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Abstract
Genetic, environmental, and pharmacological interventions into the aging process 
can	confer	resistance	to	multiple	age-	related	diseases	in	laboratory	animals,	including	
rhesus	monkeys.	These	findings	imply	that	individual	mechanisms	of	aging	might	con-
tribute	to	the	co-	occurrence	of	age-	related	diseases	in	humans	and	could	be	targeted	
to	prevent	these	conditions	simultaneously.	To	address	this	question,	we	text	mined	
917,645	 literature	 abstracts	 followed	 by	 manual	 curation	 and	 found	 strong,	 non-	
random	associations	between	age-	related	diseases	and	aging	mechanisms	in	humans,	
confirmed	by	gene	set	enrichment	analysis	of	GWAS	data.	Integration	of	these	asso-
ciations	with	clinical	data	from	3.01	million	patients	showed	that	age-	related	diseases	
associated	with	each	of	five	aging	mechanisms	were	more	 likely	than	chance	to	be	
present together in patients. Genetic evidence revealed that innate and adaptive im-
munity,	the	intrinsic	apoptotic	signaling	pathway	and	activity	of	the	ERK1/2	pathway	
were	 associated	with	multiple	 aging	mechanisms	 and	diverse	 age-	related	diseases.	
Mechanisms	of	aging	hence	contribute	both	together	and	individually	to	age-	related	
disease	 co-	occurrence	 in	 humans	 and	 could	 potentially	 be	 targeted	 accordingly	 to	
prevent multimorbidity.
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1  |  INTRODUC TION

Age-	associated	accumulation	of	molecular	and	cellular	damage	leads	
to an increased susceptibility to loss of function, disease, and death 
(Lopez-	Otin	 et	 al.,	 2013).	 Aging	 is	 the	major	 risk	 factor	 for	 many	
chronic	 and	 fatal	 human	 diseases,	 including	 Alzheimer's	 disease,	
multiple cancers, cardiovascular diseases, and type 2 diabetes mel-
litus	 (T2DM),	which	are	collectively	known	as	age-	related	diseases	
(ARDs)	(Niccoli	&	Partridge,	2012).	However,	genetic	(Kenyon,	2010),	
environmental	 (Austad	 &	 Hoffman,	 2020),	 and	 pharmacological	
(Partridge	et	al.,	2020)	interventions	can	ameliorate	loss	of	function	
during	aging	and	confer	resistance	to	multiple	age-	related	diseases	
in	 laboratory	animals.	Age-	related	multimorbidity,	 the	presence	of	
more	than	one	ARD	in	an	individual,	is	posing	a	major	and	increasing	
challenge	to	healthcare	systems	worldwide	(Pearson-	Stuttard	et	al.,	
2019).	 An	 important,	 open	 question,	 therefore,	 is	 whether	mech-
anisms	 of	 aging	 can	 explain	 ARD	 co-	occurrence	 in	 patients,	 and	
hence, whether intervention into these mechanisms could prevent 
or	treat	multiple	ARDs	simultaneously	(Franceschi	et	al.,	2018).

Specific	biological	mechanisms	begin	to	fail	as	an	individual	ages	
(Lopez-	Otin	et	al.,	2013).	Nine	major	aging	processes	were	summa-
rized	as	“The	Hallmarks	of	Aging”	(Lopez-	Otin	et	al.,	2013):	genomic	
instability, telomere shortening, epigenetic changes, impaired pro-
tein homeostasis, impaired mitochondrial function, deregulated 
nutrient	sensing,	cellular	senescence,	exhaustion	of	stem	cells,	and	
altered	 intercellular	communication	 (Figure	1).	Aging	hallmarks	are	
not themselves diseases, but they are present in the development 
and	disordered	physiology	of	clinically	defined	ARDs	(Aunan	et	al.,	
2016).	 For	example,	 loss	of	proteostasis	 appears	 to	have	a	promi-
nent	 role	 in	neurodegenerative	disorders,	 such	as	Alzheimer's	and	
Parkinson's	diseases,	which	are	associated	with	protein	aggregates	
composed	of	amyloid-	beta	and	α-	synuclein,	respectively	(Hou	et	al.,	
2019).	 Genomic	 instability	 and	 epigenetic	 alterations	 frequently	
contribute	to	development	of	cancers	of,	for	example,	the	breast	and	
bowel	(Hanahan	&	Weinberg,	2011).	The	role	of	genes	in	individual	
human	ARDs	and	ARD	multimorbidity	has	been	studied	extensively	
(Amell	et	al.,	2018;	Johnson	et	al.,	2015;	Zenin	et	al.,	2019),	as	has	
the	link	between	individual	aging	hallmarks	and	ARDs	(Andreassen	
et	 al.,	 2019;	 Johnson	 et	 al.,	 2015).	 For	 example,	 previous	 studies	
have	demonstrated	that	multiple,	individual	human	ARDs	share	gene	
ontology	(GO)	terms	linked	to	aging	hallmarks	(Johnson	et	al.,	2015).	
However,	whether	 these	underlying	mechanisms	of	 aging	contrib-
ute	 to	ARD	co-	occurrence	 in	patients	has	not	previously	been	 in-
vestigated.	Here,	we	 explore	 the	 notion	 that	 aging	 hallmarks	may	
contribute	to	risk	of	co-	occurrence	of	specific	ARDs	in	patients.	In	
model organisms, altering the activity of specific signaling pathways, 
such	as	insulin/	insulin-	like	growth	factor	signaling	(IIS)	(Lopez-	Otin	
et	al.,	2013),	Ras-	ERK	pathway	(Slack	et	al.,	2015),	immune	pathways	
(Moskalev	&	Shaposhnikov,	2011),	and	p53	pathways	(Matheu	et	al.,	
2007),	can	delay	multiple	ARDs	and/	or	extend	lifespan.	Therefore,	
we	 also	 explored	 the	 notion	 that	 common	 signaling	 pathways	 are	
shared	 across	 all	 aging	 hallmarks	 and,	 thus,	 may	 contribute	more	
broadly	to	multiple	ARDs	and	multimorbidity.

We	integrated	evidence	derived	from	scientific	literature	ab-
stracts,	genome-	wide	association	 (GWA)	studies,	and	electronic	
health	 records	 to	 explore	 the	 role	 of	 aging	 hallmarks	 in	 human	
ARD	co-	occurrence.	We	began	by	 scoring	co-	mentions	of	 aging	
hallmarks	and	ARDs	in	917,645	scientific	literature	abstracts	and	
verified	 the	 differential	 aging	 hallmark-	ARD	 associations	 that	
emerged	using	manual	curation.	Using	 the	scores	of	verified	 lit-
erature	 aging	 hallmark-	ARD	 associations,	 scaled	 by	 the	 number	
of	mentions	of	each	hallmark	and	ARD	to	control	for	study	inten-
sity,	we	identified	the	top	30	ranked	ARDs	specifically	associated	
with	 each	 aging	 hallmark	 (Figure	 2a).	 To	 validate	 these	 associa-
tions	 independently,	we	used	publicly	available	GWAS	data	and	
found that the annotations of proteins encoded by genes asso-
ciated	with	the	top	30	ARDs	were	indeed	enriched	for	processes	
related	 to	 the	 same	 aging	 hallmark	 (Figure	 2b).	 The	 resulting	
associations were then propagated onto previously developed 
networks	of	ARD	co-	occurrence	in	clinical	data	from	3.01	million	
patients	 (Kuan,	2020;	Kuan	et	al.,	2021).	We	found	that	 the	top	
30	ARDs	associated	with	each	of	5	of	the	9	aging	hallmarks	co-	
occurred	more	frequently	in	individual	patients	than	expected	by	
chance	 (Figure	2c),	 and	 these	associations	were	 stable	over	10-	
year	 age	 ranges	 from	age	50.	 Intervention	 into	 these	 individual	
hallmarks	could	thus	prevent	or	ameliorate	these	specific	groups	
of conditions.

In	addition	to	the	association	of	individual	aging	hallmarks	to	pat-
terns	of	ARD	co-	occurrence,	GO	annotation	of	the	GWAS	data	also	
indicated	that	diverse,	aging	hallmark-	associated	ARDs	were	linked	
with common signaling pathways. These included innate and adap-
tive	 immune,	 Ras-	ERK,	 and	 the	 intrinsic	 apoptotic	 signaling	 path-
ways.	Interventions	into	these	pathways	may	therefore	have	a	broad	
preventative	effect	for	these	ARDs.

We	also	found	that	aging	hallmarks	may	provide	a	mechanism	for	
the	 etiology	 of	 ARDs	with	 incompletely	 understood	 pathogenesis	
and/or pathophysiology.

