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Abstract

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Owing to the

incorporation of risk-adapted therapy and the arrival of new directed agents, the cure rate

and survival of patients with ALL have improved dramatically, get near to 90%. In Latin

American countries, the mortality rates of ALL are high, for example in Colombia, during the

last decade, ALL has been the most prevalent cancer among children between 0–14 years

of age. In the face of this public health problem and coupled with the fact that the knowledge

of the proteome of the child population is little, our investigation proposes the study of the

plasma proteome of Colombian children diagnosed with B-cell ALL (B-ALL) to determine

potential disease markers that could reflect processes altered by the presence of the dis-

ease or in response to it. A proteomic study by LC-MS/MS and quantification by label-free

methods were performed in search of proteins differentially expressed between healthy chil-

dren and those diagnosed with B-ALL. We quantified a total of 472 proteins in depleted

blood plasma, and 25 of these proteins were differentially expressed (fold change >2, Bon-

ferroni-adjusted P-values <0.05). Plasma Aggrecan core protein, alpha-2-HS-glycoprotein,

coagulation factor XIII A chain and gelsolin protein were examined by ELISA assay and

compared to shotgun proteomics results. Our data provide new information on the plasma

proteome of Colombian children. Additionally, these proteins may also have certain potential

as illness markers or as therapeutic targets in subsequent investigations.

Introduction

Pediatric acute leukemia is a genetic and phenotypically heterogeneous disease. Accordingly to

the phenotype, acute lymphoblastic leukemia (ALL) may involve B-cell (B-ALL) or T-cell pro-

genitors (T-ALL) [1]. ALL is the most common childhood malignancy, accounting for 25% of

all childhood cancers [2]. Of these cases, 80 to 85% are classified as B-lineage ALL [3,4]. The

incidence rate of new cases of childhood ALL increases every year; fortunately, strides have
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been made in the management of childhood ALL over the past 50 years; this management has

resulted in the improvement of cure rates from 10% to 90% in developed countries [2]. How-

ever, of the approximately 160,000 children and teenagers diagnosed with cancer every year

worldwide, 80% live in low- and middle-income countries (LMICs) where access to quality

care is limited and the chances of being cured are low [5]. In addition to the difficulties in diag-

nosing and treating the disease, as well as inadequate medical facilities and other socioeco-

nomic factors affecting the incidence and survival of patients with ALL in poor countries. The

incidence rates of ALL in several Latin American countries are the highest in the world [6]. In

Colombia, it is estimated that the mortality rate exceeds 50% of the cases diagnosed with pedi-

atric ALL [7].

Currently, the definitive diagnosis of ALL is carried out by cytogenetic and immunopheno-

type analysis in a bone marrow sample, in a stage where the disease has clearly manifested [8].

So far there is no early diagnostic test for ALL, which would be very useful in countries where

access to health may be limited. Thus, we are interested in having a biomarker in peripheral

blood against a bone marrow aspirate is a highly desirable objective and with great potential in

the design of screening or screening tests.

The proteomics now provides a reliable alternative for the discovery of new biomarkers of

diagnosis [9], the body fluids have great emerging potential in biomarker studies, especially

those that can be collected by non-invasive or minimally invasive means (9–11). For example,

the blood is considered a complex fluid tissue that encompasses cells and extracellular fluid

where the variety of possible candidate biomarkers is significant (10,12).

The aim of this study was to examine the B-ALL plasma proteome, since it is the leukemia

subtype with the highest incidence in Colombia, focused on the search for potential biomark-

ers to facilitate early diagnosis of ALL, improving the opportunity of treatment.

Materials and methods

Patients and samples

Plasma samples were collected from six pediatric patients with B-ALL before induction ther-

apy. None of the subjects had received any prior treatment (Table 1). The diagnosis for each

patient was based on morphological, immunophenotypic, and genetic tests. The plasma sam-

ples used as controls were obtained from six healthy children in the same age range. Blood

samples were collected into Vacutainer K3 EDTA tubes. Plasma was separated by centrifuga-

tion and subsequently aliquoted into 0.5-mL tubes for cryopreservation at −80 ˚C. Plasma pro-

tein concentrations were determined using a BCA protein assay (Thermo Scientific Rockford,

lL, USA). The study was conducted with the approval of the Research Ethics Committee at the

National University of Colombia and the National Institute of Cancer of Colombia (Protocol

Table 1. Clinical characteristics of B-ALL patients.

