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Abstract

MicroRNAs (miRNAs) have been confirmed to be closely related to various human complex diseases by many experimental studies. It is neces-
sary and valuable to develop powerful and effective computational models to predict potential associations between miRNAs and diseases. In
this work, we presented a prediction model of Graphlet Interaction for MiRNA-Disease Association prediction (GIMDA) by integrating the dis-
ease semantic similarity, miRNA functional similarity, Gaussian interaction profile kernel similarity and the experimentally confirmed miRNA-dis-
ease associations. The related score of a miRNA to a disease was calculated by measuring the graphlet interactions between two miRNAs or
two diseases. The novelty of GIMDA lies in that we used graphlet interaction to analyse the complex relationships between two nodes in a graph.
The AUCs of GIMDA in global and local leave-one-out cross-validation (LOOCV) turned out to be 0.9006 and 0.8455, respectively. The average
result of five-fold cross-validation reached to 0.8927 � 0.0012. In case study for colon neoplasms, kidney neoplasms and prostate neoplasms
based on the database of HMDD V2.0, 45, 45, 41 of the top 50 potential miRNAs predicted by GIMDA were validated by dbDEMC and miR2Di-
sease. Additionally, in the case study of new diseases without any known associated miRNAs and the case study of predicting potential miRNA-
disease associations using HMDD V1.0, there were also high percentages of top 50 miRNAs verified by the experimental literatures.
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Introduction

MicroRNAs (miRNAs) are a category of single-stranded non-coding
RNAs which contain about 20~25 nucleotides in length. They play an
important role in the regulation of gene expression at the post-tran-
scriptional and translational level by binding to the 30untranslated
regions (UTRs) of the target mRNAs [1–4]. MiRNAs have been
detected in various organisms ranging from viruses and microbes to
eukaryotic organisms and their number have reached to 28645 (2588
for human) in the latest release of miRBase [5–7]. Many studies have
implied that miRNAs participate in manifold biological processes,
such as cell proliferation [8], development [9], apoptosis [10], differ-
entiation [11], signal transduction [12] and so on. Therefore, more
and more evidences have confirmed that miRNAs are closely related
to many kinds of human diseases [13–16]. For example, Heegaard
et al. [17] developed a method to use quantitative real-time PCR
(qRT-PCR) to measure the circulating levels of 30 miRNAs and found
that the expressions of miR-146b, miR-221, let-7a, miR-155,

miR-17-5p, miR-27a and miR-106a were significantly reduced in the
serum of non-small cell lung cancer (NSCLC) cases although miR-
29c was much increased. Meanwhile, they also obtained evidence that
expression of let-7b was associated with prognosis in NSCLC.
Besides, authors of Ref. [18] and [19] reported a connection between
miR-137, miR-181c, miR-9, miR-29a/b and Alzheimer’s disease (AD)
and concluded that these miRNAs could be treated as diagnostic
markers for AD. In addition, miR-17~92 cluster was found to be up-
regulated in polycystic kidney disease (PKD) and could be identified
as a therapeutic target in PKD [20]. Most recently, using qRT-PCR
analyses, studies have shown that peripheral blood miRNA-720 and
miRNA-1246 might be considered as a promoting factor in the devel-
opment of multiple myeloma (MM) and hence could be used as diag-
nostic factor, therapeutic effect evaluator and prognostic indicator in
the prognosis of MM [21]. Although experiments have achieved many
significant results, they are expensive and time-consuming.
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Therefore, it is urgent to develop computational models to guide the
biological experiments by inferring latent miRNA-disease associations
based on the large numbers of miRNA-associated data sets [22–38].

In fact, there have been plenty of computational models developed
in the past few years to predict potential miRNA-disease associations
[39–41]. Based on the notion that functionally related miRNAs tend to
be associated with phenotypically similar diseases, Jiang et al. [42] pro-
posed a hypergeometric distribution-based computational model. How-
ever, this model only uses the information of the direct network
neighbours of miRNAs, ignoring those indirectly linked miRNAs.
Besides, this model uses miRNA-target interactions which have a high
rate of false-positive and false-negative samples. Moreover, Xu et al.
[43] constructed a miRNA target-dysregulated network and introduced
a miRNA prioritization method that did not depend on the known
miRNA-disease associations but the similarity between the miRNA tar-
gets and disease genes. In addition, Shi et al. [44] presented a compu-
tational framework to identify miRNA-disease associations using
random walk on protein–protein interaction (PPI) network. Through
integrating miRNA-target interaction, disease–gene associations and
PPIs, they found out the co-regulated modules of miRNA and disease
and thus the connection between them. Mørk et al. [45] further
proposed a miRPD model that combined known and predicted
miRNA–protein associations with protein–disease associations to infer
miRNA–Protein-Disease associations. The aforementioned models
relied much on miRNA-target interactions, which usually had high false-
positive and false-negative ratios; hence, they did not perform very well.