2  |  RESULTS

2.1  |  Associations between aging hallmarks and 
ARDs in the biomedical literature

Each	aging	hallmark	has	a	greater	role	in	the	development	and	disor-
dered	physiology	of	certain	ARDs	and	a	lesser	role	in	others	(Aunan	
et	al.,	2016;	Lopez-	Otin	et	al.,	2013).	If	an	aging	hallmark	and	ARD	
are	frequently	co-	mentioned	in	the	scientific	literature,	this	associa-
tion	could	indicate	a	causal	connection	between	them.	We	therefore	
applied	text	mining	to	the	biomedical	literature	to	identify	the	ARDs	
with	the	highest	co-	mentions	with	each	aging	hallmark	(Figure	2a).	
As	the	associations	derived	from	text	mining	could	be	confounded	
by	another	factor,	we	verified	that	the	aging	hallmark-	ARD	associa-
tions	derived	from	text	mining	were	direct,	using	manual	curation,	
and	 we	 also	 sought	 independent	 confirmation	 from	 GWAS	 data	
(Figure	2b).
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Our	text	data	consisted	of	1.85	million	abstracts	on	human	aging	
extracted	 from	 PubMed,	 termed	 the	 “human	 aging	 corpus,”	 and	
was	 separated	 into	20.48	million	 sentences	 (Figure	2a).	 Synonyms	
of	 the	 aging	 hallmarks	 and	ARDs	were	 needed	 to	maximize	 iden-
tification	of	relevant	sentences	in	the	text	data	(Pletscher-	Frankild	
et	al.,	2015).	We	therefore	developed	an	aging	hallmark	taxonomy,	
so	that	synonyms	and	subclasses	of	an	original	aging	hallmark	could	
be	brought	into	a	dictionary	for	the	nine	aging	hallmarks	(Figure	1)	
(Baker	et	al.,	2017).	The	starting	point	for	the	aging	hallmark	taxon-
omy	was	“The	Hallmarks	of	Aging”	(Lopez-	Otin	et	al.,	2013)	paper,	

and	the	rationale	for	selection	of	each	taxonomy	term	is	in	Table	S1.	
The	original	nine	hallmarks	(Lopez-	Otin	et	al.,	2013)	were	expanded	
into	a	 taxonomy	of	65	 related	 terms	and	 four	 levels	 (Figure	1).	To	
develop	the	ARD	dictionary,	we	used	a	previous	definition,	yielding	
a	list	of	207	ARDs	meeting	the	criteria	(Kuan	et	al.,	2021),	from	which	
four	ARDs	that	were	not	specific	enough	for	scientific	literature	min-
ing	were	excluded	 (Table	S2).	We	then	determined	 if	each	original	
aging	hallmark	 synonym	and/	or	ARD	synonym	was	mentioned	 in	
each	of	 the	20.48	million	sentences	 (see	Methods,	Figure	2a).	We	
excluded	19	ARDs	that	had	fewer	than	250	associated	sentences	in	

F I G U R E  1 The	“Hallmarks	of	Aging”	expanded	into	a	taxonomy.	The	nine	original	aging	hallmarks	were	expanded	into	a	taxonomy	of	65	
related	terms	and	four	levels.	Figure	adapted	from	Lopez-	Otin	et	al.	(2013).	Abbreviations:	Table	S9
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abstracts	in	the	human	aging	corpus	(Table	S2).	As	a	co-	occurrence	
score	 to	quantify	aging	hallmark-	ARD	associations	 for	 the	 remain-
ing	184	ARDs,	we	used	the	Ochiai	coefficient	(Ochiai,	1957),	which	
scores	sentences	mentioning	and	co-	mentioning	an	aging	hallmark	
and	an	ARD,	and	adjusts	for	uneven	study	density	of	each	aging	hall-
mark	and	ARD.

Age-	related	diseases	and	aging	hallmarks	with	higher	Ochiai	co-
efficients	are	likely	to	be	related	in	some	way,	but	the	type	of	rela-
tionship,	for	instance	a	causal	connection,	is	not	known	(Jensen	et	al.,	
2006).	Therefore,	we	manually	examined	sentences	co-	mentioning	

each	aging	hallmark-	ARD	pair	to	determine	the	type	of	relationship	
(Yang	et	al.,	2016).	We	manually	examined	co-	mentioning	sentences	
until	we	 had	 encountered	 a	 sufficient	 number	 (see	Methods)	 that	
correctly	 reported	 that	 an	 aging	hallmark	had	 a	 role	 in	 the	devel-
opment	 or	 disordered	 physiology	 of	 a	 disease	 (Table	 S4).	 Aging	
hallmark-	ARD	 combinations	 with	 insufficient	 evidence	 of	 associ-
ation	 from	manual	 curation	were	 set	 to	 zero	and	 the	Ochiai	 coef-
ficient	associating	each	aging	hallmark	and	ARD	was	updated.	The	
updated	Ochiai	coefficients	were	then	sorted	in	descending	order	to	
provide	a	rank	for	association	of	each	ARD	with	each	aging	hallmark	

F I G U R E  2 Summary	of	the	methods.	(a)	Associating	aging	hallmarks	(AHs)	with	ARDs	using	text	mining.	From	1.85	million	scientific	
abstracts,	we	extracted	sentences	mentioning	and	co-	mentioning	aging	hallmarks	and	ARDs	to	derive	a	score	of	their	association.	We	
kept	scores	verified	using	manual	curation.	The	scores	were	used	to	identify	the	top	30	ranked	ARDs	linked	to	each	aging	hallmark.	(b)	
Confirming	ARD-	aging	hallmark	associations	using	GWAS	data	and	investigating	enrichment	of	specific	signaling	pathways	across	all	aging	
hallmarks.	We	identified	the	genes	linked	to	each	of	the	top	30	ARDs	associated	with	an	aging	hallmark	from	text	mining	and	took	the	union	
of	genes,	which	were	mapped	to	encoded	proteins	forming	nine	protein	lists.	We	carried	out	GSEA	to	identify	whether	there	was	significant	
enrichment	of	GO	terms	related	to	the	same	aging	hallmark	as	the	ARDs	were	linked	to	in	text	mining.	We	also	assessed	whether	there	were	
significantly	enriched	signaling	pathways	across	all	aging	hallmarks.	(c)	Association	of	aging	hallmarks	with	ARD	multimorbidities.	The	input	
data	were	the	top	30	ARDs	per	aging	hallmark	from	text	mining	and	four	ARD	multimorbidity	networks	from	age	50	years.	We	selected	
subnetworks	of	the	top	30	ARDs	per	aging	hallmark	and	compared	the	network	density	in	these	subnetworks	to	random	expectation.	
(d)	Associations	of	aging	hallmarks	to	ARDs	with	incompletely	understood	pathogenesis	or	pathophysiology.	We	superimposed	the	aging	
hallmark-	ARD	scored	associations	from	text	mining	onto	the	four	ARD	multimorbidity	networks	and	iterated	until	convergence.	We	selected	
the	top	30	ARDs	based	on	the	score	of	the	nodes	after	network	propagation	and	identified	significant	subnetworks.	We	identified	ARDs	
with	incompletely	understood	pathogenesis	or	pathophysiology	newly	associated	with	aging	hallmarks	(green)	in	the	subnetworks	and	
explored	genetic	data	for	links	to	the	same	aging	hallmark

F I G U R E  3 Aging	hallmark-	ARD	associations	from	text	mining.	(a)	Aging	hallmark-	ARD	associations	based	on	the	logarithm	of	the	updated	
Ochiai	coefficient.	The	highest	ranked	ARDs	are	in	red	and	lowest	ranked	in	yellow.	ARDs	with	no	association	are	shown	in	white.	(b)	The	top	
30	ranked	ARDs	for	each	aging	hallmark.	1st	(dark	red)	to	30th	(light	yellow)	ranked	ARDs	for	a	given	aging	hallmark	are	highlighted.	ARDs	
not	ranked	in	the	top	30	are	shown	in	white.	Abbreviations:	Table	S9
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(b)
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(Figure	3a).	We	selected	the	top	30	ARDs	associated	with	each	aging	
hallmark	 (Figures	2a	 and	3b)	 as	 a	 prioritized	 and	 sufficiently	 large	
number	to	explore	in	multimorbidity	networks.