Clinical features Control B-ALL

Age (years) 6 (3–9) 4.5 (2–9)

Sex (male/female) 6/0 4/2

White Blood Cell (WBC) count x109/L - 3.89 (0.47–112.8)

Hemoglobin (g/dL) - 8.3 (5.02–10.9)

%Blast Bone marrow - 61 (35–80)

Data are presented as median (minimum and maximum range) unless the sex.

https://doi.org/10.1371/journal.pone.0221509.t001
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Number INC GT00035). Informed consents were obtained from the patients before the sam-

ples were collected for analysis.

Depletion of high-abundance proteins from plasma

To reduce albumin and IgG, the most abundant plasma proteins, 30 μl of plasma was depleted

with ProteoPrep (Immunoaffinity Albumin and IgG Depletion kit, Sigma-Aldrich, St. Louis,

MO, USA). The depletion column was equilibrated using the equilibration buffer provided in

the kit, and plasma samples were depleted according to the instructions by the manufacturer.

The amount of plasma protein collected was determined using a BCA protein assay (Thermo

Scientific Rockford, IL, USA). The immunodepleted proteins were subjected to total protein

precipitation through the addition of cold TCA to obtain a concentration of 10%. The protein

solutions were then mixed and stored for 1 hour at -10 ˚C and subsequently high-speed centri-

fuged at 8500 g and 4 ˚C for 30 min. The obtained pellet was washed three times with an ice-

cold 90:10 acetone-water mixture. The samples were then centrifuged at 11,000 g for 5 minutes

at 4 ˚C, and the protein pellet was air-dried and stored at -70 ˚C until analysis.

In-solution tryptic digestion

The resulting protein pellet was solubilized in 100 μL of 6 M urea in 50 mM NH4HCO3.

Dithiothreitol (DTT) was added to a concentration of 5 mM and the samples were incubated

for 30 min at 37 ˚C. Next, 20 mM iodoacetamide (IAA) was added to an in-solution concen-

tration of 15 mM, and the samples were incubated for 30 min at room temperature; this incu-

bation was followed by the addition of 20 μL of 15 mM DTT over 10 min, and the samples

were held at room temperature for 4 h. The samples were then diluted to a urea concentration

of<1 M by the addition of 550 μL of 25 mM NH4HCO3. Trypsin (Promega, USA) was next

added in a 1:25 enzyme-to-protein ratio and the samples were incubated overnight at 37 ˚C.

The following day, the samples were desalted using C18 macro spin columns (Nest Group)

and dried by vacuum centrifugation.

Nano-LC-MS/MS analysis

LC separation was done on a nano Proxeon Easy-nLCTM II HPLC (Thermo Scientific, Wal-

tham, MA) with a Proxeon nanospray source. The digested peptides were reconstituted in 2%

acetonitrile/0.1% trifluoroacetic acid and roughly 3μg of each sample was loaded onto a

100-micron x 25 mm Magic C18 100Å 5U reverse phase trap where they were desalted online

before being separated on a 75-micron x 150 mm Magic C18 200Å 3U reverse phase column.

Each sample was injected three times. Peptides were eluted using a gradient of 0.1% formic

acid (A) and 100% acetonitrile (B) with a flow rate of 300nL/min. A 90-minute gradient was

run with 5% to 35% B over 70 minutes, 35% to 80% B over 8 minutes, 80% B for 1 minute,

80% to 5% B over 1 minute, and finally held at 5% B for 10 minutes. Each of the gradients was

followed by a 1h column wash. Mass spectra were collected at the Davis Proteomics Core, Uni-

versity of California (http://proteomics.ucdavis.edu), on an Orbitrap Q Exactive Plus mass

spectrometer (Thermo Fisher Scientific) in a data-dependent mode with one MS precursor

scan followed by 15 MS/MS scans. A dynamic exclusion of 15 seconds was used. MS spectra

were acquired with a resolution of 70,000 and a target of 1 × 106 ions or a maximum injection

time of 30ms. MS/MS spectra were acquired with a resolution of 17,500 and a target of 5 × 104

ions or a maximum injection time of 50ms. Peptide fragmentation was performed using

higher-energy collision dissociation (HCD) with normalized collision energy (NCE) value

of 27. Unassigned charge states, as well as +1 and ions >+5, were excluded from MS/MS

fragmentation.
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Protein identification and quantification