Furthermore, Xuan et al. [46] developed a method of Human Dis-
ease-MiRNA associations Prediction (HDMP), by considering the
weighted k most similar neighbours of miRNAs, where the members
in the same miRNA family or cluster were assigned higher weight.
However, this model cannot be applied to new diseases without any
known related miRNAs as it needs neighbours of miRNAs and its pre-
diction accuracy is limited because of dependence on the algorithm
adopting local similarity measure. Also, Xuan et al. [47] devised
another computational model based on random walk on miRNA func-
tional similarity network. They exploited the miRNA similarity, the dis-
ease similarity, the known miRNA-disease associations, the topology
information of the bilayer network, as well as the information from
different layers of network to predict disease miRNA candidates. In
particular, this method is adoptable to predict potential miRNAs for
diseases without known related miRNAs. Chen et al. [48], for the first
time, presented a global network similarity measure-based model of
Random Walk with Restart for MiRNA-Disease Association
(RWRMDA). This model searches for potential miRNA-disease asso-
ciations through applying random walk to the miRNA–miRNA func-
tional similarity network. However, it fails to predict related miRNAs
of new diseases that have no known association. To overcome this
limitation, Chen et al. [25] developed another model of Regularized
Least Squares for MiRNA-Disease Association prediction (RLSMDA).
It is a semi-supervised and global method based on regularized least
squares, which does not need negative samples. Moreover, a model
of restricted Boltzmann machine for multiple types of miRNA-disease
association prediction was proposed by Chen et al. [22]. This is the
first model that can infer the association types between miRNAs and
diseases, which includes evidences of miRNA-target interactions,

circulation, epigenetics and genetics. However, it has many complex
parameters to train. Another model named Within and Between Score
for MiRNA-Disease Association prediction (WBSMDA) was presented
by Chen et al. [24], in which Gaussian interaction profile kernel simi-
larity of miRNAs and diseases were calculated and integrated with
miRNA functional similarity or disease semantic similarity. It is men-
tionable that WBSMDA is valid not only for new diseases with no
known related miRNAs but also for new miRNAs without known
related diseases. Moreover, a method of Heterogeneous Graph Infer-
ence for MiRNA-Disease Association prediction (HGIMDA) was devel-
oped through combining miRNA functional similarity, disease
semantic similarity, Gaussian interaction profile kernel similarity and
known miRNA-disease associations to construct a heterogeneous
graph [49]. It computed the potential association probabilities
between miRNAs and diseases by summarizing all paths with the
length equal to three within the heterogeneous graph. Recently, Li
et al. [50] used matrix completion algorithm and single value thresh-
olding (SVT) to establish a computational model of Matrix Completion
for MiRNA-Disease Association prediction (MCMDA) based on the
known miRNA-disease associations. This model can update the low-
rank miRNA-disease interaction matrix quickly, and it does not need
the negative samples. Besides, Chen et al. [51] developed another
model of Ranking-based KNN for MiRNA-Disease Association Predic-
tion (RKNNMDA), which uses KNN algorithm to search for the k-near-
est neighbours of miRNAs and diseases according to the similarity
scores. Using the SVM Ranking model, they ranked the k-nearest
neighbours and obtained the most possible miRNA-disease associa-
tions. This method can also be applied to new diseases without any
known related miRNAs.

As mentioned above, it is very time-consuming and expensive to
search for new disease-related miRNAs through biological experi-
ments, and existing computational models cannot absolutely satisfy
the demand for prediction. Therefore, in this study, we developed a
model of Graphlet Interaction for MiRNA-Disease Association predic-
tion (GIMDA), where all miRNAs and diseases are represented as
nodes of the graph, respectively. We considered 28 types of isomers
for each graphlet interaction between two nodes. By counting the
numbers of graphlet interaction isomers, the related score of a
miRNA to a disease can be computed in miRNA graph and in disease
graph, respectively. We implemented leave-one-out cross-validation
(LOOCV) and fivefold cross-validation to estimate the performance of
GIMDA. The AUCs of global and local LOOCV are 0.9006 and 0.8455,
respectively. And the average AUC of fivefold cross-validation reaches
to 0.8927 � 0.0012. In addition, twofold, threefold and fourfold
cross-validations were implemented and obtained good results which
have indicated the robustness of the model. In case study for colon
neoplasms, kidney neoplasms and prostate neoplasms, the top 50
miRNAs predicted by GIMDA using HMDD V2.0 [52] as known asso-
ciations were validated based on dbDEMC [53] and miR2Disease
[54]. The confirmed result numbers of these three diseases are 45,
45, 41, respectively. In the case study for new diseases without any
known associated miRNAs, 50 of top 50 miRNAs that were predicted
to be related to hepatocellular carcinoma are validated by HMDD
V2.0, dbDEMC or miR2Disease. Furthermore, using HMDD V1.0, the
case study of oesophageal neoplasms also shows a high validation
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percentage. All above experimental results suggest that GIMDA is a
reliable model and can be used to predict potential associations
between miRNAs and diseases.

Materials and methods

Human miRNA-disease associations

In this manuscript, the known miRNA-disease associations were down-
loaded from HMDD V2.0 [52]. The total number of associations is

5430, referring to 495 miRNAs and 383 diseases. Based on the known

data, an adjacency matrix A was constructed to represent the relations
between all miRNAs and all diseases. The element A(i, j) was set to be

1 if there was an association between disease d(i) and miRNA m(j), 0

otherwise. The variables m and n denote the total numbers of miRNAs

and diseases in the association data set, respectively.

MiRNA functional similarity

The miRNA functional similarity was calculated using the method pro-
posed by Wang et al. [39] and could be obtained by downloading from

the website: http://www.cuilab.cn/files/images/cuilab/misim.zip. The simi-

larity data set was transformed into a square matrix FS in which the ele-

ment FS(i, j) denoted the similarity value between miRNA m(i) and m(j).