The	Ochiai	coefficients	showed	clear	patterns	of	association	be-
tween	specific	aging	hallmarks	and	ARDs	(Figure	3a,b).	For	instance,	
disorders	 frequently	mentioned	 in	association	with	genomic	 insta-
bility and epigenetic alterations were primary malignancies, such 
as	lung	cancer,	bowel	cancer,	and	leukemia	(Figure	3b).	This	was	as	
expected,	since	“genomic	instability	and	mutation”	are	hallmarks	of	
cancer and epigenetic alterations are important in cancer develop-
ment	and	progression	(Hanahan	&	Weinberg,	2011;	Kanwal	&	Gupta,	
2012).	Highly	ranked	ARDs	for	telomere	attrition	and	stem	cell	ex-
haustion were hematological disorders, including aplastic anemia, 
anemia,	 and	 myelodysplasia	 (Figure	 3b)	 (Lopez-	Otin	 et	 al.,	 2013).	
There were strong associations between proteostasis and neuro-
degenerative	disorders	including	dementia,	Parkinson's	disease,	and	
motor	 neurone	 disease	 (MND),	 which	 are	 indeed	 associated	 with	
amyloid-	beta	 aggregates,	 α-	synuclein	 aggregates,	 and	 dipeptide-	
repeat	polymers,	respectively	(Figure	3b)	(Hou	et	al.,	2019;	Vanneste	
et	 al.,	 2019).	 Mitochondrial	 dysfunction	 was	 strongly	 associated	
with neurodegenerative disorders and cardiomyopathy, again 
showing that our approach could recapture established associ-
ations	 (Figure	3b)	 (Aunan	et	 al.,	 2016;	 Johri	&	Beal,	 2012).	Highly	
ranked	 ARDs	 for	 cellular	 senescence	 included	 immunodeficiency,	
which is associated with immunosenescence, and cancers, which 
are	exacerbated	by	the	senescence-	associated	secretory	phenotype	

(Figure	3b)	 (Gonzalez-	Meljem	et	al.,	2018;	McLachlan	et	al.,	1995).	
Highly	ranked	disorders	for	deregulated	nutrient	sensing	were	high	
triglycerides,	 low	 high-	density	 lipoprotein	 (HDL)	 cholesterol,	 hy-
pertension,	and	type	2	diabetes	mellitus	(T2DM)	(Figure	3b).	These	
ARDs	comprise	 the	metabolic	 syndrome,	which	 is	 strongly	associ-
ated	with	 insulin	resistance	 (Lann	&	LeRoith,).	Altered	 intercellular	
communication was associated with specific malignancies and auto-
immune disorders, such as prostate cancer and rheumatoid arthritis 
(RA),	respectively	(Figure	3b)	(Kryvenko	et	al.,	2012).	Thus,	our	text	
mining approach correctly captured many molecular and cellular 
processes	known	to	be	involved	in	the	respective	ARD	etiology	and,	
importantly,	confirmed	that	aging	hallmark-	ARD	associations	were	
highly	non-	random.

2.2  |  Confirmation of ARD- aging hallmark 
associations from GWAS data

We	next	used	genetic	information	to	obtain	independent	confirma-
tion	of	the	aging	hallmark-	ARD	associations	derived	from	text	min-
ing.	We	 assessed	 whether	 proteins	 encoded	 by	 genes	 associated	
with	top	30	ARDs	showed	significant	enrichment	of	GO	terms	re-
lated	 to	 the	 same	 aging	 hallmark	 on	GSEA	 (Figure	 2b).	We	 linked	
the	top	30	ARDs	per	aging	hallmark	to	genes	using	the	GWAS	cat-
alog	 (Buniello	 et	 al.,	 2019)	 (Figure	 2b),	 thus	 obtaining	 9	 gene	 lists	
(Figure	2b).	As	GO	terms	are	mapped	to	gene	products,	we	mapped	

TA B L E  1 Number	of	proteins	in	each	aging	hallmark	protein	list	and	number	of	proteins	in	each	list	linked	to	the	five	significant	signaling	
pathways

Aging hallmark

a. Total 
number of 
proteins in 
protein list

Number of proteins in protein list linked to signaling pathway(expected number)

b. IFN- γ c. T- cell
d. T- cell (positive 
regulation)

e. ERK1/2 (positive 
regulation)

f. intrinsic 
apoptotic

GI 511 9	(2.7)*** 13	(3.7)*** 3	(0.4)** 15	(6.0)** 7	(1.4)***

TA 872 19	(4.7)**** 21	(6.3)*** 5	(0.7)*** 27	(10.3)**** 8	(2.4)***

EA 658 14	(3.5)**** 20	(4.7)**** 4	(0.5)** 17	(7.8)** 7	(1.8)***

LOP 817 16	(4.4)**** 17	(5.9)*** 4	(0.6)** 26	(9.7)**** 6	(2.2)*

DNS 1212 20	(6.5)** 26	(8.7)**** 4	(1.0)* 31	(14.3)**** 7	(3.3)*

MD 1058 20	(5.7)**** 24	(7.6)*** 5	(0.8)*** 31	(12.5)**** 8	(2.9)**

CS 594 10	(3.2)** 17	(4.3)*** 3	(0.5)** 16	(7.0)** 9	(1.6)****

SCE 680 17	(3.7)**** 17	(4.9)** 4	(0.5)** 23	(8.0)**** 7	(1.8)***

AIC 809 14	(4.3)*** 19	(5.8)*** 3	(0.6)* 24	(9.6)**** 7	(2.2)**

Total	(union	of	encoded	proteins) 25 30 5 40 9

Total	(union	of	mapped	ARDs) 21 19 9 22 11

Note: We	identified	the	genes	linked	to	each	of	the	top	30	ARDs	associated	with	an	aging	hallmark	from	text	mining.	We	took	the	union	of	genes	
leading	to	nine	gene	lists.	Protein-	coding	genes	within	each	gene	list	were	mapped	to	proteins	forming	nine	protein	lists.	(a)	Total	number	of	proteins	
in	each	protein	list.	The	associated	aging	hallmark	from	text	mining	represents	the	rows	in	the	“aging	hallmark”	column	(i.e.,	genomic	instability	
(GI),	telomere	attrition	(TA),	epigenetic	alterations	(EA),	loss	of	proteostasis	(LOP),	cellular	senescence	(CS),	deregulated	nutrient	sensing	(DNS),	
mitochondrial	dysfunction	(MD),	stem	cell	exhaustion	(SCE),	and	altered	intercellular	communication	(AIC)).	We	next	carried	out	GSEA	followed	by	
a	search	for	GO	terms	mentioning	“pathway”	or	“cascade,”	which	showed	significant	enrichment	of	five	pathways	across	all	aging	hallmark	protein	
lists	represented	in	(b-	f).	The	number	of	proteins	in	each	protein	list	linked	to	the	GO	terms:	(b)	“IFN-	γ-	mediated	signaling	pathway,”	(c)	“T-	cell	
receptor	signaling	pathway,”	(d)	“positive	regulation	of	T-	cell	receptor	signaling	pathway,”	(e)	“positive	regulation	of	the	ERK1/2	cascade,”	and	(f)	
“intrinsic	apoptotic	signaling	pathways	in	response	to	DNA	damage	by	p53	class	mediator,”	compared	to	the	expected	number	(*p <	0.05,	**	p < 0.01, 
***p <	0.001,	****p <	0.0001).	The	“total”	rows	show	the	union	of	proteins	from	all	nine	protein	lists	and	the	union	of	mapped	ARDs.
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each	of	 the	protein-	coding	genes	 to	a	single	protein	 typically	 rep-
resenting	 the	 canonical	 isoform,	 resulting	 in	 nine	 “protein	 lists”	
(Table	1a)	(Szklarczyk	et	al.,	2019).	We	then	carried	out	GSEA	to	test	
for	significant	enrichment	of	biological	process	GO	terms	related	to	
the	same	aging	hallmark	(Figure	2b,	Figure	S1a-	i).	The	GWAS	cata-
log	is	associated	with	PMIDs,	and	we	avoided	any	risk	of	circularity	
by	removing	the	PMIDs	that	intersected	between	studies	included	
from	the	GWAS	catalog	and	the	917,645	scientific	titles/	abstracts	
mentioning	 aging	 hallmarks	 and/or	 ARDs.	 Thus,	 this	 approach	 to	
verifying	aging	hallmark-	ARD	associations	was	 independent	of	the	
literature-	based	method.

We	 next	 tested	 whether	 biological	 processes	 related	 to	 each	
aging	 hallmark	 were	 indeed	 significantly	 enriched	 in	 the	 protein	
list	 representing	 the	 top	 30	 ARDs	 associated	 with	 that	 hallmark	
(Figure	 2b,	 Figure	 S1a-	i).	 Both	 511	 and	 1212	 proteins	were	 asso-
ciated	with	each	of	 the	aging	hallmarks	 (Table	1a).	We	carried	out	
GSEA	 and	 searched	 for	 GO	 terms	 related	 to	 each	 aging	 hallmark	
(Figure	S1a-	i).	We	identified	significant	enrichment	of	terms	related	
to	 the	 same	 aging	 hallmark	 as	 was	 associated	with	 the	 ARDs	 via	
text	 mining	 (Figure	 S1a-	i).	 For	 example,	 “DNA	 damage	 response,”	
“telomere	 maintenance,”	 “regulation	 of	 autophagy,”	 “replicative	
senescence,”	 “glucose	 homeostasis,”	 “regulation	 of	 mitochondrion	
fission,”	 and	 “stem	 cell	 differentiation”	were	 significantly	 enriched	
in the genomic instability, telomere attrition, loss of proteostasis, 
cellular senescence, deregulated nutrient sensing, mitochondrial 
dysfunction,	 and	 stem	 cell	 exhaustion	 protein	 lists,	 respectively	
(Figure	S1a,b,d-	h).	The	altered	 intercellular	communication	protein	
list showed significant enrichment of processes related to hormone 
synthesis and inflammatory response while the epigenetic alteration 
protein list showed significant enrichment of terms related to his-
tone	acetylation	(Figure	S1c,	i).	Thus,	the	protein	lists	derived	from	
the	aging	hallmark-	associated	gene	lists	were	significantly	enriched	
for	annotations	related	to	their	own	aging	hallmark.	Therefore,	anal-
ysis	 of	 GWAS	 data	 confirmed	 the	 specific	 associations	 between	
aging	hallmarks	and	ARDs	that	had	been	found	from	the	literature	
co-	occurrence	scores	(Figure	2a,b).

