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The severity of coronavirus disease 2019 (COVID-19) is characterized by systemic

damage to organs, including skeletal muscle, due to excessive secretion of inflammatory

cytokines. Clinical studies have suggested that the kynurenine pathway of tryptophan

metabolism is selectively enhanced in patients with severe COVID-19. In addition to

acting as a receptor for severe acute respiratory syndrome coronavirus 2, the causative

virus of COVID-19, angiotensin converting enzyme 2 (ACE2) contributes to tryptophan

absorption and inhibition of the renin-angiotensin system. In this article, we review

previous studies to assess the potential for a link between tryptophanmetabolism, ACE2,

and skeletal muscle damage in patients with COVID-19.
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INTRODUCTION

The global spread of coronavirus disease 2019 (COVID-19) is a serious ongoing issue owing to
the high infectiousness of the causative virus, severe acute respiratory syndrome coronavirus 2
(SARS-CoV2), and encroaching resistance to vaccine therapy due to viral mutations. One of the
serious challenges of this disease is that some patients who become seriously ill, ultimately develop
fatal acute respiratory distress syndrome (ARDS). The prognostic factors are not thoroughly
elucidated, but clinical studies have shown that the disease is more severe in men compared to
women, specifically in the elderly, and depends on underlying lifestyle-associated chronic diseases,
including diabetes and hypertension. Initial symptoms resemble common influenza symptoms. If
severe pneumonia develops, symptoms of ARDS can appear, with increased blood levels of pro-
inflammatory cytokines including IL-6, IL-10, and TNF-α, and decreased frequency and abnormal
functionality of T lymphocytes (1–3). Generation of an excessive inflammatory response, called
a cytokine storm, is a probable molecular mechanism underlying the development of ARDS (4–
6). In skeletal muscle, myalgia and increased levels of creatine kinase, together with signs of
skeletal muscle damage are more pronounced in critically ill patients at higher risk of mortality
(7–9). Examination of postmortem skeletal muscle specimens from critically ill patients revealed
an inflammatory signature, independent of direct viral effects (10), suggesting that excessive
immune activation throughout the body leads to organ damage in severe disease scenarios. It is
of considerable interest to note that interferon (IFN) type I reactivity, which is normally elevated
upon viral infection in COVID-19 patients, is attenuated with increasing severity, in contrast to
IL-6, IL-10, and TNF-α. One possible mechanism could be the presence of proteins with strong
IFN1 suppressive activity in SARS-CoV2, including ORF3b and ORF6 (11, 12).
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CHANGES IN TRYPTOPHAN METABOLISM
IN PATIENTS WITH SEVERE COVID-19

Metabolomics analyses of serum samples from COVID-19
patients have revealed the involvement of metabolites of the
kynurenine pathway (responsible for metabolism of the essential
amino acid tryptophan) in the immune response to SARS-
CoV2 infection (13, 14). Previous studies have shown decreased
serum tryptophan levels, and increased levels of intermediate
metabolites [kynurenine (KYN) and kynurenic acid (KYNA)] in
patients with severe COVID-19 compared to healthy controls
(13, 14). These differences in KYN and KYNA levels, as well
as the reactivity to these metabolites, have been suggested to be
contributing factors to the enhanced severity of COVID-19 in
male patients (14). In males, the ratio of KYNA to KYN (KA:K)
is elevated in patients with severe disease, and KA:K positively
correlates with blood levels of IL-6. In females, KA:K does not
correlate with disease severity or particular cytokine levels (14),
indicating that biological responses to KYN and KYNA are
important in determining the prognosis of COVID-19.

Dietary tryptophan absorption occurs mostly in the small
intestine, whereas tryptophan metabolism occurs mainly in the
liver and kidneys. Approximately 95% of absorbed tryptophan
is metabolized by the kynurenine pathway, and the rate-
limiting enzymes are tryptophan-2, 3-dioxygenase (TDO) and
indoleamine-2, 3-dioxygenase 1/2 (IDO1/2), which metabolize
tryptophan to KYN. Under physiological conditions, TDO,
which is mainly expressed in the liver, is regulated by hormones
including cortisol, insulin, glucagon, and epinephrine (15),
while IDO1, which is expressed in monocytes and dendritic
cells in organs other than the liver, is activated by pro-
inflammatory cytokines such as IFN-γ, IL-6, and TNF-α. The
recently identified IDO2 gene, which displays 45% homology
with IDO1, is constitutively expressed in the brain, liver, kidney,
and epididymis. However, its tryptophan metabolic activity
is thought to be lower than that of IDO1 (16). According
to previous studies, blood levels of serotonin, a kynurenine
pathway-independent metabolite of tryptophan, were lower in
patients with severe COVID-19 compared to healthy controls
(13), indicating that tryptophan utilization during SARS-CoV2
infection is specifically facilitated by the kynurenine pathway.

