
GigaScience, 8, 2019, 1–9

doi: 10.1093/gigascience/giz041
Technical Note

TE CHNICAL NO TE

Bioportainer Workbench: a versatile and user-friendly
system that integrates implementation, management,
and use of bioinformatics resources in Docker
environments
Fabiano B. Menegidio 1, David Aciole Barbosa1, Rafael dos S. Gonçalves1,
Marcio M. Nishime1, Daniela L. Jabes 1, Regina Costa de Oliveira1 and Luiz
R. Nunes 2,*

1Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Av. Dr. Cândido Xavier de
Almeida Souza, 200, Mogi das Cruzes, SP - 08780-911, Brazil; and 2Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n, São Bernardo do Campo, SP - 09606-045,
Brazil
∗Correspondence address. Luiz R. Nunes, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n,
São Bernardo do Campo, SP - 09606-045, Brazil. Tel: +55-11-4996-7960; E-mail: Luiz.nunes@ufabc.edu.br http://orcid.org/0000-0001-9619-269X

Abstract

Background: The Docker project is providing a promising strategy for the development of virtualization systems in
bioinformatics. However, implementation, management, and launching of Docker containers is not entirely trivial for users
not fully familiarized with command line interfaces. This has prompted the development of graphical user interfaces to
facilitate the interaction of inexperienced users with Docker environments. Results: We describe the BioPortainer
Workbench, an integrated Docker system that assists inexperienced users in interacting with a bioinformatics-dedicated
Docker environment at 3 main levels: (i) infrastructure, (ii) platform, and (iii) application. Conclusions: The BioPortainer
Workbench represents a pioneering effort in developing a comprehensive and easy-to-use Docker platform focused on
bioinformatics, which may greatly assist in the dissemination of Docker virtualization technology in this complex field of
research.

Keywords: Docker; bioinformatics; management user interface

Background

The increasing use of computational methods for biological
data analysis has revolutionized the study of biology in recent
decades. However, demands for expensive high-performance
hardware to run such analyses and the complexity associated
with many software installations often represent major chal-
lenges to the widespread use of such resources among re-

searches. Thus, server-based cloud computing and virtualiza-
tion systems have been extensively used to minimize these
problems. As a consequence, concepts of ”platform as a ser-
vice” (PaaS), provided by companies such as Google Genomics
[1], Amazon AWS Genomics [2], or Microsoft Azure [3], as well
as ”software as a service” (SaaS), provided by initiatives such
as the Galaxy Project [4] and Cloudman [5], are being increas-
ingly adopted in research organizations with little or no bioin-

Received: 20 June 2018; Revised: 18 December 2018; Accepted: 21 March 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-4705-8352
http://orcid.org/0000-0001-7297-0784
http://orcid.org/0000-0001-9619-269X
mailto:Luiz.nunes@ufabc.edu.br
http://orcid.org/0000-0001-9619-269X
http://orcid.org/0000-0001-9619-269X
http://creativecommons.org/licenses/by/4.0/


2 Bioportainer Workbench for bioinformatics in Docker environments

formatics capabilities, as well as in biotechnology and phar-
maceutical companies worldwide, as a strategy to reduce costs
and avoid the problems associated with installing and main-
taining their own bioinformatics facilities [6]. Up to now, most
of these bioinformatics-related PaaS/SaaS are based on virtual
machines, which constitute a robust strategy to develop virtu-
alization systems but have the drawback of consuming large
amounts of disk space, display low scalability, and are difficult
to implement in association with high-performance computing
platforms. However, the emergence of the Docker Project [7] is
providing a new and promising virtualization strategy that con-
sumes considerably less disk space and provides the advantage
of being platform-agnostic because it relies on the configuration
of containers, which can be consistently interchanged and de-
ployed on different computing environments, regardless of the
specificities of their hardware and/or operating system, which
helps to ensure replicability and reproducibility of data analy-
ses across different research facilities.

Thus, several bioinformatics-related PaaS and SaaS initia-
tives based on Docker virtualization systems have been recently
developed, such as BioShaDock [8], AlgoRUN [9], GUIdock [10],
Dockstore [11], and BioContainers [12], among others. Even the
Galaxy Project [4] has recently incorporated Docker technology
to allow local installation of Galaxy containers [13] via Docker-
based virtualization systems. More recently, this bioinformatics-
as-a-service platform has been expanded by the development of
Dugong [14], which introduced the concept of ”desktop as a ser-
vice” in bioinformatics analyses. Other projects, such as Snake-
make [15], Common Workflow Language [16], and NextFlow [17]
have provided frameworks for the implementation, administra-
tion, and execution of complex pipelines and workflows within
Docker containers, allowing simultaneous management and co-
ordinated launching of the various software involved in such
analyses.

However, in spite of the advantages provided by Docker and
other container-based virtualization systems, they are not eas-
ily implemented by inexperienced users, mostly as a result of
poor familiarity with the Docker Engine computational environ-
ment, which is based on a command line interface (CLI); this
difficulty is compounded by the lack of proper documentation
for many Docker applications and the predominance of non-
standardized images, which are built upon Dockerfiles contain-
ing obscure implementation steps. Moreover, the complexity of
Docker systems tends to increase when environments are com-
posed by different containers or involve the implementation of
Swarm, a native Docker tool that allows the creation of clusters
composed by different Docker hosts within the same resource
pool [18,19].

To overcome such difficulties, different initiatives have
sought the development of graphical user interfaces (GUIs)
aimed at helping inexperienced users to interact with Docker
environments at different levels. For example, projects such as
Panamax [20], Shipyard [21], Rancher [22], and Portainer [23] have
provided GUIs to assist users at the infrastructure level because
they allow easy implementation and resource management of
Docker environments.

The Galaxy Project [4], on the other hand, seeks to provide a
platform based on a user-friendly web GUI for software launch-
ing, but its implementation is not a trivial action because a
simple Galaxy installation requires considerable disk space and
complex installation steps for its full operation. Finally, projects
like AlgoRUN [9] tried to facilitate the launching of CLI-based ap-
plications by the development of dedicated and customizable
GUIs, but the requirement of manual installation of individual

software in their respective containers, without the help of a
framework such as Conda [24] and repositories such as Bioconda
[25], may have prevented its full adoption by the Bioinformatics
community.