2.3  |  Enrichment of signaling pathways across all 
aging hallmarks

Our	literature	mining	revealed	highly	specific	associations	between	
ARDs	and	aging	hallmarks,	and	these	were	independently	confirmed	
by	GWAS	data.	However,	hallmarks	of	aging	are	part	of	a	complex	
nexus	of	 failure	of	molecular	 and	cellular	processes,	 are	not	 inde-
pendent of each other, and may share some common underlying 
signaling	pathways.	Therefore,	we	explored	whether	common	sign-
aling	 pathways	were	 shared	 across	 all	 aging	 hallmark	 protein	 lists	
and,	thus,	contribute	to	the	development	of	multiple	aging	hallmark-	
associated	ARDs.	For	the	ARDs	that	were	associated	with	specific	
hallmarks	and	 that	were	present	 in	our	GWAS	analysis,	 there	was	
clear	evidence	from	the	GWAS	data	for	commonalities	in	the	sign-
aling	cascades	and	pathways	across	all	aging	hallmark	protein	 lists	

(Figure	4a).	GSEA	followed	by	search	for	GO	terms	mentioning	“path-
way”	or	“cascade”	showed	that	five	pathways	were	significantly	en-
riched	in	all	aging	hallmark	protein	lists	(Figure	4a,	Table	1b-	f).	Three	
were	 linked	 to	 the	 innate	 and	 adaptive	 immune	 system,	 including	
the	 “interferon-	γ-	mediated	 signaling	 pathway”	 and	 the	 “T-	cell	 re-
ceptor	signaling	pathway”	and	to	its	“positive	regulation”	(Figure	4a,	
Table	1b-	d).	These	pathways	are	 interconnected,	as	 interferon-	γ is 
a	cytokine	produced	by	multiple	immune	cells	including	cells	of	the	
adaptive	immune	system,	such	as	T	cells	(Yen	et	al.,	2000).	“Positive	
regulation	of	the	ERK1/2	cascade”	and	the	“intrinsic	apoptotic	sign-
aling	pathway	in	response	to	DNA	damage	by	a	p53	class	mediator”	
were	also	significantly	enriched	across	all	aging	hallmark	protein	lists	
(Figure	4a,	Table	1e,	f).

To	explore	these	common	pathways	further,	we	derived	the	union	
of	proteins	 associated	with	each	of	 the	GO	 terms	across	 all	 aging	
hallmarks,	mapped	them	to	their	underlying	genes,	and	linked	them	
to	their	associated	ARDs	(Table	1b-	f).	A	total	of	21	ARDs	were	linked	
to	25	genes	encoding	proteins	associated	with	the	interferon-	γ path-
way	(Figure	4b,	Table	1b),	19	to	30	genes	encoding	proteins	associ-
ated	with	the	T-	cell	receptor	signaling	pathway	(Figure	4c,	Table	1c),	
9	to	5	genes	encoding	proteins	associated	with	positive	regulation	
of	the	T-	cell	receptor	signaling	pathway	(Figure	4d,	Table	1d),	22	to	
40	 genes	 encoding	 proteins	 associated	 with	 the	 ERK1/2	 cascade	
(Figure	4e,	Table	1e)	and	11	to	9	genes	encoding	proteins	associated	
with	the	 intrinsic	apoptotic	signaling	pathway	 (Figure	4f,	Table	1f).	
These signaling cascades are therefore implicated in the etiology of 
these	diverse,	aging-	hallmark-	associated	ARDs.

2.4  |  Association of aging hallmarks with ARD 
multimorbidities

We	 next	 explored	 the	 possible	 role	 of	 aging	 hallmarks	 in	 the	 co-	
occurrence	of	 two	ARDs	 in	 the	same	patient,	known	as	multimor-
bidity	(Figure	2c).	To	do	this,	we	assessed	whether	ARDs	associated	
with	 the	 same	 aging	 hallmark	 occurred	 more	 frequently	 in	 the	
same	patient	than	random	pairs	of	ARDs.	We	used	previously	cre-
ated	multimorbidity	networks	 (Kuan,	2020)	 reflecting	non-	random	
co-	occurrence	of	 two	diseases	 in	 the	same	patient.	The	multimor-
bidity	 networks	were	 created	 for	 different	 age	 classes	 by	 binning	
electronic	health	records	of	3.01	million	individuals	into	nine	10-	year	
age	intervals	(Kuan,	2020;	Kuan	et	al.,	2019,	2021).	Within	each	age	
interval,	 significantly	co-	occurring	disease	pairs	were	 linked	 in	 the	
respective	network	 (see	Methods)	 (Kuan,	2020).	The	 stratification	
by	age	accounts	for	the	fact	that	occurrence	(Kuan	et	al.,	2019)	and	
co-	occurrence	(Kuan,	2020)	of	diseases	change	with	age.	Since	we	
were	particularly	interested	in	ARDs,	we	used	the	four	networks	for	
the	 age	 groups	of	 50	 years	 and	over	 for	 subsequent	 analyses	be-
cause	170	of	 the	184	ARDs	had	a	median	age	of	onset	≥50	years	
(Figure	2c)	(Kuan	et	al.,	2021).	Thereby,	we	obtained	four	networks	
of	184	ARDs	(Table	S6)	(Kuan,	2020;	Kuan	et	al.,	2021).

We	next	assessed	whether	the	ARDs	associated	with	each	aging	
hallmark	were	more	likely	to	co-	occur	as	multimorbidities	in	patients	
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than	expected	by	chance.	We	selected	 the	 top	30	ARDs	 for	each	
aging	hallmark	and	extracted	the	subnetworks	consisting	of	those	
30	 diseases	 (Figures	 2c	 and	 3b),	 resulting	 in	 36	 subnetworks	 for	
the	 four	 age-	specific	 ARD	multimorbidity	 networks	 and	 the	 nine	
aging	hallmarks.	A	higher	observed	network	density	than	expected	
by	chance	indicates	that	there	are	more	edges	than	expected,	and	
hence	 that	 the	ARDs	within	 the	 subnetwork	 are	more	 frequently	
multimorbidities	than	random	ARD	sets	of	the	same	size.	 In	order	
to estimate the statistical significance of such differences, we per-
formed	20,000	random	permutations	of	the	network	topology	and	
obtained	 a	 background	 distribution	 of	 network	 densities.	 Next,	
we	compared	 the	network	densities	of	 the	 top	30	ARDs	 for	each	
hallmark	with	that	background	distribution	to	obtain	p-	values	(see	
Table	2	for	details).

For	 five	 of	 nine	 aging	 hallmarks,	 namely	 deregulated	 nutrient	
sensing	(p <	0.0001),	mitochondrial	dysfunction	(p <	0.05),	cellular	
senescence	(p <	0.05),	stem	cell	exhaustion	(p <	0.001),	and	altered	
intercellular	communication	(p <	0.01),	the	nodes	representing	the	
top	 30	 associated	ARDs	were	 connected	 by	more	 edges	 than	 ex-
pected	by	chance	across	all	age	categories	(Table	2,	Figure	2c).	The	
ARDs	associated	with	 these	 five	aging	hallmarks	 thus	co-	occurred	
in	individual	patients	more	frequently	than	expected	by	chance	and	
these	 associations	were	 stable	 over	 10-	year	 age	 ranges	 from	 age	
50	years	(Figure	5a-	e,	Table	2).	For	example,	the	deregulated	nutri-
ent	sensing	multimorbidity	subnetwork	contained	nodes	connected	

by	edges	 representing	 the	progression	of	known	multimorbidities,	
such	as	type	2	diabetes	mellitus	with	fatty	liver	(Figure	5a)	(Kneeman	
et	al.,	2012).	These	non-	random	associations	suggest	that	these	five	
aging	hallmarks	do	 indeed	have	a	role	 in	the	development	of	ARD	
multimorbidity	in	patients	(Table	2).

2.5  |  Associations of aging hallmarks with ARDs 
with incompletely understood pathogenesis or 
pathophysiology

The	analysis	above	suggests	that	ARDs	that	are	tightly	connected	in	
the	multimorbidity	networks	are	more	likely	affected	by	the	same	
hallmark	than	random	pairs	of	diseases.	Thus,	we	speculated	that	
this	 association	 could	 be	 used	 to	 identify	 hallmark-	ARD	 associa-
tions	that	were	so	far	unknown,	that	is,	based	on	the	fact	that	many	
neighboring	ARDs	 in	 the	network	are	associated	with	a	 common	
hallmark	 (“guilt	 by	 association”)	 (Cowen	 et	 al.,	 2017).	 Therefore,	
we	 focused	 on	 ARDs	 with	 incompletely	 understood	 pathogen-
esis	or	pathophysiology,	that	were	not	originally	ranked	in	the	top	
30	ARDs	associated	with	a	hallmark,	but	where	the	hallmark	may	
nonetheless contribute to etiology.