IMMUNOMODULATORY MECHANISMS
MEDIATED BY AhR ACTIVATION BY IDO1
AND TRYPTOPHAN METABOLITES

IDO1 and its kynurenine pathway metabolites have been actively
studied as immune regulators because of their involvement

Abbreviations: ACE2, angiotensin converting enzyme 2; ARDS, acute respiratory

distress syndrome; AhR, aryl hydrocarbon receptor; BBB, blood-brain barrier;

COVID-19, coronavirus disease 2019; FICZ, 6-formylindolo[3,2-b]carbazole;

GPR35, G protein-coupled receptor 35; IDO, indoleamine-2, 3-dioxygenase;

KA:K, KYNA to KYN; KAT, kynurenine aminotransferase; KYN, kynurenine;

KYNA, kynurenic acid; NAD+, nicotinamide adenine dinucleotide; RAS, renin-

angiotensin system; SARS-CoV2, severe acute respiratory syndrome coronavirus

2; TDO, tryptophan-2, 3-dioxygenase; Treg, regulatory T.

in fetal-maternal immune tolerance (17). In cancer immunity,
IDO1 and TDO, which are highly expressed in various
tumors, including colon and gastric cancers, are thought to
be involved in the pathogenesis of immune tolerance in
cancer cells (18–20). These cells evade the immune system
by activating IDO1, which suppresses T cell proliferation by
depleting tryptophan in their microenvironment, and suppresses
differentiation of naive CD4+ T cells into regulatory T (Treg)cells
via the immunosuppressive properties of tryptophan metabolites
(21–26). This immunosuppressive effect of IDO1 has also
been observed in pulmonary inflammatory diseases, where
its activity increased in response to elevated IFNs in lung
epithelial cells during microbial infection. In this regard, the
KYN-AhR (aryl hydrocarbon receptor) pathway is thought
to contribute to the immunosuppressive function of IDO1
(27). KYN and KYNA are ligands of AhR, a receptor-type
transcription factor activated by cyclic aromatic hydrocarbons
(28). KYNA, which is generally thought to contribute to
immunosuppressive functions by regulating cytokine release
from invariant natural killer T cells through G protein-coupled
receptor 35 (GPR35) activation (29), has been reported to
promote IL-6 secretion in experimental breast cancer cells
by binding to AhR (30). Since IL-6 is an immunomodulator
involved in both inflammatory and anti-inflammatory functions
(31), it remains unclear whether the binding of KYNA to
AhR contributes to the promotion or suppression of immune
responses. It has been shown that physiological concentrations of
KYN promote Treg differentiation from naive T cells in an AhR-
dependent manner in vitro during inflammation (26). Tregs,
including Tr1 cells, CD8+ Tregs, and FoxP3+ Tregs, are involved
in immunosuppression through secretion of TGF-β and IL-10.
In contrast, Th17 cells, which differentiate in the presence of
TGF-β, IL-6, or IL-21 (31, 32), are known to be involved in
tissue inflammation by secreting IL-17A, IL-17F, IL-21, IL-22,
and TNF-α. Although Treg and Th17 cells have contradictory
functions, they share a requirement for TGF-β for differentiation.
AhR agonismmay also play a role in promoting differentiation of
both cell types (33, 34), where TGF-β stimulation increases AhR
expression, which in turn increases ligand-binding activity (26).
Thus, Tregs and Th17 cells are known to have plasticity and the
ability to display similar traits to each other under the influence
of cytokines and other factors (35).