The raw data generated from the LC-MS/MS analysis were examined using database searches

performed with Proteome Discoverer version 1.4 (Thermo Fisher Scientific), cross-referenced

with results from UniProtKB/SwissProt (2016_05). The search parameters were defined as a

precursor mass tolerance of 20 ppm and a fragment mass tolerance of 0.6 Da. The enzyme

used was trypsin and one missed cleavage site was allowed. The carbamidomethylating of cys-

teines was defined as a fixed modification, while protein N-terminal acetylation and methio-

nine oxidation were defined as variable modifications for database searching. The percolator

program implemented in Proteome Discoverer was used to calculate the false discovery rate

(FDR) of the identified peptides, and only peptides with FDR<0.01 were considered.

Progenesis QI for proteomics (v 3.0, Nonlinear Dynamics, New Castle, UK) was used for

the performance of ion intensity-based label-free quantification. The retention times of eluting

peptides from all of the samples in the experiment were aligned to a selected reference run,

and only MS/MS peaks with a charge of 2+ to 5+ were considered for the total number of fea-

tures (signal at one particular retention time and m/z). Only the five most intense spectra per

feature were included. After the alignment and feature filtering, the raw abundances of all fea-

tures were normalized against the total intensity to correct for the experimental variations, and

a comparison of features between groups was performed by one-way analysis of variance

(ANOVA, P<0.05 for statistical significance). Type-I errors were controlled by FDR with the

q value set at 0.02. The associated unique peptide ion intensities for a specific protein were

then summed to generate an abundance value. Search results from Proteome Discoverer were

imported into Progenesis LC-MS to combine peptide quantification and identification. Only

unique peptides for a corresponding protein were used for quantification. The dataset from

the Progenesis analysis is shown in Supporting Information (S1 and S2 Tables).

Statistical analysis was performed using the MSStats and ROTS packages in R statistics [10–

12]. Samples were annotated into two respective conditions (Control and B-ALL). Each sample

was run three times in LC-MS/MS. For more details, see Supporting Information (S3 and

S4 Tables).

Bioinformatic analysis

To further understand the biological relevance of the differentially expressed proteins, we per-

formed functional enrichment analysis using ClueGO (13). ClueGO, a widely used Cytoscape

plugin, facilitates the visualization of functionally related genes displayed as a clustered net-

work and chart. UniProt IDs of differential proteins were analyzed using the default parame-

ters, which specify via a right-sided hypergeometric test an enrichment correction method

using a Bonferroni step-down. The “Function” analysis mode, the gene cluster list for Homo
sapiens, and a kappa score of 0.4 were used; the evidence codes were set to “All”, and the net-

working specificity was set to medium (GO levels 3 to 8).

Determination of plasma concentrations by ELISA

Plasma aggrecan core protein (PGCA), alpha-2-HS-glycoprotein (FETUA), coagulation factor

XIII A chain (F13A) and gelsolin (GELS) protein concentrations were determined by enzyme-

linked immunosorbent assay (ELISA) analysis and compared 10 new samples of both control

and B-ALL. Detailed procedures were performed according to manufacturer instructions to

measure PGCA (Aviva Systems Biology Cat.OKEH00570), FETUA (MyBiosource Cat.

MBS175929), F13A (Aviva Systems Biology Cat. OKEH02738) and GELS (Aviscera Biosci-

ence, INC. Cat. SK00384-01) levels to generate measurement standards. Standard curves were

created with protein concentration on the y-axis and average absorbance on the x-axis. The
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results were then calculated using the standard curves and multiplied by the dilution factor.

Student’s t-test was used to analyze differences in protein levels between the control and cancer

groups. A P-value <0.05 was considered statistically significant.