For	each	aging	hallmark,	we	superimposed	the	aging	hallmark-	
ARD	co-	occurrence	scores	(or	updated	Ochiai	coefficients)	from	
text	mining	onto	 the	 respective	ARD	nodes	 in	each	of	 the	 four	

F I G U R E  4 Significantly	enriched	signaling	pathways	across	all	aging	hallmark	protein	lists.	(a)	p-	values	of	enriched	signaling	pathways	
across	all	aging	hallmarks.	We	identified	the	genes	linked	to	each	of	the	top	30	ARDs	associated	with	an	aging	hallmark	from	text	mining	
and	took	the	union	of	genes.	These	were	mapped	to	encoded	proteins	forming	nine	protein	lists.	The	associated	aging	hallmark	from	text	
mining	represents	the	column	labels	of	the	heatmap.	We	carried	out	GSEA	and	searched	for	GO	terms	related	to	signaling	pathways.	Five	
signaling	pathways	were	significantly	enriched	across	all	aging	hallmark	protein	lists.	(b-	f)	The	union	of	proteins/	genes	associated	with	each	
of	the	five	significantly	enriched	pathways	was	derived	and	they	were	linked	to	their	associated	ARDs.	These	are	shown	in	the	circos	plots	
representing:	(b)	IFN-	γ-	mediated	signaling	pathway,	(c)	T-	cell	receptor	signaling	pathway,	(d)	positive	regulation	of	T-	cell	receptor	signaling	
pathway,	(e)	positive	regulation	of	the	ERK1/2	cascade,	and	(f)	the	intrinsic	apoptotic	signaling	pathway	in	response	to	DNA	damage	by	
p53	class	mediator.	Abbreviations:	Table	S9

Aging hallmark

ARD network density

50– 59 years 60– 69 years 70– 79 years ≥80 years

Genomic instability 0.0805 0.0989 0.0897 0.0782

Telomere attrition 0.1126 0.1218 0.1103 0.1011

Epigenetic alterations 0.0851 0.0759 0.0782 0.0713

Loss	of	proteostasis 0.0897 0.0805 0.0828 0.0552

Deregulated nutrient sensing 0.2598**** 0.2644**** 0.2368**** 0.2207****

Mitochondrial dysfunction 0.1655* 0.1471* 0.1356* 0.1080*

Cellular	senescence 0.1379* 0.1494* 0.1195* 0.0989*

Stem	cell	exhaustion 0.2092*** 0.2000*** 0.1724*** 0.1609****

Altered	intercellular	comm. 0.2000*** 0.1839** 0.1540** 0.1333**

Note: The	number	of	times	the	network	density	from	permutations	(n =	20,000)	was	greater	than	
or	equal	to	the	true	network	density	for	that	aging	hallmark	was	used	to	calculate	the	p-	value.	The	
p-	value	was	corrected	for	multiple	testing	across	the	4	age	categories	per	aging	hallmark	using	the	
Benjamini–	Hochberg	procedure	(*p <	0.05,	**	p <	0.01,	***p <	0.001,	****p <	0.0001).

TA B L E  2 Network	density	of	
subnetworks	of	the	top	30	ranking	ARD	
nodes	compared	to	random	expectation	
for	age	categories	50–	59	years,	60–	
69	years,	70–	79	years,	and	≥80	years
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multimorbidity	 networks	 (Figure	 2d).	 The	 scores	 were	 then	
smoothed	over	the	network,	which	amplifies	regions	where	ARDs	
have	higher	co-	occurrence	scores	with	a	given	aging	hallmark	and	
dampens	regions	with	lower	scores	(Cowen	et	al.,	2017)	and	thus	
assigns	relatively	high	scores	to	ARDs	that	are	surrounded	in	the	
network	by	ARDs	associated	with	a	common	hallmark.	Since	this	
process	 changes	 the	 ARD-	hallmark	 associations	 of	 all	 diseases	
in	 the	network,	 it	 also	changes	 the	 ranking	of	ARDs	associated	
with	each	aging	hallmark	(Figure	2d).	We	identified	those	subnet-
works	with	a	significantly	greater	network	density	than	random	
expectation	 and	 identified	 newly	 prioritized	ARDs	within	 them	
(Table	S7).

Two	ARDs	with	incompletely	understood	mechanism	of	patho-
genesis	or	pathophysiology	were	newly	 ranked	among	 the	 top	30	
ARDs,	 namely	 essential	 tremor	 and	 Bell's	 Palsy	 (Table	 S7,	 Figure	
S2a,b)	 (Louis,	2014;	Zhang	et	al.,	2020).	Essential	 tremor	 is	a	neu-
rological	disorder	characterized	by	an	involuntary,	rhythmic	tremor	
and	was	 newly	 prioritized	 as	 a	 top	30	ARD	associated	with	mito-
chondrial	 dysfunction	 (Figure	 S2a).	 It	 has	 previously	 been	 associ-
ated with mitochondrial abnormalities; however, the degree of their 
role	 is	 unclear	 (Unal	Gulsuner	 et	 al.,	 2014).	 This	 disorder	 also	 has	
genetic	evidence	of	association	with	five	genes	(i.e.,	STK32B,	NAT2,	
LINGO1,	 CTNNA3,	 and	 LRRTM3)	 at	 genome-	wide	 significance.	
However,	we	cannot	exclude	that	the	association	is	a	consequence	
of	 initial	 misdiagnosis,	 such	 as	 of	 Parkinson's	 disease	 as	 essential	
tremor	(Thenganatt	&	Louis,	2012).	Bell's	palsy	was	newly	prioritized	
as	a	top	30	ARD	associated	with	deregulated	nutrient	sensing,	which	
has previously been reported to be associated with prognosis of the 
Bell's	palsy	(Karagoz	et	al.,	2020).	However,	the	association	may	also	
be	 a	 consequence	of	 initial	misdiagnosis	 of	 diabetic	mononeurop-
athy	as	Bell's	palsy	 (Figure	S2b)	 (Pecket	&	Schattner,	1982).	There	
were	no	reported	genetic	associations	with	Bell's	palsy	in	the	GWAS	
catalog	at	genome-	wide	significance.	Overall,	our	findings	 indicate	
that	 aging	 hallmarks	may	 contribute	 to	 a	 better	 understanding	 of	
disease etiology.

3  |  DISCUSSION

The	 contribution	 of	 aging	 hallmarks	 to	 co-	occurrence	 of	 ARDs	 in	
humans	is	largely	unexplored.	We	have	addressed	the	issue	by	com-
bining	 aging	 hallmark-	ARD	 associations	 derived	 from	 text	mining,	
independently	 verified	 using	 genetic	 data,	 with	 disease	 networks	
derived from electronic health records.

First,	we	explored	patterns	of	association	between	specific	aging	
hallmarks	 and	 ARDs.	We	 text	mined	 917,645	 literature	 abstracts,	
followed	by	manual	curation,	and	found	strong,	non-	random	associ-
ations	between	ARDs	and	aging	hallmarks.

By	integrating	our	findings	with	networks	of	ARD	co-	occurrence	
in	 patients,	we	 found	 that	 five	 aging	 hallmarks	were	 indeed	 non-	
randomly	 associated	 with	 specific	 ARD	 co-	occurrence	 networks.	
Deregulated nutrient sensing, mitochondrial dysfunction, cellular 
senescence,	stem	cell	exhaustion,	and	altered	intercellular	communi-
cation	were	associated	with	the	co-	occurrence	of	ARDs	in	individual	
patients	more	 than	expected	by	chance.	Reassuringly,	 these	aging	
hallmarks	were	associated	with	ARD	multimorbidity	across	all	four	
decadal age ranges, and the associations were often highly signifi-
cant.	Overall,	these	findings	indicate	that	therapies	targeted	at	each	
of	these	five	aging	hallmarks	may	prove	to	be	beneficial	in	the	pre-
vention	of	their	associated	ARD	multimorbidities	in	humans.	For	in-
stance,	sirolimus	and	related	compounds	inhibit	the	TORC1	complex	
in	the	nutrient-	sensing	network	(Castillo-	Quan	et	al.,	2019)	and	can	
both	extend	healthy	lifespan	in	model	organisms	(Correia-	Melo	et	al.,	
2019)	and	boost	the	response	to	vaccination	against	influenza	in	el-
derly	people	(Mannick	et	al.,).	Senolytics	and	senescence-	associated	
secretory	 phenotype	 (SASP)	 modulators	 eliminate	 senescent	 cells	
and	inhibit	the	SASP,	respectively,	and	thus	target	the	cellular	senes-
cence	hallmark	(Gonzalez-	Meljem	et	al.,	2018),	and	can	both	improve	
tissue	health	during	 aging	 and	 increase	 lifespan	 in	mice	 (Xu	et	 al.,	
2018)	and	may	prevent	cellular	 senescence-	associated	ARD	multi-
morbidities	(Khosla	et	al.,	2020).	It	will	be	important	in	any	clinical	
trials that target these aging mechanisms pharmacologically to con-
sider	potential	effects	on	the	multiple	associated	ARDs.