AhR is involved in regulating helper T cell differentiation
and macrophage activation, and is therefore involved in
both acquired and innate immunity. Its ligands include
dioxin and tryptophan metabolites (36). Dioxin is known to
promote the generation of Tregs by activating AhR (34).
On the other hand, 6-formylindolo[3,2-b]carbazole (FICZ), a
compound produced by UV irradiation of tryptophan, and
also an AhR agonist and tryptophan metabolite, has been
reported to promote the generation of Th17 cells (26, 33).
These reports indicate that the immunosuppressive response
to AhR agonism can produce different results, depending
on the type of ligand (Figure 1A). One possible reason is
that the ligands themselves undergo AhR-induced enzymatic
modification by cytochrome P450, details of which remain
unclear (26).
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FIGURE 1 | (A) Effects of different tryptophan metabolites on differentiation of

native T cells via. aryl hydrocarbon receptor (AhR) activation. Despite

belonging to the same pathway, 6-Formylindolo[3,2-b]carbazole (FICZ)

promotes differentiation of native T cells into Th17 cells, and induces

(Continued)

FIGURE 1 | inflammation, while kynurenine promotes differentiation into Treg

cells and functions as an anti-inflammatory agent. (B) Overview of angiotensin

converting enzyme 2 (ACE2) physiological functions during COVID-19

infection. SARS-CoV2 infection stimulates secretion of proinflammatory

cytokines, which in turn activates IDO1 and promotes the immunosuppressive

system through kynurenine binding to AhR. ACE2 is a receptor for SARS-CoV2

but is also involved in immune regulation through tryptophan absorption.

In the case of innate immunity, increased production of type
I IFN in IDO1-deficient mice infected with murine leukemia
virus or wild type mice treated with IDO inhibitors (37) and
suppression of type I IFN secretion in the presence of AhR
in vitro (36) suggest that the metabolites produced by IDO1
suppress type I IFN secretion via AhR activation, but the ligand
specificity is still unclear. Therefore, in addition to the ORF
gene sequence in SARS-CoV2, AhR activation by KYN may
be involved in type I IFN suppression in patients with severe
COVID-19 (38), suggesting that activation of the IDO1-KYN-
AhR pathway promotes mucus secretion in alveolar epithelial
cells and induces hypoxia in patients with COVID-19 (39).
However, during the cytokine storm observed in severe COVID-
19, KYNmediated AhR activation is considered to be an essential
biological response to suppress systemic organ damage (13, 40),
as is mucus secretion in terms of infection defense. Therefore,
AhR activation by IDO1-derived tryptophan metabolites in
patients with severe COVID-19 can be regarded as a biological
defense mechanism against severe infection (13).

Tryptophan metabolites produced by catabolism in gut
microbiota are thought to mediate immunomodulatory
functions via activation of AhR, KYN, and KYNA (41–44). Data
from mouse models and patients with Inflammatory Bowel
Disease (IBD) suggest that AhR activation exerts a preventive
effect on the development of colitis (45–48). A possible
mechanism underlying this phenomenon is that AhR activation
by tryptophan metabolites promotes the differentiation of
native T cells in the intestinal epithelium into CD4+CD8α+

T-cells, which are responsible for the anti-inflammatory effects
complementary to Tregs (46). On the other hand, IL-22, a
cytokine secreted by innate lymphoid cells upon infection with
pathogenic bacteria enhances defense against bacterial infection
by producing mucus and antimicrobial proteins in intestinal
epithelial cells. Tryptophan metabolites produced by intestinal
microflora during induction of colitis by bacterial infection in
mice are known to play a protective role in the pathogenesis
of the disease through AhR activation, which enhances IL-22
secretion (49, 50). Additionally, decreased tryptophan catabolism
in the host alters the intestinal microflora and consequently alters
the tryptophan metabolites produced by the microflora, thereby
promoting differentiation of naive T cells into IL-22-producing
cells (50).

ACE2 AND TRYPTOPHAN METABOLISM IN
COVID-19

SARS-CoV2 targets host cells by binding of the receptor-binding
domain of the spike protein expressed on its surface to
angiotensin-converting enzyme 2 (ACE2) on the host cell
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surface. ACE2 is located on the X chromosome and is
expressed throughout the body, including the heart, blood
vessels, lungs, kidneys, and brain, but predominantly in the
small intestine (51–54). As suggested by its name, ACE2
was identified as the Angiotensin converting enzyme (ACE)
homologue in renin-angiotensin system (RAS). It cleaves the
vasoactive peptide angiotensin II to angiotensin 1-7 that has
been reported to protect against the pathological effects of RAS
activation in multiple organs (55, 56). Interestingly, ACE2 is
involved in the absorption of neutral amino acids, particularly
tryptophan, in the small intestine as a chaperone of the amino
acid transporter, B0AT1 (57, 58). Indeed, reduced tryptophan
absorption causes a decrease in brain serotonin (59) or impaired
gut microbial ecology (57) in ACE2 knockout mice. Changes
in intestinal microbiota in ACE2 knockout mice may also
cause changes in tryptophan metabolites of intestinal bacteria,
potentially affecting the regulation of immune responses by AhR
activation (50).