Disease semantic similarity model 1

According to several computing models [24, 33, 35, 36], we used a

Directed Acyclic Graph (DAG) to describe a disease. Here, a disease D

can be represented by DAG(D) = (D, T(D), E(D)), where T(D) is the
node set consisting of the disease D and its ancestor nodes, and E(D)

is the edge set including the direct edges from parent nodes to child

nodes. And then, the semantic value of the disease D is given by:

DV 1 Dð Þ ¼
X

d2T Dð Þ
D1D dð Þ (1)

where D1D dð Þ denotes the contribution from node d, which can be cal-

culated in following way:

D1D ðdÞ ¼ 1 if d = D
D1D ðdÞ ¼ maxfD � D1Dðd 0Þjd 0 2 children of dg if d 6¼ D

�
(2)

where D is the semantic contribution decay factor. The contribution from
disease D to its own semantic value is 1, and the contribution of other dis-

ease d decreases by a factor D as the distance between d and D increases.

Under the fact that the semantic similarity between two diseases is

directly proportional to the shared part of their DAGs, the semantic sim-
ilarity between disease d(i) and d(j) can be defined as follows:

SS1 i ; jð Þ ¼
P

t2T d ið Þð Þ\T d jð Þð Þ D1d ið Þ tð Þ þ D1d jð Þ tð Þ� �
DV 1 d ið Þð Þ þ DV 1 d jð Þð Þ (3)

Disease semantic similarity model 2

In the first model, the diseases in the same layer of DAG (D) contribute

equally to the semantic value of D. However, it is obvious that, for DAG

(D), the disease appearing in less disease DAGs is more specific com-
pared with other diseases in the same layer [46]. In order to highlight

the contributions from more specific diseases, we defined the contribu-

tion of disease d to the semantic value of disease D as follows [28]

D2D dð Þ ¼ �log
the number of DAGs including d

the number of diseases

� �
(4)

Then, the semantic value of disease D can be defined in the similar

way as model 1:

DV2 Dð Þ ¼
X

d2T Dð Þ
D2D dð Þ (5)

Therefore, the semantic similarity between disease d(i) and d(j) can
be calculated by:

SS2 i ; jð Þ ¼
P

t2T d ið Þð Þ\T d jð Þð Þ D2d ið Þ tð Þ þ D2d jð Þ tð Þ� �
DV 2 d ið Þð Þ þ DV 2 d jð Þð Þ (6)

Gaussian interaction profile kernel similarity for
diseases

Based on the notion that functionally similar miRNAs are usually associ-

ated with similar diseases, we can use the known associations between

miRNAs and diseases to construct the Gaussian interaction profile ker-

nel similarity for diseases. Firstly, to describe the interaction profile of
disease d(i), a binary vector IP(d(i)) is defined by observing whether

each miRNA is related to d(i) or not, that is, IP(d(i)) is the ith row of

the adjacency matrix A. In this case, the Gaussian interaction profile
kernel similarity between disease d(i) and d(j) can be given by:

KD i ; jð Þ ¼ exp �cd jjIP d ið Þð Þ � IP d jð Þð Þjj2
� �

(7)

where, cd is a parameter used to control the kernel bandwidth, which

can be computed by normalizing the original bandwidth cd0 as follows:

cd ¼ c0d
1
n

Pn
i¼1 jjIPðd ið Þjj2

� � (8)

Gaussian interaction profile kernel similarity for
miRNAs

The Gaussian interaction profile of the miRNA is defined similarly to the

disease. Accordingly, the Gaussian interaction profile kernel similarity
between miRNA m(i) and m(j) can be calculated as:

KM i ; jð Þ ¼ exp �cm jjIP m ið Þð Þ � IP m jð Þð Þjj2
� �

(9)

where

cm ¼ c0m
1
m

Pm
i¼1 jjIPðm ið Þjj2

� � (10)

Integrated similarity for miRNAs and diseases

The integrated similarity of diseases can be obtained by combining the

Gaussian interaction profile kernel similarity with the semantic similarity
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which is the average of SS1 and SS2. The combination is performed in
the following way:

SDði ; jÞ ¼
SS1ði ;jÞþSS2ði ;jÞ

2 dðiÞ and dðjÞ has semantic similarity
KDði ; jÞ otherwise

�

(11)

Similarly, the integrated similarity of miRNAs is combined as follows:

SMði ; jÞ ¼ FSði ; jÞ mðiÞ and mðjÞ has functional similarity
KMði ; jÞ otherwise

�
(12)

GIMDA

In this work, based on the disease similarity, the miRNA similarity as well
as the known associations between diseases and miRNAs, we proposed a

novel method to predict potential miRNA-disease associations by measur-

ing the graphlet interaction among miRNAs and among diseases. Graphlet

is a type of subgraph with a few connections in a large network. In our
work, we only considered graphlets with not more than four nodes, which

were divided into nine types labelled with G0 to G8 in Figure 1A. The posi-

tion of a node in the graphlet is named automorphism orbit [55]. There
are totally 15 automorphism orbits in the nine types of graphlets. The rela-

tionship between any two nodes in a graphlet is defined as graphlet inter-

action, which has different types called graphlet interaction isomer

according to the different automorphism orbits of the nodes. For the 15
automorphism orbits within nine graphlets, 28 graphlet interaction iso-

mers have been constructed according to [56], which are shown in

Figure 1B by labels I1 to I28. In particular, if two nodes exchange their
positions in a graphlet, the graphlet interaction between them should be

regarded as different isomers. In Figure 1B, all graphlet interaction iso-

mers are set from the blue nodes to the green ones. Finally, a graphlet

interaction can be described as a vector with 28 elements corresponding
to the numbers of 28 isomers [56].