In this scenario, this article describes the BioPortainer Work-
bench [26], an integrated Docker system that seeks to assist in-
experienced users to interact with a bioinformatics-dedicated
Docker environment at 3 main levels: in the Infrastructure Layer,
the BioPortainer Workbench [26] provides a GUI, based on the
Portainer project [23], which allows rapid and simple implemen-
tation/management of a full Docker ecosystem; in the Platform
Layer, the software provides a wide range of intuitive template
forms that assist users in the installation and configuration of
containers, carrying specific bioinformatics tools, from a vari-
ety of alternative platforms (based on CLIs, GUIs, or on a vir-
tual desktop); finally, in the Application Layer, the BioPortainer
Workbench [26] provides a series of CLI-based and GUI-based
interfaces to assist users in launching jobs with varying de-
grees of complexity (from single application analyses to complex
pipelines and workflows).

BioPortainer Workbench Architecture

BioPortainer Workbench [26] (BioPortainer, RRID:SCR 017058) is
an open-source software package developed under the MIT li-
cense and designed in a modular way, aimed at facilitating user
interaction with Docker environments in 3 different computa-
tional layers: (i) infrastructure, (ii) platform, and (iii) application.
Its basic structure is briefly described in Fig. 1. To deploy the
software, the user must initially access the BioPortainer Work-
bench image (Fig. 1b) and install it, either in a single Docker en-
gine or in a Swarm cluster (Fig. 1c). Once installed, BioPortainer
Workbench [26] (Fig. 1d) consists of 2 basic containers: the Bio-
Portainer Panel and the BioPortainer Pipeline Runner (Fig. 1e).
From a functional point of view (Fig. 1f), the 2 containers offer a
number of tools that allow users to perform a series of actions in
the created Docker environment, such as (i) managing Docker re-
sources associated with the BioPortainer Workbench [26]; (ii) in-
stalling bioinformatics applications based on several platforms
described in the literature; and (iii) launching different types of
analyses, using either CLIs or GUIs. Such analyses may be con-
ducted with the help of BioPortainer Workbench’s own resources
(Fig. 1g) or with resources harnessed from external repositories,
which provide preconfigured images, files, commands, or scripts
for the execution of bioinformatics software, with varying levels
of complexity (Fig. 1h).

The BioPortainer Workbench image, as shown in Fig. 1b, con-
sists of a Docker Compose file, which is responsible for building
the Docker environment in the host machine, using Dockerfile
files, which are associated with the 2 main containers of the soft-
ware: the BioPortainer Panel and the BioPortainer Pipeline Run-
ner. The third component of the image is a template repository,
containing a series of JavaScript Object Notation (JSON) files, re-
sponsible for building the templates associated with platform
installation, as well as for building the GUI forms used to launch
bioinformatics tools, with the aid of the BioPortainer GUI Runner
(see details below).

The Docker Compose file contains all the necessary settings
for complete system operation, including the execution settings
of the 2 main containers (BioPortainer Panel and BioPortainer
Pipeline Runner). In addition to these 2 main modules, there
is a third module (not shown in Fig. 1) called the BioPortainer
Watchtower, which is designed to monitor the main containers

https://scicrunch.org/resolver/RRID:SCR_017058


Menegidio et al. 3

Figure 1 Overview of the BioPortainer Workbench Architecture: Users (a) can access the BioPortainer Workbench image (b) from the project’s web page and install
the software either in single Docker engines or in Swarm clusters (c). Once Installed, the BioPortainer Workbench (d) consists of 2 containers (e): the BioPortainer

Panel and the BioPortainer Pipeline Runner. These 2 containers provide access to a series of tools that operate in 3 distinct functional layers (f), allowing users to
implement bioinformatics-related tools (using a variety of alternative platforms), manage resources from the Docker environment, and launch their analyses using
both CLI-based and GUI-based interfaces (preconfigured through a series of JSON files that are available from the BioPortainer Workbench repository [g]), as well as
commands/scripts/pipelines harnessed from external repositories (h). See text for details.

during execution. This module also monitors the original Bio-
Portainer Workbench images, updating the whole Docker envi-
ronment whenever new versions of the software are made avail-
able. The Docker Compose file can be easily edited with the aid of
any text editor, so as to expand its functionality by incorporating
additional features, such as web proxies and/or tools for contin-
uous integration and continuous delivery, e.g., Jenkins [27]. To
assist in the incorporation of these new resources, a virtual net-
work, called BioPortainer local, was created in order to guarantee
efficient communication between the containers. Thus, if users
wish to incorporate new features into the BioPortainer Work-
bench [26], it is necessary to insert such features in this network,
through the networks parameter, to guarantee their efficient in-
tegration to the different modules of the software.

The second component of the image is the Dockerfile files,
which contain instructions for building the Docker images of the
BioPortainer Panel and BioPortainer Pipeline Runner modules.
These Dockerfiles are available through GitHub and can be eas-
ily expanded to accommodate additional needs of any user. The
Dockerfile of the BioPortainer Panel module was developed from
the original source file of Portainer [23], which has been modi-
fied to incorporate specific features of the BioPortainer Work-
bench [26], such as the tools BioPortainer Job Runner and Bio-

Portainer GUI Runner. The Dockerfile of the BioPortainer Pipeline
Runner, on the other hand, has been developed independently
and presents a greater level of complexity in its structure, as it
carries all the software and library prerequisites necessary for
the execution of NextFlow scripts [17] in a Docker-in-Docker en-
vironment. In addition, given the characteristics of this com-
plex environment, the BioPortainer Supervisor tool (not shown
in Fig. 1) has been added to this Dockerfile, providing users with
a GUI (accessed through port 7,000) that enables full manage-
ment of the BioPortainer Pipeline Runner tool, the Jupyter Note-
book [28], and the Docker-in-Docker environment. It also allows
users to analyze execution logs and control startup, shutdown,
and restart of processes within containers.