Interestingly, several studies have reported that tryptophan
metabolites regulate ACE2 expression via AhR (60, 61).
Therefore, reduction in membrane-bound ACE2 potentially
reduces risk of COVID-19. ACE2 is an organ-protective
molecule that has been reported to protect against severe
infectious diseases, including ARDS (62). In COVID-19, it
is assumed that the expression of membrane-bound ACE2 is
reduced by mechanisms such as internalization of SARS-CoV2
upon intracellular entry and cleavage to its soluble form by
activation of TNF-α converting enzyme due to inflammation
(63). Indeed, recent studies have suggested that the plasma
concentration or activity of soluble ACE2 is associated with
COVID-19 severity (64–66). Therefore, a vicious cycle is
created by viral consumption of ACE2, which accelerates the
development of COVID-19. Taken together, these results suggest
that ACE2 involvement in tryptophan metabolism is specifically
associated with COVID-19 pathogenesis in a complex manner
(Figure 1B).

ROLE OF TRYPTOPHAN METABOLISM
AND ACE2 IN AGING

Tryptophan metabolism and activation of the kynurenine
pathway are closely associated with aging (67). Blood tryptophan
levels are reported to be lower in older individuals with frailty
and cognitive impairment compared to healthy controls (68).
Metabolites in the kynurenine pathway are also increased in
subjects with frailty (69). Tryptophan metabolism is regarded
as the de novo synthesis pathway of nicotinamide adenine
dinucleotide (NAD+), which decreases in various organs with
aging and is involved in the pathogenesis of diseases including
obesity, diabetes, and Alzheimer’s disease through energy
metabolism and decreased sirtuin function (70). A recent
study suggested that inhibition of an enzyme that negatively
regulates this pathway enhances mitochondrial function and
improves mammalian health (71). Deletion of ACE2 inhibits the
promotion of aging phenotypes, including age-related muscle
loss (sarcopenia) and skin atrophy, which is accompanied by

FIGURE 2 | (A) Major role of skeletal muscle in tryptophan metabolism.

Skeletal muscle takes up tryptophan and kynurenine, but does not metabolize

kynurenine from tryptophan due to the absence of TDO and IDO. Skeletal

muscle plays a neuroprotective role by converting kynurenine to kynurenic

acid. (B) Conceptual diagram of the relationship between COVID-19, ACE2,

tryptophan metabolism, and skeletal muscle.
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enhanced p16INK4a (a senescence marker in mice) expression
(72, 73). It is conceivable that the, overactivation of RAS does not
contribute to the early aging phenotypes in ACE2 knockout mice.
This is supported by the findings that both Mas (angiotensin 1-7
receptor) knockout and mice producing excessive angiotensin II
by carrying both human renin and angiotensinogen genes did not
exhibit the same aging phenotype as ACE2 knockout mice (74).