To utilize the disease similarity and miRNA similarity for the predic-

tion of potential associations between diseases and miRNAs, we created
a graph GD to represent diseases and a graph GM to represent miRNAs

(Fig. 2). Each node of the graph GD denotes a disease and each node

of GM denotes a miRNA. If there is a similarity between two diseases

or two miRNAs, there is an edge between the two corresponding nodes.
Furthermore, each edge is assigned a weight with the similarity value

between diseases or miRNAs.

In the graph of miRNAs GM, we calculated the number of graphlet

interaction isomer Ik from node i to node j as follows [56]:

Nij Ikð Þ ¼
X

l2V GMð Þ

X
m2V GMð Þ

bij bil bjl bimbjmblm (13)

where V(GM) is the node set of graph GM, l and m denote the other
two nodes except node i and j, and b is a variable defined by:

bst ¼ ast s and t has a link in Ik
1� ast s and t has no link in Ik

�
(14)

where ast is the weight of the edge between node s and t. Particularly, ast
equals to 0 if there is no edge between node s and t. In the graph of dis-

eases GD, the number of graphlet interaction isomer between two dis-
eases can be counted in the same way as described above.

Fig. 1 Graphlet types labelled by G0 to G8 and automorphism orbits labelled by 0 to 14 (A); Graphlet interaction isomers labelled by I1 to I28 (B). As
shown in (A), different colours denote different types of orbits in the same graphlet. In (B), graphlet interaction is from the blue node to the green

one in each isomer.
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Then, based on the graphlet interaction, we can compute the association
score of a miRNA-disease pair. The computation was implemented in miRNA

graph GM and in disease graph GD, respectively. For the nodes in GM, the

score of a disease-miRNA pair (d(i), m(j)) can be calculated by the equation:

Sm i ; jð Þ ¼
X28
k¼1

vk
X
p2P ið Þ

norm Npj Ikð Þ� �
(15)

where vk means the weight of the kth isomer, P(i) is the set of miRNAs

which have been confirmed to be related to disease d(i), and norm (Npj

(Ik)) is the normalized graphlet interaction calculated by:

norm Npj Ikð Þ� � ¼ Npj Ikð ÞP
m2M Npm Ikð Þ (16)

where M is the set of all other miRNAs except p. The Eq. (15) can be

rewritten in the form of matrix as follows:

Sm ¼ X T
mVm (17)

where the matrix Xm is composed of entities given by:

Xm k ; jð Þ ¼
X
p2P ið Þ

norm Npj Ikð Þ� �
(18)

The weight coefficients Vm can be obtained using linear regression
as mentioned in [56]. Using the known miRNA-disease associations as

training data set, we can calculate the Xmand Sm in Eq. (17). Therefore,

the weigh matrix Vm can be computed as follows:

Vm ¼ XmXm
T

� ��1
XmSm (19)

Similarly, the association score between disease d(i) and miRNA m(j)

can be calculated in the disease graph GD, with the same form as Eq. (15):

Sd i ; jð Þ ¼
X28
k¼1

vk
X
q2Q jð Þ

norm Nqi Ikð Þ� �
(20)

where Q(j) is the set of diseases which have been confirmed to be

related to miRNA m(j). Also, Eq. (20) can be transformed into the

matrix form as: Sd ¼ X T
d Vd ,, where Xd was calculated by:

Fig. 2 Flow chart of GIMDA model to pre-

dict the potential miRNA-disease associa-
tions.
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Xd k ; jð Þ ¼
X
q2Q jð Þ

norm Nqi Ikð Þ� �
(21)

Then, we trained the model using known associations to get the
weight matrix Vd as Eq. (19):

Vd ¼ XdXd
T

� ��1
XdSd (22)

Finally, the association score between disease d(i) and miRNA m(j)

was computed with the average of the scores from GM and GD as fol-
lowing:

S i ; jð Þ ¼ Sm i ; jð Þ þ Sd i ; jð Þ
2

(23)

Results

Performance evaluation

To evaluate the performance of GIMDA, we implemented LOOCV and
fivefold cross-validation using the association data in the HMDD
V2.0. In the case of LOOCV, which has two different forms, global
and local one, each known association was in turn considered to be
the test sample and the others were treated as the training samples.
In the global LOOCV, all the miRNA-disease pairs that have no known
associations were treated to be candidate samples, whereas in local
LOOCV, candidates only consist of those miRNAs without any known
associations with the disease in test sample. We calculated the scores
of the test sample and the candidate samples by the GIMDA method.
In the local LOOCV, the scores of the test sample and candidate sam-
ples including investigated disease were ranked. Whereas in global
LOOCV, the test sample was ranked with all candidate samples. In

fivefold cross-validation, all the known miRNA-disease associations
were randomly divided into five equal parts without any overlap
between any two of them. Each part was selected in turn as the test
samples and the remaining four as training samples. Similarly, all
miRNA-disease pairs without known associations were considered as
the candidate samples. Then, the scores of test samples and the can-
didate samples were computed. We compared the score of each test
sample with the scores of candidate samples in turn. The prediction
was considered to be successful only when the rank of test sample
exceeded the given threshold value.

