogen yield are very important [14,152,153]. In this
study, four operating parameters influencing hydrogen production in membrane-based
electrolysis are outlined, i.e., temperature, electrolysis concentration, electrolysis flowrate
and miscellaneous.

4.1. Temperature

Alkaline electrolysis is the most established hydrogen production technology; it is
generally applied for industrial-scale electrolytic hydrogen production with a typical
operating temperature of 40–90 ◦C [114], or 30–100 ◦C if highly concentrated KOH is
used, with an estimated overall efficiency of 70–80% [154]. On the other hand, a typical
PEM electrolysis process operates at between 30–90 ◦C, with a standard Nafion™-based
membrane being the core component of the membrane electrode [88,155,156]. Although
some studies have reported the use of PEM electrolyzers at high temperature, efforts in this
endeavor were hindered by the inability of the Nafion™ membrane to withstand operating
temperatures above 90 ◦C, as this leads to mechanical degradation and a loss of ionic
conductivity [44,157,158]. Toghyani et. al. (2018) reported that the hydrogen and oxygen
reaction rate increased dramatically at higher operating temperatures as a result of the
faster kinetics of the electrochemical reactions [63]. Recently, Kamaroddin et al. (2020)
revealed a PBI/ZrP hybrid membrane that can operate at 100–130 ◦C by synthesizing a
PBI-based hybrid membrane using a solution mixing method with the addition of a ZrO2
inorganic filler, followed by phosphoric acid doping. Therefore, by better integrating the
polymer backbone through the use of ZrO2, more acid sites attach to the PBI, resulting
in enhanced proton movement via the Grotthus mechanism, as well as improved ionic
conductivity, tensile strength and ion exchange capacity [21].

The operating temperature required for water splitting technologies for hydrogen
production is often noted as one of the biggest factors influencing operation costs. SOE
requires the highest operating temperature, i.e., 500–1000 ◦C, but has an efficiency close to
100% [25,159]. Due to its advantageous thermodynamics and kinetics, high temperature
steam water electrolysis can deliver high efficiency at a lower overall cost than conventional
low temperature electrolysis [114,156]. Furthermore, because of the operating temperatures
of SOEs, it is possible to simultaneously electrolyze CO2 and H2O. However, in order for a
system to be feasible, the heat must be from a renewable source, or from exothermic waste
heat [31,64,160].

4.2. Electrolytes Concentration

In some water splitting processes, electrolyte concentration plays a vital role in deter-
mining the rate of the reaction and the amount of the hydrogen produced [44,159]. Chakik
et al. (2017) reported that the amount of hydrogen produced is strongly correlated with the
electrolyte concentration, i.e., a higher concentration in the electrolyte increases the ionic
conductivity of the solution which, in turn, promotes hydrogen evolution reactions and
improves yield [161]. According to Lei et al. (2019), a quadruple increase was observed in
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the hydrogen production rate in an amphoteric electrolysis that used 4 M KOH and 2 M
H2SO4 within a temperature range of 30 to 50 ◦C.

However, excessive electrolyte concentration can deteriorate the MEA components
including the membrane, electrodes, gasket, current collector, bipolar plates, etc., which,
in turn, affects the hydrogen yield [47,162,163]. The corrosive nature of concentrated elec-
trolytes, be it acidic or alkaline, can also cause damage to the peristaltic pump and its com-
ponents, the electrolyte tubing, thermocouples, heating elements, etc. [27,164]. Therefore,
considerable research must be carried out regarding a suitable electrolyte concentration to
achieve the optimum concentration to maximize yield.

4.3. Electrolytes Flowrate

As the membrane serves as the core component in the electrolyzer, the flowrate of the
electrolytes is a crucial factor that determines the kinetics of the electrolysis reaction [21].
Although many elements of the electrolyzer have improved over the previous decade,
the impacts of the various operating parameters are still being investigated. Notably, the
main limiting variables have yet to be identified using kinetic and thermodynamic rela-
tionships [165,166]. However, a faster electrolyte flowrate will not necessarily increase the
rate of hydrogen production, and instead may be a limiting factor, negatively influencing
the rate of ionization in an HER or OER. Therefore, a good balance between an optimal
electrolyte flowrate and other parameters must be found in order to achieve an optimal
hydrogen yield, depending on the type of available energy.