The third component of the image is the BioPortainer Repos-
itory [26], consisting of a series of JSON files. The JSON [29]
language allows storage of data structures in a standard inter-
change format, which can be used for transmitting data between
a server and a graphical web interface application. One of these
JSON files is responsible for generating the GUI templates that
will assist users during the installation of the BioPortainer Bioin-
formatics Platforms (accessible through the BioPortainer Panel
main menu). The BioPortainer Repository [26] also carries ad-
ditional JSON files that provide users with GUIs containing the



4 Bioportainer Workbench for bioinformatics in Docker environments

interactive forms that assist in the launching of bioinformatics
tools through the BioPortainer GUI Runner (see below). All JSON
files available at the BioPortainer Repository [26] were manually
developed to ensure perfect adaptation to the specific environ-
mental variables and parameter prerequisites of their specific
platforms/tools. Moreover, all of them were individually tested
by expert curators and further evaluated by continuous inte-
gration and continuous delivery, using the tools TravisCI [30]
and CircleCI [31]. Users interested in modifying the BioPortainer
Workbench [26] JSON files, in order to expand their resources
and/or adapt them to new needs, can obtain the individual files
from the BioPortainer Workbench project web page [26].

Installing and Configuring the BioPortainer
Workbench

Installation of the BioPortainer Workbench [26] is extremely sim-
ple and initially requires only Docker and Docker Compose. After
both components are installed, only 2 steps are needed to start a
BioPortainer Workbench environment. In the first step, the com-
pose.yml file is downloaded from the server (GitHub or BioPor-
tainer Workbench home page [26]) to the BioPortainer folder in
the host machine. In the second step, the Docker Compose is ex-
ecuted, downloading the images for the standard BioPortainer
Workbench modules, and the service is started. When Linux is
the host machine’s operating system, the following commands
must be run on the terminal:

$ wget https://goo.gl/bNecPA -O docker-compose.yml

$ docker-compose up -d

During the deployment process, some ports and disk vol-
umes will be automatically configured in the host machine. De-
tails on the ports and volumes created are available in the Bio-
Portainer Workbench User Manual, which accompanies this ar-
ticle as a supplementary file. In a standard implementation, the
BioPortainer Workbench [26] will use the localhost address (IP
0.0.0.0) as the default address for its internal links. If access is
not performed through a local network, additional settings must
be created in the Compose file, according to Docker’s official doc-
umentation [7].

To simulate and test the implementation, administration,
and operation of the BioPortainer Workbench [26], we emu-
lated its deployment in a test environment, using the Play-
with-Docker [32] testing platform. The installation processes, as
well as the results from this test, can be viewed through video
files available at the BioPortainer Workbench project web page
[26]. These videos demonstrate that, once installed, BioPortainer
Workbench [26] is fully functional and can be readily used for
container implementation/administration, through the BioPor-
tainer Panel, or for the execution of a variety of (simple or com-
plex) bioinformatics analyses, using any of its various imple-
mentation tools, which are described in the next section (see
the BioPortainer Workbench User Manual for details).

Features and Functionalities of the
BioPortainer Workbench

As mentioned above, the BioPortainer Workbench [26] aims not
only to provide Bioinformatics tools in a platform-agnostic en-
vironment, such as Docker, allowing its implementation in any
type of computing ecosystem, but also to deliver a friendly inter-
face that allows users to interact with this environment in dif-
ferent functional layers: (i) infrastructure, (ii) platform, and (iii)
application. Thus, description of the features and functionalities

of the BioPortainer Workbench [26] follows this same rationale
during the next sections.

The infrastructure layer: Implementing and managing
a Docker environment with the aid of the BioPortainer
Panel

The proper management of Docker resources is often a seri-
ous problem for inexperienced users because it is usually per-
formed through a CLI. However, such management is essential
for the operation of the host system because downloading im-
ages and creating volumes in a non-transparent way can lead,
for example, to excessive consumption of disk space, leading to
rapid degradation of the host machine’s environment. In addi-
tion, inadequate management of disk volumes can increase the
number of orphan volumes in the system, which will continue
to occupy physical space even after removal of the containers to
which they were linked.

To overcome such obstacles, the BioPortainer Workbench [26]
provides a graphic interface to assist users in the management
and distribution of such resources, through the BioPortainer
Panel module, which is composed of different submodules (see
BioPortainer Workbench User Manual). For example, the BioPor-
tainer Dashboard (Fig. S4 in the manual) provides quick and gen-
eral information about the managed host (either a single Docker
host or a Swarm cluster), such as (i) version of the installed
Docker engine; (ii) amount of memory and central processing
unit (CPU) available; (iii) number of containers, images, volumes,
and networks available; and (iv) details on the use of such re-
sources by each container, image, and network, allowing users
to optimize their distribution among different applications. The
Containers option (Fig. S5 in the manual), on the other hand, pro-
vides button interfaces that allow the user to start/stop/restart
and kill jobs using the available containers, along with other spe-
cific commands for their full management and administration.

In addition to assisting in the optimal distribution of re-
sources, the BioPortainer Panel Dashboard also allows the use of
alternative runtimes. Among these runtimes, we highlight the
possibility of using NVIDIA-Docker [33], a Docker Engine plug-
in designed to facilitate the deployment of containers capable
of using graphical processing units (GPUs) as their main pro-
cessing units. The use of this runtime can be very helpful while
running jobs that require high processing capacity, which can
be achieved through the use of GPUs rather than the system’s
CPUs (which are traditionally used by most computer applica-
tions). To accomplish that, the plug-in automatically recognizes
GPU devices in the host, as well as their drivers and volume-
mounting points, directing the execution of container services
to GPU drives rather than CPUs. To further facilitate the use
of GPU resources, the BioPortainer Workbench [26] provides a
template platform, developed with the aid of CUDA [34] and
CUDNN [35] libraries, ready to work with NVIDIA-Docker [33],
enabling the creation, debugging, and performance optimiza-
tion of NVIDIA-GPU–accelerated applications (see below). These
templates enable complete integration between the Docker and
GPU environments with both Conda [24] and PIP [36] package
managers because they have a set of tools developed in Python.