In	model	organisms,	targeting	common	signaling	pathways	de-
lays	 the	 onset	 of	 ARDs	 and	 extends	 lifespan	 (Lopez-	Otin	 et	 al.,	
2013;	Matheu	et	al.,	2007;	Moskalev	&	Shaposhnikov,	2011;	Slack	
et	al.,	2015).	Specific	signaling	pathways	are	intertwined	with	the	
aging	hallmarks,	 for	example,	 the	 IIS	pathway	 is	associated	with	
the	deregulated	nutrient	sensing	aging	hallmark	(Lopez-	Otin	et	al.,	
2013).	Aging	hallmarks	are	not	 independent	of	each	other	with,	
for	instance,	DNA	damage	and	telomere	shortening	contributing	
to	cellular	senescence	(Fyhrquist	et	al.,	2013)	and	loss	of	stem	cell	
function	(Behrens	et	al.,	2014).	Thus,	different	aging	hallmarks	may	
share some common underlying pathways, which will hence con-
tribute	to	the	development	of	multiple,	aging-	hallmark-	associated	
ARDs.	 Five	 signaling	 pathways/	 cascades	were	 significantly	 en-
riched	across	the	protein	lists	for	all	nine	aging	hallmarks.	These	
pathways	are	therefore	likely	to	play	a	key	role	in	the	etiology	of	
ARDs.	Among	these	five	signaling	pathways,	three	were	involved	
in the innate and/ or adaptive immune response. The underlying 
genes	were	derived	 from	ARDs	 comprising	metabolic	 syndrome	
disorders, autoimmune disorders, and cancers, thus highlighting 
the	 importance	 of	 the	 immune	 response	 across	 multiple	 ARDs	
(Johnson	et	al.,	2015).	The	“intrinsic	apoptotic	signaling	pathway	
in	 response	 to	DNA	 damage	 by	 a	 p53	 class	mediator”	was	 also	
significantly	enriched	across	all	 aging	hallmark	protein	 lists.	The	

F I G U R E  5 Subnetworks	containing	nodes	representing	the	top	30	ranked	ARDs	for	each	aging	hallmark	(50–	59	year	age	category).	The	
(a)	deregulated	nutrient	sensing,	(b)	mitochondrial	dysfunction,	(c)	cellular	senescence,	(d)	stem	cell	exhaustion,	and	(e)	altered	intercellular	
communication	subnetworks.	Nodes	are	colored	by	ARD	ranking	for	a	given	aging	hallmark:	the	1st	to	10th	ranked	in	red,	the	11th	to	20th	
ranked	in	orange,	and	the	21st	to	30th	ranked	in	yellow.	Abbreviations:	Table	S9
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underlying genes were derived from multiple cancers and met-
abolic	 syndrome	disorders	 (Hanahan	&	Weinberg,	2011;	Mercer	
et	al.,	2010).	The	ERK1/2	pathway	regulates	many	processes	 in-
cluding	 cell	 survival,	metabolism,	 and	 inflammation	 (Sun	&	Nan,	
2017)	 and	 was	 significantly	 enriched	 across	 all	 aging	 hallmark	
protein lists. The underlying genes were derived from 22 aging 
hallmark-	associated	 ARDs	 (Figure	 4e),	 and	 indeed,	 activation	 of	
the	ERK1/2	pathway	has	been	suggested	 to	play	a	 role	 in	 these	
ARDs	 either	 directly	 or	 through	 their	 risk	 factors.	 For	 example,	
increased	activity	of	the	ERK1/2	pathway	has	been	 identified	 in	
type	2	diabetes	mellitus	 (Tanti	&	 Jager,	2009)	 and	hypertension	
(Roberts,	 2012),	which	 are	major	 risk	 factors	 for	 cardiovascular	
disorders.	Additionally,	activating	mutations	upstream	of	ERK1/2	
contribute	 to	 over	 fifty	 percent	 of	 human	 cancers	 (Montagut	&	
Settleman,	 2009).	 Increased	 phosphorylation	 of	 cellular	 ERKs	
has also been identified in the thyroid disorder, hypothyroidism 
(Suarez	et	al.,	2010),	and	in	atrial	fibrillation	(Goette	et	al.,	2000).	
Furthermore,	ERK1/2	 inhibition	reduces	beta-	amyloid	neurotox-
icity	in	Alzheimer's	disease	(Sun	&	Nan,	2017),	decreases	inflam-
mation	and	apoptosis	 in	 stroke	patients	 (Sun	&	Nan,	2017),	 and	
prevents	 rheumatoid	 arthritis	 in	 mouse	 models	 (Ohori,	 2008).	
Interestingly,	the	ERK1/2	cascade	is	 linked	to	aging	in	model	or-
ganisms	 and	 the	MEK	 inhibitor,	 Trametinib,	 prolongs	 lifespan	 in	
Drosophila	 (Slack	 et	 al.,	 2015).	 Thus,	 our	 analysis	 suggests	 that	
inhibition	of	the	ERK1/2	pathway	could	prevent	up	to	22	human	
aging	hallmark-	associated	ARDs.

Using	 network	 propagation,	 we	 identified	 ARDs	 with	 incom-
pletely	 understood	 pathogenesis	where	 aging	 hallmarks	may	 con-
tribute to their development. Essential tremor has previously been 
associated with mitochondrial abnormalities, but the degree of 
their	 role	 is	 unclear	 (Louis,	 2014;	Unal	Gulsuner	 et	 al.,	 2014).	We	
found	that	essential	 tremor	co-	occurred	with	many	ARDs	strongly	
linked	 to	 mitochondrial	 dysfunction	 implying	 this	 is	 in	 fact	 a	 key	
pathogenic	mechanism	in	essential	tremor.	However,	we	cannot	ex-
clude	the	association	as	a	consequence	of	initial	misdiagnosis,	such	
as	of	Parkinson's	disease	as	essential	 tremor	 (Thenganatt	&	Louis,	
2012).	Our	findings	were	also	supported	by	genetic	data,	as	essen-
tial	 tremor	 is	 also	 associated	with	 the	 variant	N-	acetyltransferase	
2	(NAT2)	gene.	NAT2	is	associated	with	insulin	resistance	(Knowles	
et	al.,	2015),	and	deficiency	of	the	mouse	orthologue	(i.e.,	NAT1)	has	
also	been	associated	with	mitochondrial	dysfunction	(Chennamsetty	
et	al.,	2016).	Therefore,	aging	hallmarks	may	contribute	to	the	de-
velopment	of	ARDs	with	 incompletely	understood	mechanisms	of	
development.

A	potential	limitation	is	that,	because	certain	ARDs	occupy	more	
of	 the	scientific	 research	effort,	 there	 is	a	 risk	 that	 they	would	be	
more	frequently	included	in	the	top	30	ARDs	associated	with	aging	
hallmark	 and,	 therefore,	 included	 in	 multimorbidity	 subnetworks.	
To	 reduce	 the	 risk	 of	 this,	 we	 adjusted	 for	 uneven	 study	 density	
on	each	ARD	by	using	a	co-	occurrence	score	based	on	 the	Ochiai	
co-	efficient.	A	further	potential	limitation	of	the	literature	search	is	
that	it	may	have	missed	some	associations	between	aging	hallmarks	

and	ARDs	because	 they	have	been	 little	studied.	However,	 similar	
associations	emerged	from	GSEA	using	GO	annotations	of	proteins	
encoded	by	genes	linked	to	the	top	30	ARDs.	We	were	thus	able	to	
detect	signals	that	allow	us	to	conclude	that:	(1)	individual	hallmarks	
contribute	 to	 multiple	 diseases,	 (2)	 highlight	 which	 hallmarks	 and	
pathways	contribute	to	which	diseases	and	(3)	direct	future	research	
toward	interventions	on	the	hallmarks	(and	associated	pathways)	to	
tackle	 the	prevention/management	of	 these	multiple	 diseases.	An	
additional	potential	 limitation	is	that	ARD	multimorbidities	may	be	
connected in electronic health records due to incorrect initial di-
agnosis,	which	may	 complicate	 the	 evaluation	of	 incompletely	 ex-
plained	ARDs.	These	limitations	will	be	overcome	as	our	knowledge	
of	the	aging	hallmarks,	ARD	multimorbidities,	and	genes	underlying	
ARDs	improves.

Our	study	provides	evidence	 for	 the	 role	of	aging	hallmarks	 in	
the	etiology	of	human	ARD	multimorbidities	and	ARDs	with	incom-
pletely	understood	pathogenesis.	We	also	raise	the	possibility	that	
multiple	 ARDs	 may	 be	 prevented	 by	 targeting	 common	 signaling	
pathways, such as the innate and adaptive immune pathways, the in-
trinsic	apoptotic	signaling	pathway,	and	the	ERK1/2	pathway.	Future	
work	will	determine	whether	a	prophylactic	agent	or	cure	for	human	
ARD	multimorbidities	 can	 be	 developed	 by	 targeting	 each	 of	 five	
aging	hallmarks.

4  |  METHODS

The	methods	are	summarized	in	Figure	2.