Results

Twenty-five differently expressed proteins were identified in B-ALL

patients

In this study, we carried out a label-free proteome analysis using samples collected from six

B-ALL patients and six healthy controls. A total of 472 proteins were quantified in the label-

free analysis. MSStats was used to detect variations in protein abundance between the studied

groups from the peptide measurements database. The analysis was designed as a comparative

experiment using the “Group Comparison” function, setting the conditions to “Control” and

“B-ALL”. A unique identifier was assigned to each biological replicate and each run. The inten-

sity value was defined as the total area of each feature without transformation (data shown in

supporting information S3 and S4 Tables). The significant changes in protein abundance were

found using a linear mixed model, and the raw P-values were adjusted by the Benjamin and

Hochberg method [12]. Significantly differentially expressed proteins in B-ALL patients com-

pared to controls (those with an adjusted P-value <0.05, a fold change>2 and an FDR of 5%)

are shown in a volcano plot (x = Log10FC, y = -Log10 adjusted P-value) (Fig 1A). The results

showed that F13A and PGCA were down-regulated, and FYV1 was up-regulated (Table 2); the

corresponding condition plot graphs are shown in Fig 1B, 1C and 1D.

ROTS classifies proteins according to evidence by means of examining the differential of

expression in two-group comparisons [11,13]. For this analysis, the database “export protein

Fig 1. MSStats statistics. A. Volcano plot of the comparison B-ALL vs Control. The dashed line represents the false

discovery rate (FDR) cutoff 5% and fold-change cutoff = 2.0. The up-regulated protein is shown in red dots and down-

regulated in blue dots. Condition plots for FYV1 (B), PGCA (C) and F13A (D) proteins. Dots indicate the mean of log

ratio and error bars have confidence intervals with 0.95 significant level for each condition.

https://doi.org/10.1371/journal.pone.0221509.g001
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measurements” was used and a 1000-repetition bootstrapping process was performed [11,14].

With the resulting enriched database, a multivariate analysis was performed using principal

component analysis (PCA) to reveal larger variations (Fig 2A). A heatmap corresponding to

differentially expressed proteins which had a fold change >2 and a Bonferroni-adjusted P-

value <0.05 is shown in Supporting Information (data in S1 Fig). The 24 proteins identified

provided a good separation between the groups, although the sample corresponding to control

5 did not match the overall control group. Fig 2B shows the heatmap corresponding to differ-

entially expressed proteins with a Bonferroni-adjusted P-value <0.05 and a fold change>3.

The number of proteins identified through these parameters was reduced from 24 to 12, but a

complete separation between the groups was achieved.

GO terms of differentially expressed proteins

Overall, 69 GO terms were significantly enriched; these terms were categorized into seven GO

groups as represented in Fig 3. The main GO categories were protein activation cascade, plate-

let degranulation, blood coagulation-fibrin clot formation, extracellular matrix organization,

cellular component morphogenesis, and cell morphogenesis involved in the differentiation

and positive regulation of cell-substrate adhesion.

Table 2. Differentially expressed proteins between B-ALL and control groups.