Then, correspondingly, we drew the receiver operating character-
istics (ROC) curves for three different cross-validations by plotting
true positive rate (TPR, sensitivity) against false-positive rate (FPR, 1-
specificity) with different thresholds. The sensitivity is the percentage
of the test samples whose ranks are above the given threshold,
whereas the specificity means the percentage of negative miRNA-dis-
ease associations that are ranked below the given threshold. We cal-
culated the area under the ROC curve (AUC) to evaluate the reliability
of the GIMDA. AUC = 1 denotes that the model correctly predicts all
test samples, whereas AUC = 0.5 indicates that the model has a ran-
dom prediction. The AUCs of global and local LOOCV, as well as five-
fold cross-validation of GIMDA are 0.9006, 0.8455 and
0.8927 � 0.0012, respectively. To compare with previous models,
the ROCs and AUCs of HGIMDA, RLSMDA, HDMP, WBSMDA,
RWRMDA, MCMDA and GIMDA are shown in Figure 3, from which
we can see that the AUC values of GIMDA exceed other models both
in global and in local LOOCV. Besides, in fivefold cross-validation for
RLSMDA, HDMP, WBSMDA and MCMDA, the average AUCs and cor-
responding standard deviations are, in turn, 0.8569 � 0.0020,
0.8342 � 0.0010, 0.8185 � 0.0009 and 0.8767 � 0.0011. From the
comparison, we can conclude that, GIMDA has more reliable

Fig. 3 Performance of GIMDA was compared with HGIMDA, RLSMDA, HDMP, WBSMDA and MCMDA in terms of ROC curve and AUC of global

leave-one-out cross-validation (LOOCV) (left) and local LOOCV (right). As is shown, GIMDA achieves AUCs of 0.9006 and 0.8455 in the global and

local LOOCV, significantly superior to previous models.
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prediction ability in searching for potential associations between miR-
NAs and diseases compared with previous methods.

Additionally, we have performed twofold, threefold and fourfold
cross-validations in the similar way as in fivefold, in which about
50%, 67% and 75% of the training samples, in turn, were taken to re-
train the model, and each process was repeated one hundred times,
respectively. As a result, the average AUCs and corresponding stan-
dard deviations are 0.8790 � 0.0052, 0.8873 � 0.0025 and
0.8904 � 0.0018 for the three kinds of cross-validations in turn,
which can illuminate the robustness of GIMDA.

Case studies

Moreover, to further verify the prediction accuracy of GIMDA, we per-
formed case studies for three human complex diseases, colon neo-
plasms, kidney neoplasms and prostate neoplasms. Top 50 miRNAs
of each disease ranked according to their predicted scores were
investigated using another two databases, dbDEMC [53] and miR2Di-
sease [54].

Colon neoplasms is one kind of common malignant cancer which
has third morbidity and third death rate in the United States [57]. It is
projected that there will be more than 135,000 individuals newly diag-
nosed with colon and rectum neoplasms and 50,260 deaths resulted
from this disease in the United States in 2017 [58, 59]. The diagnosis
of patients at early stages of colon neoplasms is significant to
improve the survival rate. Therefore, it is urgent to develop rapid and
sensitive diagnostic markers of the disease. MiRNAs have been
reported to be associated with colon neoplasms by many experimen-
tal researches. Taking miR-126 as example [60], a ubiquitous loss of
miR-126 expression has been found in colon neoplasms. This miRNA
could target phosphatidylinositol 3-kinase signalling and inhibit the
growth of neoplastic cells. Also, miRNA-143 was found to have an
indirect relationship with the ecotropic viral integration site 1 onco-
protein (Evi1), which led to the low expression of miRNA-143 in
human colon neoplasms [61]. We have used GIMDA to predict the
top 50 latent associated miRNAs of colon neoplasms and validated
them with dbDEMC and miR2Disease. There are 10, 18 and 45 of top
10, top 20 and top 50 predicted miRNAs confirmed by the databases
(See Table 1).

Kidney neoplasms, one of the top-ten cancer killers, is a complex
human disease that is hard to detect and treat [62]. In 2017, there will
be more than 63,000 patients diagnosed with kidney neoplasms and
the number of new deaths from this disease will reach to about
14,000 in the United States [59]. Kidney neoplasms consists of many
types developing from different cell types of the kidney [63], such as
chromophobe RCC (chRCC), collecting duct carcinoma (CDC), clear
cell RCC (ccRCC) and papillary RCC (PRCC) [64, 65]. In the past dec-
ades, both our understanding of the genetic basis of the kidney neo-
plasms and the treatment of patients were improved remarkably [66].
However, it is still need to investigate the connections between kidney
neoplasms and genetic changes [67]. Recent years, many research-
ers have studied the miRNA expressions of patients suffering from
kidney neoplasms in experimental ways. For example, miR-21 was
found up-regulated in kidney neoplasms [68], whereas five miRNAs

including miR-192, miR-215, miR-194, miR-141 and miR200c, which
have a common target gene (ACVR2B), had a lower expression in kid-
ney neoplasms. The GIMDA was applied to predicting associated
miRNAs of kidney neoplasms, and the results were validated by
dbDEMC and miR2Disease. Finally, 8 of top 10, 16 of top 20 and 45
of top 50 predicted miRNAs were confirmed (See Table 2).