4.1  |  Information retrieval of the “human aging 
corpus”

A	set	of	primary	research	articles	(or	corpus)	on	human	aging	was	
required	for	text	mining.	Our	corpus	was	developed	by	defining	
inclusion	and	exclusion	criteria	 followed	by	 retrieving	1.93	mil-
lion	PubMed	identifiers	(PMIDs)	of	abstracts	meeting	those	cri-
teria	 from	PubMed	 (Table	S8a,b).	The	1.93	PMIDs	 representing	
title/ abstracts on human aging meeting our search criteria were 
retrieved	from	the	PubMed	database	using	the	Biopython	Entrez	
application	programming	interface	(Cock	et	al.,	2009)	on	April	10,	
2020.	Next,	the	2019	PubMed	baseline	contains	over	29	million	
abstracts	and	was	downloaded	in	Extensible	Mark-	up	Language	
(XML)	 format.	Data	were	 extracted	 from	 the	XML	 files	 to	 pro-
duce	 separate,	 comma-	separated	 values	 (CSV)	 files	 containing	
29,138,919	 million	 rows	 and	 six	 columns	 including	 titles,	 ab-
stracts,	and	PMIDs.	The	rows	containing	the	1.93	million	PMIDs	
of	 the	 human	 aging	 corpus	 were	 identified.	 PMIDs	 associated	
with	missing	 data	were	 eliminated,	 and,	 subsequently,	 the	 text	
data were cleaned. This gave 1.85 million abstracts representing 
the	“human	aging	corpus,”	which	were	tokenized	into	20.48	mil-
lion sentences.
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4.2  |  Information extraction by dictionary- based 
methods with co- occurrence scoring

4.2.1  |  Aging	hallmark	dictionary

An	 aging	 hallmark	 taxonomy	 was	 developed	 to	 maximize	 re-
trieval	of	relevant	literature	on	each	aging	hallmark	from	PubMed	
(Figure	 1).	We	modeled	 our	methodology	 on	 the	 approach	 used	
previously	 to	develop	a	cancer	hallmarks	 taxonomy	 (Baker	et	al.,	
2017;	 Hanahan	 &	 Weinberg,	 2011).	 The	 starting	 point	 for	 the	
taxonomy	was	the	original	 “The	Hallmarks	of	Aging”	 (Lopez-	Otin	
et	al.,	2013)	paper	from	which	we	selected	relevant	subcategories	
of	the	nine	original	aging	hallmarks;	however,	occasionally,	we	in-
ferred	a	particular	taxonomy	term	that	was	not	specifically	stated	
in	original	paper	 (Figure	1,	Table	S1).	Additional	 taxonomy	 levels	
represented increasingly specific biological processes within a 
subclass	 (Table	S1).	Synonyms	 for	each	aging	hallmark	 taxonomy	
term	were	 retrieved	 from	 the	Unified	Medical	 Language	 System	
(UMLS)	Metathesaurus	(Bodenreider,	2004)	from	the	U.S.	National	
Library	of	Medicine	(NLM)	and	relevant	review	articles.	The	aging	
hallmark	 taxonomy	 term	 synonyms	 were	 combined	 to	 form	 an	
aging	 hallmark	 dictionary	 and	 then	 linked	 to	 the	 corresponding	
original	aging	hallmarks.

4.2.2  |  Age-	related	disease	dictionary

The	ARD	definition	was	developed	previously	by	applying	a	hier-
archical	agglomerative	clustering	algorithm	to	clinical	data	on	278	
diseases	(Kuan	et	al.,	2021).	Four	of	nine	“main”	clusters	contained	
207	diseases,	and	these	diseases	also	had	an	adjusted	R2 of greater 
than	0.85	on	 the	Gompertz–	Makeham	model	 (Kuan	 et	 al.,	 2021).	
These	207	diseases	were	defined	as	ARDs	(Table	S2)	 (Kuan	et	al.,	
2021).	Four	ARDs	that	did	not	translate	effectively	to	scientific	text	
mining	 approaches	 were	 eliminated	 from	 further	 analysis	 (Table	
S2).	We	 next	 retrieved	 synonyms	 for	 each	 of	 the	 remaining	 203	
ARDs	 from	 the	MeSH	 thesaurus	 from	 the	 NLM	 (NCBI	 Resource	
Coordinators,	2017).	The	Comparative	Toxicogenomics	Database's	
“merged	disease	vocabulary”	 (Davis	et	al.,	2019)	was	downloaded	
on	March	21,	2019.	 It	contains	the	MeSH	diseases	hierarchy	pro-
cessed	in	a	CSV	file.	Supplementary	concepts	and	animal	diseases	
were	excluded.	This	 left	4789	human	diseases	mapped	to	28,638	
entry	terms,	or	synonyms,	after	processing.	MeSH	terms	were	as-
signed	to	 the	188	of	203	ARDs	from	the	4789	diseases.	The	188	
ARDs	were	mapped	to	a	hierarchical	tree	of	1427	rows	containing	
MeSH	term	subclasses	of	assigned	MeSH	terms,	of	which,	545	rele-
vant	subclasses	were	kept.	The	synonyms	to	each	subclass	were	ed-
ited	manually	and	then	merged	for	each	ARD.	For	the	remaining	15	
ARDs,	synonyms	were	derived	from	the	Unified	Medical	Language	
System	(UMLS)	Metathesaurus	(Bodenreider,	2004).	The	synonyms	
were	merged	to	form	an	ARD	dictionary	and	then	linked	to	the	cor-
responding	203	ARDs.

4.2.3  |  Calculating	the	Ochiai	coefficient

The	 aging	 hallmark	 dictionary	 and	 human	 ARD	 dictionary	 were	
matched	 against	 the	 20.48	 million	 sentences	 from	 PubMed	 titles	
and	abstracts.	About	19	ARDs	with	<250 associated sentences were 
eliminated	(Table	S2).	The	co-	occurrence	of	the	nine	aging	hallmarks	
with	the	remaining	184	ARDs	was	scored	at	the	sentence	level	using	
the	Ochiai	coefficient	(Ochiai,	1957)	(Equation	1).	The	Ochiai	coef-
ficient	(OC(H,D))	adjusts	for	the	fact	that	certain	ARDs	are	frequently	
studied	 in	 the	 biomedical	 literature	 while	 others	 are	 infrequently	
studied.	For	a	given	aging	hallmark	and	ARD,	nHD	is	the	total	num-
ber	of	sentences	that	co-	mention	the	aging	hallmark	and	ARD.	nD	
and	nH	are	the	total	number	of	sentences	that	mention	the	ARD	and	
aging	hallmark,	respectively	(Equation	1)	(Lage	et	al.,	2008).

4.2.4  |  Verifying	extracted	associations	by	
manual curation

Age-	related	diseases	and	aging	hallmarks	with	higher	Ochiai	 coef-
ficients	are	 likely	 to	be	 related	 in	 some	way,	but	 the	 type	of	 rela-
tionship	is	not	known	(Jensen	et	al.,	2006).	Therefore,	we	manually	
assessed	 the	 sentences	 co-	mentioning	 aging	 hallmarks	 and	 ARDs	
to determine whether they correctly reported an association be-
tween	 the	 aging	 hallmark	 and	ARD	 (Table	 S5)	 (Yang	 et	 al.,	 2016).	
Our	 approach	 to	 manual	 curation	 was	 to	 define	 co-	mentioning	
sentences	 as	 either	 (1)	 “confirmed	 association”	 where	 an	 aging	
hallmark	 is	 reported	 (or	 inferred)	 to	have	a	 role	 in	 the	ARD	devel-
opment	 or	 persistence,	 (2)	 “no	 association,”	 (3)	 “irrelevant,”	 or	 (4)	
“error”	 (Gutierrez-	Sacristan	et	 al.,	 2015)	 (Table	S3).	 For	 aging	hall-
marks	with	<2500	co-	mentioning	sentences,	we	manually	examined	
all	 sentences	 co-	mentioning	 a	 given	 aging	hallmark-	ARD	pair	 until	
we	found	one	sentence	that	satisfied	the	criteria	of	“confirmed	as-
sociation”	(Table	S3	and	S5).	For	the	remaining	aging	hallmarks,	three	
sentences	that	satisfied	the	criteria	of	“confirmed	association”	were	
required	 (Table	 S3	&	 S5).	 If	 an	 aging	 hallmark-	ARD	pair	 could	 not	
be	confirmed	by	a	sufficient	number	of	sentences,	 its	Ochiai	coef-
ficient	was	set	to	zero	to	increase	the	reliability	of	our	findings.	The	
30	highest	scoring	ARDs	were	selected	for	each	aging	hallmark.