TRYPTOPHAN METABOLISM AND
MUSCLE FUNCTION

Muscle protein anabolism is promoted by increased amino acid
uptake in response to increased blood amino acid levels (75).
Recent studies have shown that there is a significant difference
in blood tryptophan concentration between frail and healthy
elderly individuals. However, the results of metabolomic analysis
in blood have been inconsistent (68, 76, 77), which could be
attributed to several factors, including differences in the criteria
used to select a frail study population, subject backgrounds,
and experimental protocol details, including sample collection
time, storage method, and measurement protocol. In contrast,
metabolomic analysis of muscles has shown that frail elderly
people have lower tryptophan levels than healthy elderly people,
and exercise intervention enhances these levels (78). In this
regard, the large neutral amino acid transporter 1, which
is responsible for the uptake of tryptophan and kynurenine
into skeletal muscle, has been shown to increase in response
to acute resistance exercise in young and elderly individuals
(79). Since expression of TDO and IDO is almost absent in
skeletal muscle (80), kynurenine produced in the liver and
other organs is considered to be the starting point of the
kynurenine pathway in skeletal muscle. In contrast, kynurenine
aminotransferase (KAT), the enzyme responsible for conversion
of KYN to KYNA, is highly expressed in skeletal muscle (80),
and its expression is increased by endurance training, resulting in
increased circulating KYNA levels (81–83). KYN passes through
the blood-brain barrier (BBB) and is involved in the pathogenesis
of depression and schizophrenia. However, since KYNA does
not pass through the BBB, the conversion of KYN to KYNA
in skeletal muscle is thought to have neuroprotective effects
(84). Studies in animal models have shown conflicting results
on the effects of tryptophan and kynurenine on skeletal muscle.
Administration of kynurenine to young mice induced oxidative
stress along with increased lipid peroxides, and reduction in the
size of muscle fibers (85). In contrast, the diameter of fibers in
the tibialis anterior muscle of C57BL/6 mice fed a tryptophan-
deficient diet was smaller than that of mice fed a standard
diet, and blood myostatin (which promotes skeletal muscle
breakdown) levels were increased (86). Thus elevated blood
kynurenine levels may contribute to skeletal muscle atrophy,
while an increase in blood tryptophan may contribute to skeletal
muscle maintenance by inhibiting muscle degradation. The
skeletal muscle damage observed in patients with COVID-19
may be due to various factors, such as the effect of cytokine storm
or disuse due to inactivity (87). However, further investigation
on the possible role of altered tryptophan metabolism in the
pathogenesis of COVID-19 is warranted (Figure 2A).

PERSPECTIVES

From a clinical perspective, it is important to investigate the
utility of tryptophan supplementation for promotion of human
health, particularly in the elderly, who are at high risk from
COVID-19. Supplementation of tryptophan (a precursor of
serotonin and melatonin) is widely used to improve mood and
emotional functioning, and to treat insomnia (88). Studies in
animal models have shown that a tryptophan-restricted diet
is capable of delaying reproductive aging (89) and extending
lifespan in female rats (90, 91). However, the effects of tryptophan
depletion on quality of life at older ages remains unknown
(92). Given the pro-aging phenotypes of ACE2 knockout mice
independent of RAS, it is worth clarifying whether ACE2-
mediated absorption of tryptophan provides protection from
aging. In the case of inflammatory diseases, a high-tryptophan
diet has been shown to reduce gut inflammation and severity of
colitis (93). Conversely, perturbation of the intestinal microbiota
also affects tryptophan metabolism. Probiotic supplements
are capable of reducing upper respiratory tract infections
accompanied by the attenuation of exercise-induced tryptophan
degradation rates in trained athletes (94). Furthermore, AhR
activation by tryptophan metabolites can increase or decrease
ACE2 expression asmentioned earlier. In humans as well as mice,
tryptophan supplementation has been found to elevate plasma
levels of tryptophanmetabolites, KYN, and KYNA (95) therefore,
it is clinically relevant to understand the role of tryptophan
supplementation on organ ACE2 levels, and its relation to
COVID-19 susceptibility.

CONCLUSION

In patients with severe COVID-19, activation of the kynurenine
pathway by various cytokines, and tryptophan metabolites
regulate immune responses through AhR and GPR35 activation.
In contrast, ACE2, which is the primary receptor for SARS-
CoV2 infection and has an anti-aging function, is involved in
absorption of tryptophan from the small intestine. Furthermore,
tryptophan metabolites regulate expression of ACE2 via AhR.
These data suggest that ACE2 serves as a gateway to SARS-
CoV2 infection, and may also play an immunomodulatory role
in the pathogenesis of COVID-19 through mutual regulation
of tryptophan metabolites. Furthermore, skeletal muscle may
contribute to immunoregulatory mechanisms mediated via
tryptophan metabolites by storing tryptophan and producing
KYNA (Figure 2B).Collectively, tryptophan metabolism, ACE2,
and skeletal muscle are closely linked to the severity of
COVID-19. Further studies are needed to elucidate the role
of tryptophan supplementation in the maintenance of human
health in relation to its effect on ACE2 and skeletal muscle in the
COVID-19 era.
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