The platform layer: Implementing containers carrying
fully functional bioinformatics tools with the aid of the
BioPortainer bioinformatics platforms

The installation of several bioinformatics tools can be done
through alternative platforms, many of them extensively de-



Menegidio et al. 5

scribed in the literature [4,9,10,12,14]. Some of these platforms
provide access to large software repositories such as Bioconda
[25], LinuxBrew [37], or BioConductor [38], for example, which al-
low the installation of thousands of generic bioinformatics tools.
On the other hand, there are also platforms dedicated to reposi-
tories focused on more specific applications, enabling the instal-
lation of languages (such as R or Shiny) or accessories (such as
the Jupyter Notebook [28]), for example, which can be integrated
into different types of analyses (see below). Moreover, some of
these platforms have specificities that differentiate them from
one another, including, e.g., the use of interfaces based on CLI
(BioContainers [12]), GUI (Galaxy [4]), or virtual desktop (Dugong
[14]), providing users with a variety of alternatives for container
creation.

The BioPortainer Bioinformatics Platforms option (Fig. S7 in
the manual) provides access to all Bioinformatics Platform Tem-
plates available at the BioPortainer Repository. From this menu,
users have access to intuitive template forms that assist in the
installation and configuration of containers, carrying specific
bioinformatics tools, using whichever platform they deem most
convenient to their needs and/or expertise. As mentioned above,
these templates are defined by a preconfigured JSON file that
is available from the BioPortainer Repository [26]. Using these
templates, users can implement and configure containers car-
rying single tools or a set of related tools (described in a single
Compose file) in any local Docker engine. Although considered
easy to build and implement when compared to other files with
the same purpose, the JSON format can become extremely com-
plex for inexperienced users because it is based on a subset of
JavaScript programming language. Thus, the availability of pre-
configured models minimizes problems associated with imple-
mentation and configuration of tools within containers and im-
proves customization to the unique requirements of each plat-
form/software to be implemented. Nonetheless, it is possible to
add new templates and/or update/modify existing templates in
an easy and intuitive way with the help of options such as add
template and update template, which are available through the
BioPortainer Panel main menu (see Fig. S7 in the manual).

Currently, the BioPortainer Bioinformatics Platforms option
provides 11 Docker-based bioinformatics platforms (see Table S1
in the manual), which allow access to a wide variety of tools that
can be accessed, installed, managed, and launched with the aid
of the BioPortainer Workbench [26]. These platforms include the
following:

(i) The BioPortainer CPU Platform provides pre-configured tem-
plates aimed at creating images/containers carrying bioin-
formatics tools combined with features that help to ensure
reproducibility and replicability in data analysis. These in-
clude screen, GNU parallel, script/scriptreplay, and Jupyter
Notebook [28], among others. In addition, they allow users
to install the Miniconda2 and Miniconda3 packages, enabling
the deployment and use of >2,000 bioinformatics tools devel-
oped in Python that are available through the Bioconda [25]
repository.

(ii) The BioPortainer GPU Platform is similar to the CPU Platform
but provides pre-configured templates aimed at creating im-
ages/containers with the help of the CUDA [34] and CUDNN
[35] library kits. As a result, such containers can be processed
through GPU units using the NVIDIA-Docker [33] plug-in, as
described above.

(iii) The BioPortainer GUI Runner Platform allows users to imple-
ment containers to be launched with the aid of the BioPor-
tainer GUI Runner. This tool (described in detail in the next

section) allows users to launch >100 bioinformatics applica-
tions through a user-friendly GUI, dismissing the use of CLI-
based interfaces.

(iv) The Galaxy Platform provides templates that allow the im-
plementation of 25 versions of galaxy images, carrying soft-
ware for performing a variety of -omics analyses such as
transcriptomics, phylogenenomics, proteomics, and metage-
nomics, among others [4,39,40]. All tools available on this
platform are fully adapted to work through the Galaxy inter-
face and, thus, do not require the use of CLI-based interfaces.
(The BioPortainer Workbench User Manual provides detailed
instructions on how to access the Galaxy Stable user inter-
face after installing this tool in a Docker container).

(v) The Galaxy Tools Platform features templates for the devel-
opment and implementation of additional software on the
main Galaxy instance [4] with the help of Planemo [41], a
command-line utility that helps to create and publish new
Docker-based Galaxy tools [4].

(vi) The BioContainers Platform contains a template for assisting
users to deploy the main Docker image of BioContainers [12],
a CLI-based platform that allows installation and distribution
of >2,000 bioinformatics tools (available from the Bioconda
[25] repository) within Docker containers.

(vii) The Dugong Platform provides templates that assist in
the implementation of different versions of Dugong [14],
a Docker-based virtual desktop that helps users to deploy
Docker containers carrying >3,500 bioinformatics software
programs (available from the Bioconda [25], LinuxBrew [37],
and BioLinux [42] repositories), directly integrated with the
Jupyter Notebook [28].

(viii) The GUIdock Platform contains templates to assist in the im-
plementation of different versions of GUIdock, a Docker im-
age dedicated to providing graphical analytical tools (partic-
ularly suitable for network analyses) inside containers [10].

(ix) The Bioconductor Platform provides templates for the rapid
implementation of images/containers carrying a variety of
bioinformatics tools that can be used in the R language envi-
ronment, available from the Bioconductor repository [38].

(x) The R and RStudio Platform [43,44] provide templates for
the implementation of images/containers carrying the R
and Shiny languages, along with the standard installation
of Rstudio, providing a complete environment for running
Bioconductor tools and/or performing statistical analyses of
large datasets.

(xi) The Jupyter Notebook Platform provides templates to
assist in the implementation of standard Docker im-
ages/containers carrying the Jupyter Notebook [28], along
with the main tools/languages currently used in the devel-
opment of bioinformatics protocols (e.g., Python, R, Scala,
Spark, Mesos, and Tensorflow, among others).

All templates offer custom options in their deployment
forms and are specially designed to meet the needs of the differ-
ent tools available, such as port/volume mapping and network
configurations, among others. The BioPortainer Workbench User
Manual provides detailed instructions for installing containers
carrying bioinformatics tools from the BioPortainer Bioinformat-
ics Platforms. Two examples are used to illustrate this process:
(i) the installation of a container carrying the Galaxy Stable tool
from the Galaxy Platform and (ii) the installation of a container
carrying the Dugong Clean CMD from the Dugong Platform [14].