Prostate neoplasms is one of the biggest threats to men’s health
in the worldwide. More than 26,000 deaths are caused by prostate
neoplasms every year in the United States [57, 59]. Its incidence is
strongly related to age and has a higher rate in older man. But
recently, more and more diagnoses occur in younger man [69]. Pros-
tate neoplasms may spread to other parts of human body, preferen-
tially to regional lymph nodes and bones. It has become relatively
easier to detect and stage prostate neoplasms, monitor response of
patients to treatment and detect recurrence since using serum pros-
tate specific antigen (PSA) screening [70]. However, elevated PSA
levels may be confounded by other factors; therefore, it is still neces-
sary to develop sensitive and specific biomarkers of prostate neo-
plasms for early diagnosis. MiRNAs proposed as a biomarker of
prostate neoplasms have attracted more and more attentions in the
past few years [71, 72]. For instance, miR-145 was found consis-
tently down-regulated in prostate neoplasms [73]. MiR-145 targets 30

untranslated region (UTR) of ERG mRNA and its down-regulation
may contribute to the increased expression of most ERG splice vari-
ants sharing the miR-145 target sequence in their 30-UTR. Moreover,
it was found that the expression of miR-574-3p was significantly
lower in prostate neoplasms [74]. GIMDA was also used for predict-
ing potential associated miRNAs of prostate neoplasms. For the top
10, top 20 and top 50 predicted miRNAs, there are 9, 18 and 41 miR-
NAs verified by databases, respectively (See Table 3).

The whole prediction list of potential miRNAs associated with
each disease in the database of HMDD V2.0 was provided in
Table S1, which was ranked according to the association scores cal-
culated by GIMDA. We hope that our prediction results can provide
guidance for biological experiments and can be validated by more
experimental studies.

Besides, to manifest the predictive ability of GIMDA for new dis-
eases without any known related miRNAs, we removed all the existing
associations between the investigated disease and miRNAs. Then, we
computed the association scores of all miRNAs for this disease. The
results of hepatocellular carcinoma confirmed by HMDD V2.0,
dbDEMC and miR2Disease are shown in Table 4, from which we can
see that 10, 20 and 50 of top 10, top 20 and top 50 predicted miRNAs
were confirmed by at least one of the three databases. For example,
hsa-mir-21 which ranks first in the list has been reported to have rela-
tion with hepatoma cell growth by experiment [75].

To investigate the robustness of GIMDA prediction performance,
we implemented the model on the database HMDD V1.0. The result
suggests that the GIMDA is very effective on the prediction of potential
associations between miRNAs and diseases even using different data
sets. Table 5 shows the top 50 miRNAs related to oesophageal neo-
plasms, which were predicted by GIMDA based on the HMDD V1.0. As
is shown in Table 5, there are 10, 20 and 49 of top 10, top 20 and top
50 miRNAs confirmed by at least one of the three databases men-
tioned above. For instance, the highest score in the list is obtained by
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the hsa-mir-155. It has been found that the relative expressions of
miR-155 in oesophageal tissue were significantly associated with
increased risk for oesophageal neoplasms and the circulating miR-155
had significant diagnostic value for oesophageal neoplasms [76].

Discussion

In this study, we presented a prediction model named GIMDA to dis-
cover latent miRNA-disease associations based on graphlet

interaction with integrating disease semantic similarity, miRNA func-
tional similarity, Gaussian interaction profile kernel similarity and
known miRNA-disease associations. In GIMDA, all miRNAs are
denoted as nodes of a graph, although all diseases are denoted as
nodes of another graph. If two nodes in the same graph have a simi-
larity, there is an edge between them, otherwise not. Each edge was
assigned a weight using the similarity value between two miRNAs or
between two diseases. The graphlet is a type of small-connected sub-
graph that is non-isomorphic. Graphlet interaction describes the rela-
tionship between two nodes in the graph [56]. By calculating the

Table 1 Top 50 miRNAs associated with colon neoplasms were predicted by GIMDA based on HMDD V2.0