4.4. Others

Apart from all the above parameters, the electrode material plays an important role
in the electrolyzer setup in terms of ensuring a durable and highly efficient process. The
electrode materials should be nonreactive with excellent corrosion resistance, good proton
conductivity, and the ability to support active catalytic activity for HER and OER [154,167].

The volume of hydrogen generated during the electrolysis process grows steadily as
the applied current increases [161,168]. Moreover, both the catalyst composition and its
morphology function as synergistic factors that enhance HER and OER [20]. As a rule of
thumb, the MEA manufacturing procedure is critical in defining performance, production
costs, and durability [169,170].

5. Challenges and Future Trends

The present overview of membrane-based electrolysis approaches for hydrogen pro-
duction is largely based upon the results and discussions presented in the literature. A
literature search in the Web of Science Core Collection portal (accessed 1 September, 2021)
for alkaline, solid oxide, PEM, AEM, acidic-alkaline amphoteric, microbial, and PEC
membrane-based electrolysis yielded a total of 1193 results from over a 10-year time span
(2010–2021) using as keywords “membrane electrolysis” and “hydrogen production”. For
a comparison, a quick search on the MDPI portal yielded only 20 results for this period
using the same keywords.

The past decade has witnessed growing research interest in membrane-based elec-
trolysis for hydrogen production. This is due to the increasing demand for green energy
and the implementation of zero carbon footprint initiatives. Nevertheless, there are still
major obstacles which need to be overcome before membrane-based electrolysis can be
considered an economically viable, large-scale hydrogen generation solution, including
the cost, availability, and the durability of the membrane, type of catalyst, the cost of
using platinum group metal-based catalysts, and corrosion problems associated with the
electrodes and separator plates.

6. Conclusions

Despite significant advancements in the development of all required components
for membrane-based electrolytic hydrogen production systems, giving rise to significant
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improvements in durability, performance and efficiency, some electrolysis technologies
are still in the early stages of development, e.g., solid-oxide, anion exchange membrane,
microbial and photoelectrochemical electrolysis. In this review, we have provided a short
introduction to various water splitting technologies for hydrogen production, including
discussion of the type of membrane that are currently being used and the associated
progress in their development. In addition, we have highlighted and emphasized recent
development in membrane-based electrolysis. The present review not only discusses
in detail the availability of the hydrogen production technology, but also summarizes
trends of PEM water splitting technologies over the past decade, presenting a review
of hydrogen production including the advantages, disadvantages and efficiencies of the
various technologies. Parameters affecting the performance of membrane-based electrolysis
are also discussed. Finally, we have summarized the challenges to the development of
membrane-based electrolysis technologies, and have outlined our ideas for future research
directions with the aim of fully tapping into this potential energy source which has a
zero-carbon footprint. Future development of membranes for water splitting technologies,
especially for the membrane-based electrolysis, should be focused on more economical
models, like PBI, SPEEK, polysulfone, polyimides, polyethylene etc., in order to fully benefit
from the emerging hydrogen economy ecosystem via the creation of efficient hydrogen
generators for fuel cell cars and fuel cell power supply, as well as mobile electrolyzers to
power critical equipment in remote areas such as telecommunication towers or safety and
security surveillance. The application of membrane-based electrolysis and other auxiliary
equipment allowing the use of hydrogen in transportation and industrial activities will be
of at great interest over the next 5 to 10 years.

Abbreviation
AEM Anion exchange membrane
AAA Acidic-alkaline amphoteric
PA Phosphoric acid
PBI Polybenzimidazole
PEEK Poly ether ether ketone
PEM Proton Exchange Membrane
SPEEK Sulfonated poly ether ether ketone
MEC Microbial electrolysis cell
PEC Photoelectrochemical
SOE Solid oxide electrolysis
CuCl-HCl Copper chloride-hydrochloric acid
OER Oxygen evolution reaction
HER Hydrogen evolution reaction
MFC Microbial fuel cell
GHG Greenhouse gases
PBI/ZrP Polybenzimidazole/Zirconium phosphate
PEME Proton exchange membrane electrolyzer
PFSA Perfluorinated sulfonic acid
PEMFC Proton exchange membrane fuel cell
MEA Membrane electrode assemblies
SPES Sulfonated polyether sulfone
YSZ Yittria stabilized zirconia
CGO Gadolinium doped ceria
SSZ Scadinia stabilized zirconia
LDC Lanthanum doped cerium
LSGM Lanthanum gallate-based electrolyte
SPAES Sulfonated Polyaryl Ether Sulfone
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