6 Bioportainer Workbench for bioinformatics in Docker environments

The application layer: Launching bioinformatics
analyses from Docker containers

Launching of bioinformatics analyses can be performed using
4 different tools that are available from the BioPortainer Work-
bench [26]: (i) BioPortainer Console, (ii) BioPortainer Job Runner,
(iii) BioPortainer GUI Runner, and (iv) BioPortainer Pipeline Run-
ner.

Launching bioinformatics analyses with the aid of the
BioPortainer Console

The BioPortainer Console represents the simplest alternative for
launching simple analyses, normally involving a single bioinfor-
matics tool. Once a container carrying a specific tool has been
implemented, users only need to click the Console icon (> ),
available from the Containers option of the BioPortainer Panel
main menu (see Fig. S2 in the manual), which will cause a CLI-
based interface to pop up. Next, users can simply enter the
necessary commands to run the application at the Bash com-
mand prompt. This tool was ported directly from the Portainer
project [23] and is a useful option for users well versed in Linux
who wish to save time during analyses by avoiding the use of
GUIs. The BioPortainer Console also provides a simple and fast
interface for full interaction and administration of containers
without the need to install any external or internal tools, such
as servers and clients for the SSH protocol. A detailed demon-
stration on how to use the BioPortainer Console to launch an
alignment of RNA sequencing (RNA-seq) data against a refer-
ence genome using the BWA aligner is shown in the BioPortainer
Workbench User Manual.

Launching bioinformatics analyses with the aid of the
BioPortainer Job Runner

Like the BioPortainer Console, the BioPortainer Job Runner is
intended for users familiar with Linux commands. However,
while the former is more suited for running simple analyses us-
ing individual tools/containers, the latter is configured to per-
form more complex analyses involving various steps and soft-
ware. This tool uses, as target, a preconfigured Docker image
that contains all the tools necessary for the analysis in question.
The BioPortainer Job Runner interface can be accessed through
the BioPortainer Panel main menu and is shown in Fig. S12 of
the manual. To trigger this tool, users must initially provide
the target Docker image (which may be present either in the
host machine or in external repositories such as DockerHub).
Next, users must provide an execution script, which can be ei-
ther typed into the web-editor interface or imported through
the upload option (see Fig. S12 in the manual). Finally, by click-
ing on ”execute,” users will have the script executed within a
container built from the selected image. At the end of the pro-
cess, the job’s output will also be present within this container,
which can then be converted into a Docker image to be shared
through public or private repositories, such as DockerHub or
Quay.io. Thus, the BioPortainer Job Runner allows users to en-
capsulate entire executions within a single exchangeable Docker
image/container, contributing to promote replicability and re-
producibility of data analyses across laboratories (the entire pro-
cess can also be tracked through Job Runner’s own job history). A
detailed demonstration on how to use the BioPortainer Job Run-
ner to launch a full differential expression analysis with RNA-
seq data, using the Tuxedo Suite, is shown in the BioPortainer
Workbench User Manual.

Launching bioinformatics analyses with the aid of the
BioPortainer GUI Runner

The GUI Runner is a specific tool of the BioPortainer Workbench
[26] and was developed in Python 3.4 (or higher), Tornado 4 (or
higher), and Typing. It allows users not well versed in Linux
commands to launch bioinformatics tools from their respec-
tive containers with the help of intuitive GUIs. These interfaces
are configured from specific JSON files, each of them specifi-
cally developed for a particular tool. Altogether, the BioPortainer
Repository [26] contains preconfigured JSON files that enable
the launching of 109 bioinformatics tools from the GUI Runner,
which can be used for a wide range of Bioinformatics analyses,
such as quality control trimming of next-generation sequencing
data, gene identification through hidden Markov models, com-
putation of guanine-cytosine bias across genomes, and many
others (a complete list of tools that can be currently launched
with the aid of the BioPortainer GUI Runner can be seen in Ta-
ble S2 in the BioPortainer Workbench User Manual).

The GUI Runner templates are arranged in 2 folders: (i)
conf/runners/, which contains the JSON files used to build the
GUIs; and (ii) conf/scripts/, which contains the execution scripts
that receive the variables typed in these GUIs prior to execu-
tion. As mentioned above, the current version of the BioPortainer
Repository [26] contains GUI templates that allow 109 bioinfor-
matics tools to be launched by the BioPortainer GUI Runner, but
our team is continually working to increase this number in fur-
ther releases of the Repository. Users interested in developing
new JSON files to extend the scope of GUI Runner to new analyt-
ical tools can find instructions on how to download a basic JSON
model in the BioPortainer Workbench User Manual. It is impor-
tant to note, however, that new JSON files will only become func-
tional after being transferred to the conf/runners/ folder. More-
over, each JSON file must be unique and represent a particular
script or tool. Thus, to launch a container containing 2 different
tools, users must develop a specific JSON file for each tool.

Finally, access to the BioPortainer GUI Runner can be
achieved in 2 ways: through the GUI Runner option, available
from the BioPortainer Panel Bioinformatics Platforms menu (see
Fig. S7 in the manual); or by clicking on port 5,000 of the con-
tainer in question, through the Containers option (see manual
for details). A detailed demonstration on how to use the BioPor-
tainer GUI Runner to launch a FASTQC analysis from a next-
generation sequencing dataset is shown in the BioPortainer
Workbench User Manual.

Launching bioinformatics analyses with the aid of the
BioPortainer Pipeline Runner

The Bioportainer Pipeline Runner is dedicated to helping inex-
perienced users to conduct complex analyses involving multiple
bioinformatics tools, connected through pipelines and/or work-
flows, in a Docker ecosystem. Although implemented in a sep-
arate container, all its features, including volumes and environ-
ment variables, are also managed and monitored through the
Bioportainer Panel.