miRNA Evidence miRNA Evidence

hsa-mir-21 dbdemc; miR2Disease hsa-let-7b dbdemc; miR2Disease

hsa-mir-155 dbdemc; miR2Disease hsa-mir-222 dbdemc

hsa-mir-20a dbdemc; miR2Disease hsa-mir-199a unconfirmed

hsa-mir-146a dbdemc hsa-mir-133b dbdemc; miR2Disease

hsa-mir-125b dbdemc hsa-mir-200c dbdemc; miR2Disease

hsa-mir-34a dbdemc; miR2Disease hsa-mir-15a dbdemc

hsa-mir-16 dbdemc hsa-mir-150 unconfirmed

hsa-mir-19b dbdemc; miR2Disease hsa-mir-10b dbdemc; miR2Disease

hsa-mir-29a dbdemc; miR2Disease hsa-mir-141 dbdemc; miR2Disease

hsa-mir-18a dbdemc; miR2Disease hsa-mir-181a dbdemc; miR2Disease

hsa-mir-92a unconfirmed hsa-mir-210 dbdemc

hsa-mir-221 dbdemc; miR2Disease hsa-mir-106b dbdemc; miR2Disease

hsa-mir-143 dbdemc; miR2Disease hsa-mir-122 unconfirmed

hsa-mir-19a dbdemc; miR2Disease hsa-mir-107 dbdemc; miR2Disease

hsa-mir-1 dbdemc; miR2Disease hsa-mir-182 dbdemc; miR2Disease

hsa-mir-200b dbdemc hsa-mir-22 dbdemc

hsa-mir-142 unconfirmed hsa-mir-137 dbdemc; miR2Disease

hsa-let-7a dbdemc; miR2Disease hsa-mir-181b dbdemc; miR2Disease

hsa-mir-29b dbdemc; miR2Disease hsa-mir-195 dbdemc; miR2Disease

hsa-mir-223 dbdemc; miR2Disease hsa-mir-218 dbdemc

hsa-mir-30a miR2Disease hsa-mir-133a miR2Disease

hsa-mir-31 dbdemc; miR2Disease hsa-mir-181b miR2Disease

hsa-mir-9 dbdemc; miR2Disease hsa-mir-24 dbdemc; miR2Disease

hsa-let-7e dbdemc hsa-mir-146b dbdemc; miR2Disease

hsa-let-7c dbdemc hsa-mir-140 dbdemc; miR2Disease

The top 1-25 miRNAs are shown in the first column, whereas the top 26-50 in the second. As a result, 10, 18 and 45 of top 10, top 20 and
top 50 were confirmed by the databases, respectively.
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number of each graphlet interaction isomer from the node that has
known association to the node without known association, we can
compute the association score of a miRNA-disease pair. The predic-
tion performance of GIMDA was represented by implementing global
and local LOOCV, as well as fivefold cross-validation. Additionally,
three different types of case studies were applied to several complex
human diseases. The results from both cross-validations and case
studies have shown that GIMDA performed outstandingly in predict-
ing potential miRNA-disease associations.

There are some reasons that account for the reliable performance
of this model. First of all, GIMDA predicted potential associations
between miRNAs and diseases based on the abundant data obtained
from HMDD V2.0. Besides, the model integrated Gaussian interaction
profile kernel similarity with miRNA functional similarity and disease
semantic similarity, which made the similarity between two miRNAs
or two diseases more precision. Moreover, GIMDA described the
complex relationship between two nodes based on graphlet interac-
tion, in which both direct and indirect links between the nodes were

Table 2 Top 50 miRNAs associated with kidney neoplasms were predicted by GIMDA based on HMDD V2.0

miRNA Evidence miRNA Evidence

hsa-mir-155 Dbdemc hsa-mir-106b dbdemc; miR2Disease

hsa-mir-146a Dbdemc hsa-mir-101 dbdemc; miR2Disease

hsa-mir-34a dbdemc hsa-mir-34b dbdemc

hsa-mir-92a unconfirmed hsa-mir-146b dbdemc

hsa-mir-17 miR2Disease hsa-mir-224 dbdemc

hsa-mir-16 dbdemc hsa-mir-133b unconfirmed

hsa-mir-29b dbdemc; miR2Disease hsa-mir-143 dbdemc

hsa-mir-221 unconfirmed hsa-mir-182 dbdemc; miR2Disease

hsa-mir-20a dbdemc; miR2Disease hsa-mir-1 dbdemc

hsa-mir-18a dbdemc hsa-mir-122 dbdemc; miR2Disease

hsa-mir-29a dbdemc; miR2Disease hsa-mir-34c dbdemc

hsa-mir-145 dbdemc hsa-mir-27a dbdemc; miR2Disease

hsa-mir-19b dbdemc; miR2Disease hsa-mir-218 dbdemc

hsa-mir-222 dbdemc hsa-mir-127 dbdemc

hsa-mir-19a dbdemc hsa-mir-15b dbdemc

hsa-mir-125b unconfirmed hsa-mir-24 dbdemc

hsa-mir-133a unconfirmed hsa-mir-183 dbdemc

hsa-mir-195 dbdemc hsa-mir-223 dbdemc

hsa-mir-210 dbdemc; miR2Disease hsa-mir-181a dbdemc

hsa-mir-199a dbdemc; miR2Disease hsa-mir-26a dbdemc; miR2Disease

hsa-mir-126 dbdemc; miR2Disease hsa-let-7a dbdemc

hsa-mir-181b dbdemc hsa-mir-196a dbdemc

hsa-mir-93 dbdemc hsa-mir-200a dbdemc

hsa-mir-31 dbdemc hsa-mir-9 dbdemc

hsa-mir-200b dbdemc; miR2Disease hsa-mir-29c dbdemc; miR2Disease

The top 1-25 miRNAs are shown in the first column, whereas the top 26-50 in the second. As a result, 8, 16 and 45 of top 10, top 20 and top
50 were confirmed by the databases, respectively.
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considered. Finally, this method combined the association score of a
miRNA-disease pair calculated in the miRNA graph with the score cal-
culated in the disease graph, which made it applicable to predict new
diseases without any known related miRNAs or new miRNAs without
any known related diseases.

Whereas there are some deficiencies of GIMDA. Firstly, the num-
ber of known miRNA-disease associations is still not sufficient. In
the future, when the data set is expanded, the model will perform
better. Secondly, GIMDA calculated the graphlet interaction only
considering the graphlets that contained no more than four nodes,

which means that the calculation excluded the similarity information
of those nodes that were linked to each other indirectly more than
three edges. We will take more nodes into account when the com-
puting conditions are improved in the future. Thirdly, GIMDA is help-
less for predicting the total new association between a new miRNA
and a new disease. In addition, in this model, we counted the graph-
let interaction between any two nodes in the same graph for 28
types of isomers in the miRNA graph and the diseases graph,
respectively, which was somewhat time-consuming in current situa-
tion. Furthermore, as is known, taking use of graphlet or network