4.3  |  Analysis of aging hallmark- associated 
multimorbidity subnetworks and network 
propagation

4.3.1  | Multimorbidity	networks

We	 used	 multimorbidity	 networks	 derived	 from	 previously	 ana-
lyzed	 clinical	 data	 on	 289	 diseases,	 including	 the	 184	 ARDs,	
in	 3.01	 million	 individuals	 (Kuan,	 2020;	 Kuan	 et	 al.,	 2021).	 The	

(1)OC(H,D) =

√
nHD2

nH ⋅ nD
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clinical	data	were	obtained	from	Clinical	Practice	Research	Datalink	
(CPRD),	which	was	linked	to	the	Hospital	Episode	Statistics	admit-
ted	patient	care	(HES	APC)	dataset	and	accessed	via	the	CALIBER	
research	platform	(Kuan,	2020;	Kuan	et	al.,	2021).	From	the	multi-
morbidity	network	data,	we	derived	an	undirected	ARD	network,	
where	the	nodes	represent	the	184	ARDs	which	were	connected	
by	edges.	Edges	linked	ARD	nodes	if	they	were	linked	by	a	positive,	
significant	 partial	 correlation	 (after	 Bonferroni	 correction).	 The	
partial	correlation	was	used	as	the	edge	weight	(Kuan,	2020;	Kuan	
et	 al.,	 2021).	 170	of	 the	184	ARDs	had	 a	median	 age	of	 first	 re-
corded	diagnosis	50	years	or	older	(Kuan,	2020;	Kuan	et	al.,	2021).	
Therefore,	 we	 used	 four	 multimorbidity	 networks	 for	 the	 184	
ARDs	representing	age	categories	from	50	years	(Table	S6)	(Kuan,	
2020;	Kuan	et	al.,	2021).

4.3.2  |  Network	analysis	of	top	30	ranked	aging	
hallmark-	associated	ARDs

We	selected	the	top	30	ranking	nodes	for	each	aging	hallmark	from	
each	 of	 the	 four	 multimorbidity	 networks	 and,	 therefore,	 plot-
ted	36	subgraphs.	The	network	density	 (D)	was	calculated	for	each	
subnetwork	using	the	algorithm	shown	in	Equation	2	where	E is the 
number	of	edges	in	a	subnetwork	and	V is the number of nodes in a 
subnetwork.

For	each	aging	hallmark	and	age	category,	we	shuffled	the	up-
dated	 Ochiai	 coefficient	 associated	 with	 the	 184	 ARDs	 20,000	
times.	At	each	shuffle,	we	selected	the	top	30	ARD	nodes	to	form	
a	subnetwork	and	calculated	their	network	density.	For	a	given	per-
mutation,	each	 time	 the	 random	network	density	 (Dk)	was	greater	
than	or	equal	to	the	actual	network	density	(D0)	we	added	a	score	of	
1, and otherwise 0. The p-	value	(p)	for	the	network	density	was	de-
rived	using	Equation	3	where	K is the total number of permutations 
(Qian	et	al.,	2014).

The p-	value	was	corrected	for	multiple	testing	across	the	4	age	
categories	per	aging	hallmark	using	the	Benjamini–	Hochberg	proce-
dure	(Benjamini	&	Hochberg,	1995).

4.3.3  |  Network	propagation	onto	
multimorbidity	networks

For	each	aging	hallmark	and	age	category,	the	updated	Ochiai	coef-
ficient	scores	(F0)	were	superimposed	onto	each	of	the	ARD	nodes	
of	the	multimorbidity	network.	Using	a	Random	Walk	with	Restart	

(RWR)	 algorithm,	 the	 scores	 were	 smoothed	 over	 the	 network	
(Equation	4)	from	the	R	package	BioNetSmooth	version	1.0.0	to	de-
rive	the	posterior	score	(Chokkalingam	et	al.,	2021).

In	the	RWR	algorithm,	Fi and Fi−1 are the posterior evidence of as-
sociation	of	an	aging	hallmark	with	an	ARD	at	smoothing	iteration,	i 
and i−1,	respectively,	and	we	iterated	until	convergence	(i =	30).	The	
degree	 row-	normalized	 adjacency	matrix	 of	 the	 weighted	 disease	
network	is	represented	by	W′.	The	entries	 in	the	adjacency	matrix	
(i.e.,	W� = [w�r,c])	are	defined	in	Equation	5,

where dr	is	the	degree	of	the	ARD	node	vr and the edge weight be-
tween	ARD	node	 vr	 and	ARD	node	 vc is wr,c.	 Alpha	 (α)	was	 set	 at	
0.5.	 The	 top	 30	ARDs	with	 the	 highest	 posterior	 score	 after	 net-
work	propagation	were	selected	to	form	a	subnetwork.	Significant	
subnetworks	were	 identified	 using	 the	 approach	 described	 previ-
ously	 (Equation	 3)	 with	 correction	 for	 multiple	 testing	 (Benjamini	
&	 Hochberg,	 1995).	 We	 identified	 ARDs	 newly	 prioritized	 in	 the	
top	 30	 ARDs	 associated	 with	 an	 aging	 hallmark	 in	 these	 subnet-
works,	which	also	had	an	incompletely	understood	pathogenesis	or	
pathophysiology.

4.4  |  Identification of functionally enriched 
biological processes using genetic data

4.4.1  |  Genes	underlying	ARDs

The	NHGRI-	EBI	 GWAS	Catalog	 (Buniello	 et	 al.,	 2019)	was	 down-
loaded	on	February	26,	2020.	103	of	 the	203	defined	ARDs	were	
represented	in	the	GWAS	catalog	(Buniello	et	al.,	2019).	These	103	
ARDs	were	mapped	to	181	“Mapped	Traits,”	which	are	terms	from	
the	Experimental	Factor	Ontology	that	are	assigned	to	each	GWAS	
and	represent,	for	example,	the	disease	investigated	(Buniello	et	al.,	
2019).	 Single	 nucleotide	 polymorphisms	 (SNPs)	 with	 a	 p-	value	 of	
<5 × 10−8	 associating	 them	 to	ARDs	were	kept.	GWAS	studies	 in	
European populations were included; however, certain groups were 
excluded	 (e.g.,	 Amish).	 SNPs	 located	were	 assigned	 to	 genes	 (i.e.,	
Ensembl	Gene	IDs)	if	they	were	located	within	a	gene	or	intergenic	
SNPs	 less	than	50	kilobase	pairs	 (kbp)	from	a	gene.	For	newly	pri-
oritized	 ARDs	 after	 network	 propagation,	 intergenic	 SNPs	 were	
assigned	to	genes	at	a	distance	of	75	kbp	to	maximize	retrieval	of	rel-
evant	genes.	The	Ensembl	gene	IDs	were	mapped	to	National	Centre	
for	 Biotechnology	 Information	 (NCBI)	 Gene	 IDs,	 where	 available,	
using	the	NCBI	Gene	database	of	Homo sapiens	(Brown	et	al.,	2015).	
Thus,	2364	NCBI	Gene	IDs	were	linked	to	84	ARDs	and	135	Mapped	
Traits subclasses.

(2)D =
2E

V (V − 1)

(3)p =

∑K

k=1
I(Dk ≥ DO)

K

(4)Fi = �W�Fi−1 + (1 − �) F0

(5)w�r,c =

⎧
⎪⎨⎪⎩

wr,c

dr
, if vr is adjacent to vc

0, otherwise

,
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4.4.2  |  Functional	enrichment	of	biological	
processes	for	top	30	ARDs	mapped	to	aging	hallmarks

We	 identified	 the	union	of	 genes	 linked	 to	 the	 top	30	ARDs	per	
aging	hallmark	(based	on	text	mining)	(Figure	2b).	The	NCBI	Gene	
IDs	 for	 protein-	coding	 genes	 were	 mapped	 to	 “stringId”s	 using	
the	STRING	database	forming	nine	protein	lists	(Szklarczyk	et	al.,	
2019).	 Of	 all	 86	 ARDs	 included	 in	 top	 30	 ranked	 node	 subnet-
works,	55	were	associated	with	1698	NCBI	Gene	IDs	and	mapped	
to	1693	stringId.	The	background	set	was	also	downloaded	 from	
the	STRING	database	on	January	27,	2019	(Szklarczyk	et	al.,	2019),	
which	contained	16,598	stringIds	mapped	to	the	biological	process	
GO	terms.	1560	of	1693	stringIds	were	also	in	the	background	set	
(Johnson	 et	 al.,	 2015).	We	 used	 topGO	 (Alexa	 et	 al.,	 2006)	with	
Fisher's	 exact	 test	 to	 identify	 biologically	 enriched	 processes	
against	the	background	set	and	applied	the	“weight01”	algorithm	
to	 reduce	 redundancy	of	GO	 terms.	The	 final	p-	value	cutoff	was	
0.05,	and	the	minimum	node	size	was	5.	Using	our	previously	cre-
ated	aging	hallmark	dictionary,	we	searched	for	GO	terms	related	
to	 the	 aging	 hallmarks.	 Shortened	 synonyms	 and	 abbreviations	
were	appended	to	the	dictionary	for	specific	aging	hallmarks.	We	
also	 searched	 for	 GO	 terms	 related	 to	 “pathway”	 and	 “cascade,”	
and	we	 kept	 only	 the	 pathways	 that	 were	 significantly	 enriched	
across	all	aging	hallmark	protein	lists.

4.5  |  Computational analyses and images

Computational	 analyses	 were	 carried	 out	 in	 Python	 3.7.0	 and	 R	
Version	3.3.0	and	3.6.0.	Aging	hallmark	and	ARD	images	were	down-
loaded	from	Adobe	Stock	and	Shutterstock	after	obtaining	a	stand-
ard license.
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