The BioPortainer Pipeline Runner is accessed through the
BioPortainer Panel main menu (see Fig. S3 in the manual), pro-
viding users with a graphical interface that allows the down-
load, through a GIT protocol, of bioinformatics pipelines avail-
able at the NextFlow and NF-Core repositories. Both reposito-
ries are developed by collaborative projects that use NextFlow
[17] (a type of domain-specific language) to develop and adapt
scalable and reproducible scientific workflows using software



Menegidio et al. 7

containers. Thus, several pipelines developed by these projects
include scripts and images specifically developed for complex
bioinformatics analyses, such as (i) 16S ribosomal RNA amplicon
sequence analysis using QIIME, (ii) identification and quantifica-
tion of peptides from mass spectrometry raw data, (iii) human
leukocyte antigen typing from next-generation sequencing data,
and (iv) chromatin immunoprecipitation analysis, among many
others. Overall, >80 high-quality bioinformatics pipelines are
available from the NextFlow and NF-Core repositories. Once ac-
tivated, the BioPortainer Pipeline Runner GUI provides different
user options through its menu, which allow users to download,
execute, monitor, update, and delete NextFlow-based pipelines
from the abovementioned repositories, or harnessed from alter-
native Github sources (details regarding the options to run the
BioPortainer Pipeline Runner can be found in the BioPortainer
Workbench User Manual).

The incorporation of NextFlow [17] as the main framework
for the Bioportainer Pipeline Runner was facilitated by its easy
integration with the Docker project. Moreover, the NextFlow [17]
community is extremely active, which should help to expand the
number and scope of available pipelines over the next years. In
this sense, we understand that the BioPortainer Workbench [26]
may contribute to fostering the utilization of such pipelines by
inexperienced users.

Alternatively, users may choose to launch their analyses
through the BioPortainer Pipeline Runner using a protocol previ-
ously implemented in the Jupyter Notebook [28]. To accommo-
date this possibility, the BioPortainer Workbench [26] provides
a functional installation of the Jupyter Notebook [28], in con-
junction with the Python3 kernel and the Bash kernel. By us-
ing such resources, the BioPortainer Pipeline Runner becomes
an extremely flexible tool, allowing the construction and execu-
tion of complex pipelines using libraries and tools developed in
both NextFlow [17] and Python languages. Moreover, notebooks
created through this approach can be shared among laborato-
ries, ensuring replicability of the entire computing environment
used for data analysis. Implementation of the Jupyter Notebook
[28] is linked to a token that is automatically generated during
startup of the Docker engine, and detailed instructions for con-
necting it to the BioPortainer Pipeline Runner can be found in
the BioPortainer Workbench User Manual.

To demonstrate the full functionality of the BioPortainer
Pipeline Runner, we ran 2 pipelines obtained from the NextFlow
[17] project home page. One of them (the ”rnatoy” pipeline) has
been designed to conduct a workflow for RNA-seq analysis using
the Tuxedo Suite. The second pipeline (named ”nmdp-flow”) per-
forms variant-calling analyses with RNA-Seq data and is based
on BWA [45] and SAMtools mpileup [46]. Detailed demonstra-
tions on how to launch these pipelines (using both the BioPor-
tainer Pipeline Runner GUI and the Jupyter Notebook [28]) are
shown in the BioPortainer Workbench User Manual.

Finally, it should be mentioned that, in spite of its wide flexi-
bility, the BioPortainer Pipeline Runner was designed as a tool for
performing workflow analyses based on Docker. Thus, NextFlow
[17] executions based on the Singularity container system [47]
cannot be performed through this version of the software.

Discussion

Bioinformatics lies at the intersection of biology, computer sci-
ence, and statistics and often attracts professionals with lim-
ited skills for the appropriate management of computational en-
vironments. Although several initiatives have recently demon-

strated the viability of using Docker to provide bioinformatics
tools to researchers, most of these Docker-based systems have
been developed with little concern for inexperienced users, lim-
iting their widespread implementation in research facilities. For
example, Docker image repositories such as BioShaDock [8] and
Dockstore [11] provide several bioinformatics software programs
within Docker containers, but local installation of images still re-
quires adjustments to ensure their full operation, such as the ex-
port of network service ports and configuration of data volumes,
among other procedures, which are often unclear to the final
user owing to lack of proper documentation in such repositories.
Moreover, the absence of proper standards for image genera-
tion and lack of curatorship led to the accumulation of heteroge-
neous tools in these repositories. Some of these problems were
addressed by the development of standardized Docker images by
BioContainers [12], which allows access to >2,000 bioinformatics
tools from the Bioconda [25] repository. However, BioContainers
[12] operates exclusively through command lines, hampering its
use among users not well versed in Linux commands. Although
future development of BioContainers [12] may lead to its integra-
tion with the Galaxy graphical interface through Galaxy Interac-
tive Environments [48], Galaxy Interactive Environment deploy-
ment is not a trivial operation because they have complex in-
teractions with numerous services. Moreover, implementation
of the Galaxy instance [4] requires a large amount of memory
and disk space and additional Galaxy tools [4] have different re-
quirements in computer memory, I/O speed, disk space, network
bandwidth, density of computing cores, and parallel environ-
ment configurations, among other issues.

Thus, the development of specific tools capable of assist-
ing inexperienced users is of paramount importance to ensure
the widespread use of Docker-based bioinformatics resources.
These tools may greatly contribute to improving the replicability
and reproducibility of data analysis, given the platform-agnostic
nature of Docker systems. In fact, the widespread use of Docker
in various corporate business environments has been stimu-
lated by such initiatives as Panamax [20], Shipyard [21], Rancher
[22], and Portainer [23], which developed graphical interfaces to
help in the implementation, administration, and management
of Docker environments by less experienced users in many dif-
ferent organizations that deal with information technology, par-
ticularly for working with big data. Until now, however, the po-
tential of such initiatives to assist in the assimilation of Docker
technology by the bioinformatics community has never been
considered. Currently, both the Panamax [20] and Shipyard [21]
projects have been discontinued, rendering Rancher [22] and
Portainer [23] the only alternatives available for the development
of a bioinformatics-dedicated Docker management platform.

Rancher [22] is a robust software program for management of
Docker systems and is widely used in datacenter environments
and other complex computing ecosystems. It provides a plat-
form for deployment of Docker infrastructures in an easy and
controlled way by enabling the creation of a private platform for
the implementation and administration of containers, using a
web interface. However, Rancher [22] installation leads to cre-
ation of a series of parallel containers in the host machine be-
cause it employs Kubernetes as the major orchestrator of the
Docker environment, consuming considerable amounts of com-
putational resources. Portainer [23], on the other hand, requires
only 1 container running in the host machine, reducing resource
consumption, as well as the complexity inherent to its installa-
tion, maintenance, and use. In addition, Portainer [23] is used
by Rancher as the default administration interface for Swarm



8 Bioportainer Workbench for bioinformatics in Docker environments

cluster environments, adding yet another layer of complexity in
using Rancher [22].