Table 3 Top 50 miRNAs associated with prostate neoplasms were predicted by GIMDA based on HMDD V2.0

miRNA Evidence miRNA Evidence

hsa-mir-21 dbdemc; miR2Disease hsa-mir-19a dbdemc

hsa-mir-146a miR2Disease hsa-mir-195 dbdemc; miR2Disease

hsa-mir-155 Dbdemc hsa-mir-200b unconfirmed

hsa-mir-34a dbdemc; miR2Disease hsa-mir-1 dbdemc

hsa-mir-17 miR2Disease hsa-mir-15b dbdemc

hsa-mir-20a miR2Disease hsa-mir-101 dbdemc; miR2Disease

hsa-mir-92a Unconfirmed hsa-mir-224 dbdemc; miR2Disease

hsa-mir-29a dbdemc; miR2Disease hsa-mir-214 dbdemc; miR2Disease

hsa-mir-16 dbdemc; miR2Disease hsa-mir-34c dbdemc

hsa-mir-29b dbdemc; miR2Disease hsa-mir-335 unconfirmed

hsa-mir-221 dbdemc; miR2Disease hsa-mir-133b dbdemc

hsa-mir-222 dbdemc; miR2Disease hsa-mir-182 dbdemc; miR2Disease

hsa-mir-15a dbdemc; miR2Disease hsa-mir-203 unconfirmed

hsa-mir-126 dbdemc; miR2Disease hsa-mir-93 unconfirmed

hsa-mir-18a Unconfirmed hsa-mir-124 dbdemc

hsa-mir-223 dbdemc; miR2Disease hsa-mir-106a dbdemc; miR2Disease

hsa-mir-19b dbdemc; miR2Disease hsa-mir-148a miR2Disease

hsa-mir-31 dbdemc; miR2Disease hsa-mir-486 unconfirmed

hsa-mir-199a dbdemc; miR2Disease hsa-mir-210 miR2Disease

hsa-mir-133a Dbdemc hsa-mir-26a dbdemc; miR2Disease

hsa-mir-143 dbdemc; miR2Disease hsa-let-7a dbdemc; miR2Disease

hsa-mir-122 Unconfirmed hsa-mir-34b dbdemc

hsa-mir-181b dbdemc; miR2Disease hsa-mir-200a dbdemc

hsa-mir-106b Dbdemc hsa-mir-218 dbdemc; miR2Disease

hsa-mir-146b Unconfirmed hsa-mir-127 dbdemc; miR2Disease

The top 1-25 miRNAs are shown in the first column, whereas the top 26-50 in the second. As a result, 9, 18 and 41 of top 10, top 20 and top
50 were confirmed by the databases, respectively.
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motif has obtained excellent results in modelling and prediction for
many biological problems [55, 56, 77–79], and the subnetwork can
locally reveal the dynamic properties and improve our understanding
of the function of the whole network [78]. In the context, we think
that it is feasible and necessary to develop effective computational
methods based on the concept of graphlet or network motif for
miRNA-disease association prediction in the future. Finally, we are
expecting that method that is more rational will be developed to
evaluate the performance of the models for miRNA-disease

association prediction, such as the re-sampling test which can esti-
mate the robustness of the models [80].
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Table 5 Top 50 miRNAs associated with oesophageal neoplasms were predicted by GIMDA based on HMDD V1.0

miRNA Evidence miRNA Evidence

hsa-mir-17 Dbdemc hsa-mir-199a dbdemc;HMDD

hsa-mir-20a dbdemc;HMDD hsa-mir-146b dbdemc

hsa-mir-155 dbdemc;HMDD hsa-let-7f unconfirmed

hsa-mir-18a Dbdemc hsa-mir-181a dbdemc

hsa-let-7a dbdemc;HMDD hsa-mir-29c dbdemc;HMDD

hsa-mir-19a dbdemc;HMDD hsa-mir-141 dbdemc;HMDD

hsa-mir-16 Dbdemc hsa-let-7 g dbdemc

hsa-mir-221 Dbdemc hsa-mir-127 dbdemc

hsa-mir-19b Dbdemc hsa-mir-29b dbdemc

hsa-mir-15a dbdemc;HMDD hsa-mir-15b dbdemc

hsa-mir-92a HMDD hsa-mir-106b dbdemc

hsa-mir-146a dbdemc;HMDD hsa-mir-106a dbdemc

hsa-mir-223 dbdemc;miR2Disease;HMDD hsa-mir-200a dbdemc;HMDD

hsa-mir-145 dbdemc;HMDD hsa-mir-34a dbdemc;HMDD

hsa-mir-200b Dbdemc hsa-mir-132 dbdemc

hsa-mir-222 Dbdemc hsa-mir-194 dbdemc;miR2Disease

hsa-let-7b dbdemc;HMDD hsa-mir-30c dbdemc

hsa-let-7e Dbdemc hsa-mir-1 dbdemc

hsa-let-7c dbdemc;HMDD hsa-mir-196a dbdemc;miR2Disease;HMDD

hsa-let-7d Dbdemc hsa-mir-214 dbdemc;HMDD

hsa-mir-125b Dbdemc hsa-mir-125a dbdemc

hsa-mir-126 dbdemc;HMDD hsa-mir-205 dbdemc;miR2Disease;HMDD

hsa-mir-181b Dbdemc hsa-mir-99b dbdemc;HMDD

hsa-let-7i Dbdemc hsa-mir-9 dbdemc

hsa-mir-143 dbdemc;HMDD hsa-mir-23b dbdemc

The top 1-25 miRNAs are shown in the first column, whereas the top 26-50 in the second. As a result, 10, 20 and 49 of top 10, top 20 and
top 50 were confirmed by the databases, respectively.
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