Thus, Portainer [23] was chosen as the basic platform for the
development of the BioPortainer Workbench [26] because it pro-
vides a more suitable platform to accommodate the needs of the
bioinformatics community, which includes a significant number
of inexperienced users, sometimes working in research facili-
ties with limited computational resources. However, the scope
of the BioPortainer Workbench [26] surpasses the scope of Por-
tainer [23] because it is not only focused on providing users with
an easy-to-use graphic interface to assist in implementation
and administration of Docker resources. In fact, the BioPortainer
Workbench [26] provides GUIs that assist users in all steps of
computational analyses, including (i) implementation of numer-
ous bioinformatics software programs within Docker containers
(which can be accomplished through a series of alternative plat-
forms), (ii) management of computational resources made avail-
able to run such containers, and (iii) launching of bioinformatics
applications, with various degrees of complexity, through a set
of unique tools (not originally present in Portainer [23], such as
the Job Runner, GUI Runner, and Pipeline Runner). Moreover, the
BioPortainer Workbench [26] presents a series of unique compu-
tational resources, when compared to Portainer [23], such as the
possibility of running GPU-accelerated applications (with the aid
of the NVIDIA-Docker [33] plug-in) and the implementation of
Docker-in-Docker environments, allowing additional container-
ization of processes, thus improving safety and management
of resources. Finally, the BioPortainer Workbench [26] also of-
fers unique resources that help to ensure replicability and repro-
ducibility of data analysis (a major concern in bioinformatics re-
search) by allowing the exchange of detailed protocols (with the
aid of the Jupyter Notebook [28]) and executions (encapsulated
in Docker images, with the aid of the BioPortainer Job Runner).

Thus, the BioPortainer Workbench [26] represents a pioneer-
ing effort in developing a highly comprehensive and easy-to-use
Docker platform focused on bioinformatics, which may greatly
assist in the dissemination of Docker virtualization technology
among laboratories, contributing to improving the replicability
and reproducibility of results in this complex field of research.

Availability of supporting source code and
requirements
� Project name: BioPortainer project
� Site: https://github.com/BioPortainer/BioPortainer
� Archive: http://doi.org/10.5281/zenodo.2377428
� RRID: SCR 017058
� Operating system(s): platform independent
� Programming language: Go, Python
� Other requirements: Docker, Docker Compose
� License: MIT

Additional files

Supplementary File 1: The BioPortainer Workbench User Manual
v1.0

Abbreviations

CLI: command line interface; CPU: central processing unit; GPU:
graphical processing unit; GUI: graphical user interface; JSON:
JavaScript Object Notation; PaaS: platform as a service; RNA-seq:
RNA sequencing; SaaS: software as a service.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by grants from Fundação de Amparo à
Pesquisa do Estado de São Paulo (FAPESP) Nos. 17/13197-8 and
17/08112-3. F.B.M., D.A.B., and M.M.N. are recipients of schol-
arship grants from Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior (CAPES), while R.S.G. is the recipient of a
scholarship grant from Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico (CNPq).

Authors’ contributions

F.B.M. conceived and developed the software; D.A.B., R.S.G., and
M.M.N. developed and tested the JSON files for the BioPortainer
GUI Runner and assisted in testing the software under different
circumstances; D.L.J., R.C.O., and L.R.N. supervised the study and
wrote the manuscript.

References

1. Google Cloud. Google Genomics. 2018. https://cloud.google.c
om/genomics/. Accessed 19 June 2018.

2. Amazon. Amazon Web Services: Genomics in the Cloud.
2018. https://aws.amazon.com/health/genomics/. Accessed
19 June 2018.

3. Microsoft Azure. Microsoft Azure: Cloud Computing. 2018. ht
tps://azure.microsoft.com/. Accessed 19 June 2018.

4. Blankenberg D, Coraor N, Von Kuster G, et al. Integrating di-
verse databases into an unified analysis framework: a Galaxy
approach. Database 2011;2011:1–9.

5. Afgan E, Chapman B, Taylor J. CloudMan as a platform for
tool, data, and analysis distribution. BMC Bioinformatics
2012;13(1):315.

6. AbdelBaky M, Parashar M, Kim H, et al. Enabling
high-performance computing as a service. Computer
2012;45(10):72–80.

7. Docker Project. Docker. 2018. https://www.docker.com. Ac-
cessed 19 June 2018.

8. Moreews F, Sallou O, Ménager H. BioShaDock: a commu-
nity driven bioinformatics shared Docker-based tools reg-
istry. F1000Res 2015;4:1443.

9. Hosny A, Vera-Licona P, Laubenbacher R, et al. AlgoRun: a
Docker-based packaging system for platform-agnostic im-
plemented algorithms. Bioinformatics 2016;32(15):2396–8.

10. Hung LH, Kristiyanto D, Lee SB, et al. Guidock: using
Docker containers with a common graphics user inter-
face to address the reproducibility of research. PloS One
2016;11(4):e0152686.

11. O’Connor BD, Yuen D, Chung V, et al. The Dockstore:
enabling modular, community-focused sharing of Docker-
based genomics tools and workflows. F1000Res 2017;6:52.

12. da Veiga Leprevost F, Grüning B, Alves Aflitos S, et al.
BioContainers: an open-source and community-driven
framework for software standardization. Bioinformatics
2017;33(16):2580–2.

13. Galaxy Project. Galaxy Containers. 2018. https://docs.galax
yproject.org/en/master/admin/special topics/mulled conta
iners.html. Accessed 19 June 2018.

14. Menegidio FB, Jabes DL, Costa de Oliveira R, et al. Dugong:
a Docker image, based on Ubuntu Linux, focused on re-

https://github.com/BioPortainer/BioPortainer
http://doi.org/10.5281/zenodo.2377428
https://cloud.google.com/genomics/
https://aws.amazon.com/health/genomics/
https://azure.microsoft.com/
https://www.docker.com
https://docs.galaxyproject.org/en/master/admin/special_topics/mulled_containers.html


Menegidio et al. 9

producibility and replicability for bioinformatics analyses.
Bioinformatics 2018;34(3):514–5.

15. Köster J, Rahmann S. Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics 2012;28(19):2520–2.

16. Amstutz P, Crusoe M, Tijanić N, et al. Common Work-
flow Language, v1.0. 2016.https://www.commonwl.org/. Ac-
cessed 19 June 2018.

17. Di Tommaso P, Chatzou M, Floden EW, et al. Nextflow en-
ables reproducible computational workflows. Nat Biotechnol
2017;35(4):316–9.

18. Naik N. Applying Computational Intelligence for enhanc-
ing the dependability of multi-cloud systems using Docker
Swarm. In: 2016 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), Athens, Greece, 2016. IEEE;
2017;doi:10.1109/SSCI.2016.7850194.

19. Huang CH, Lee CR. Enhancing the availability of Docker
Swarm using checkpoint-and-restore. Pervasive Systems,
Algorithms and Networks, 2017 11th International Con-
ference on Frontier of Computer Science and Technol-
ogy, 2017 Third International Symposium of Creative
Computing (ISPAN-FCST-ISCC), Exeter, UK, 2017. IEEE,
2017;doi:10.1109/ISPAN-FCST-ISCC.2017.69.

20. Century Link Labs. Panamax-UI. 2018. https://github.com/C
enturyLinkLabs/panamax-ui. Accessed 19 June 2018.

21. Shipyard: Composable Docker Management. 2018. https://gi
thub.com/shipyard/shipyard. Accessed 19 June 2018.

22. Rancher Labs. Rancher Labs: Your Enterprise Kubernetes
Platform. 2018. https://rancher.com/. Accessed 19 June 2018.

23. Portainer: Simple management UI for Docker. 2018. https://
github.com/portainer/portainer. Accessed 19 June 2018.

24. Conda: Open Source Package Management System and Envi-
ronment Management System. 2017. https://conda.io/docs/.
Accessed 19 June 2018.

25. Grüning B, Dale R, Sjödin A, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences.
Nat Methods 2018;15(7):475.

26. Menegidio FB. BioPortainer 2018. https://github.com/LaBiOS/
BioPortainer. Accessed 19 June 2018.

27. Jenkins Project. Jenkins: Build great things at any scale. 2006.
https://jenkins.io. Accessed 19 June 2018.

28. Jupyter Project. 2018. http://jupyter.org. Accessed 19 June
2018.

29. JSON Manual. 2018. https://www.json.org/. Accessed 19 June
2018.

30. Travis CI: Test and deploy with confidence. 2018. https://trav
is-ci.org/. Accessed 19 June 2018.

31. Cicle CI: Continuous integration and delivery. 2018. https://
circleci.com. Accessed 19 June 2018.

32. Play with Docker. 2018. https://labs.play-with-docker.com.
Accessed 19 June 2018.

33. NVIDIA-Docker: Build and run Docker containers leverag-
ing NVIDIA GPUs. 2018. https://github.com/NVIDIA/nvidia-d
ocker. Accessed 19 June 2018.

34. NVIDIA CUDA Toolkit: Develop, optimize and deploy GPU-
accelerated apps. 2018. https://developer.nvidia.com/cuda-
toolkit. Accessed 19 June 2018.

35. NVIDIA cuDNN: GPU accelerated deep learning. 2018. https:
//developer.nvidia.com/cudnn. Accessed 19 June 2018.

36. PIP - Python Install Package. 2018. https://pypi.org/project/p
ip/. Accessed 19 June 2018.

37. Jackman S, Birol I. Linuxbrew and Homebrew for cross-
platform package management. F1000Res 2016;5:1795.

38. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open
software development for computational biology and bioin-
formatics. Genome Biol 2004;5:R80.

39. Afgan E, Baker D, van den Beek M, et al. The Galaxy plat-
form for accessible, reproducible and collaborative biomedi-
cal analyses. Nucleic Acids Res 2016;44(W1):W3–W10.

40. Afgan E, Baker D, Batut B, et al. The Galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses:
2018 update. Nucleic Acids Res 2018;46(W1):W537–44.

41. Planemo: Command-line utilities to assist in developing
tools for the Galaxy Project. 2018. https://github.com/galax
yproject/planemo. Accessed 19 June 2018.

42. Dawn F, Tiwari B, Booth T, et al. Open software for biologists:
from famine to feast. Nat Biotechnol 2006;24:801–3.

43. R Development Core Team. R: A language and environ-
ment for statistical computing. 2012. http://www.R-project.
org. Accessed 19 June 2018.

44. RStudio: Integrated Development Environment for R.
Boston, MA: RStudio; 2015. http://www.rstudio.com/. Ac-
cessed 19 June 2018.

45. Burrow-Wheeler Aligner for short-read alignment. 2018 . ht
tp://github.com/lh3/bwa. Accessed 19 June 2018.

46. SAMtools mpileup: Variant calling for SNPs and Indels using
SAMtools mpileup. 2018. https://github.com/dnanexus/samt
ools mpileup. Accessed 19 June 2018.

47. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific con-
tainers for mobility of compute. PLOS One 2017;12(5):1–20.

48. Grüning BA, Rasche E, Rebolledo-Jaramillo B, et al. Jupyter
and Galaxy: Easing entry barriers into complex data analyses
for biomedical researchers. PLOS Comput Biol 2017;13:1–10.

https://www.commonwl.org/
https://github.com/CenturyLinkLabs/panamax-ui
https://github.com/shipyard/shipyard
https://rancher.com/
https://github.com/portainer/portainer
https://conda.io/docs/
https://github.com/LaBiOS/BioPortainer
https://jenkins.io
http://jupyter.org
https://www.json.org/
https://travis-ci.org/
https://circleci.com
https://labs.play-with-docker.com
https://github.com/NVIDIA/nvidia-docker
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://pypi.org/project/pip/
https://github.com/galaxyproject/planemo
http://www.R-project.org
http://www.rstudio.com/
http://github.com/lh3/bwa
http://github.com/dnanexus/samtools_mpileup