Accession number Gene name Protein name MSStats

Log10Fold change

LLA-B vs. Control

MSStats

P BH

ROTS

Log2Fold change

Control vs. LLA-B

ROTS

P BONF

Q9Y2I7 FYV1 1-phosphatidylinositol 3-phosphate 5-kinase 3.134 0.0232

P16112 PGCA Aggrecan core protein -0.7718 0.0487 2.359 0.001

P07333 CSF1R Macrophage colony-stimulating factor 1 receptor 2.021 0.001

P00488 F13A Coagulation factor XIII A chain -0.8375 0.0244 1.961 < 0.001

Q9HCU4 CELR2 Cadherin EGF LAG seven-pass G-type receptor 1.864 < 0.001

P54108 CRIS3 Cysteine-rich secretory protein 3 1.817 < 0.001

P23142 FBLN1 Fibulin-1 1.802 < 0.001

P04278 SHBG Sex hormone-binding globulin 1.780 < 0.001

O00533 NCHL1 Neural cell adhesion molecule L1-like protein 1.770 < 0.001

P02679 FIBG Fibrinogen gamma chain 1.605 < 0.001

Q9UJV3 TRIM1 Probable E3 ubiquitin-protein ligase MID2 1.604 < 0.001

P55290 CAD13 Cadherin-13 1.574 0.0175

P02675 FIBB Fibrinogen beta chain 1.576 < 0.001

P06396 GELS Gelsolin 1.405 < 0.001

P06276 CHLE Cholinesterase 1.378 < 0.001

P05160 F13B Coagulation factor XIII B chain 1.359 < 0.001

P02671 FIBA Fibrinogen alpha chain 1.333 < 0.001

P51884 LUM Lumican 1.256 < 0.001

P11597 CETP Cholesteryl ester transfer protein 1.247 0.0095

P01717 LV403 Ig lambda chain V-IV region Hil 1.244 < 0.001

P04196 HRG Histidine-rich glycoprotein 1.239 < 0.001

Q7Z7M0 MEGF8 Multiple epidermal growth factor-like domains protein 8 1.150 0.009

P02765 FETUA Alpha-2-HS-glycoprotein 1.140 < 0.001

Q6UXB8 PI16 Peptidase inhibitor 16 1.135 0.029

O00187 MASP2 Mannan-binding lectin serine protease 2 1.112 0.0085

FDR: False Discovery Rate, P BONF: P adjusted Bonferroni, P BH: P adjusted Benjamini-Hochberg. Fold Change represents a log value

https://doi.org/10.1371/journal.pone.0221509.t002
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Plasma concentrations of PGCA, FETUA, F13A, and GELS proteins

The plasma levels of PGCA, FETUA, F13A, and GELS were measured in plasma samples

from individuals with B-ALL and healthy controls by ELISA (n = 10). The results showed

that B-ALL patients had lower plasma concentrations of these proteins compared to those

of the control group (Fig 4): (B-ALL patients vs controls) PGCA 106.7 ± 4.844 ng/mL vs

127.6 ± 4.985 ng/mL, FETUA 184.7 ± 3.111 μg/mL vs 245.2 ± 11.14 μg/mL, F13A 10.68 ±
0.4860 μg/mL vs 12.48 ± 0.3921 μg/mL and gelsolin 148.4 ± 3.005 μg/mL vs 193.7 ±
5.673 μg/mL (data shown in supporting information S5 Table). These results were consistent

with the label-free quantitation measurements. Although there was a difference in the mag-

nitude of the change between groups probably associated with the difference in sensitivity

and the discriminating capacity of the immunoassay, the trends were in agreement in the

two techniques.

Discussion

Blood plasma is a biological fluid that is highly attractive for use in screening tests and bio-

marker discovery due to its ease of collection and its reflection of physiological changes pro-

duced by or in response to disease [15]. In this study, a proteomic approach was used to

identify differentially expressed proteins in the blood plasma of patients diagnosed with

B-ALL versus healthy controls. The blood plasma was depleted for two of the most abundant

Fig 2. ROTS statistics. A. Unsupervised principal component score plot for controls and B-ALL patients. Red and

black bubbles represent B-ALL and control plasma samples, respectively. The analysis resulted in a good separation

between groups according to the principal component 1 (PC1) with 64,56% of explained variance, principal

component 2 (PC2) 18,39% and principal component 3 (PC3) with 11,92%. B. Heat map of unsupervised clustering of

the patients (columns) across the 12 proteins detected as differentially expressed by ROTS (rows), with a Bonferroni-

adjusted P-value<0.05 and a fold change>3. Red and black bars represent B-ALL and control plasma samples,

respectively.

https://doi.org/10.1371/journal.pone.0221509.g002
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proteins, albumin, and IgG. Next, the plasma was analyzed by LC-MS/MS and quantified by

label-free measurement. After statistical analysis, 25 proteins were identified as being differen-

tially expressed. A decreased expression level was observed for 24 of these proteins, while the

protein lipidic kinase 1-phosphatidylinositol-3-phosphate 5-kinase (PIKfyve or FYV1) was

expressed at higher levels in patients with B-ALL than in healthy controls. This type-III PIP

kinase participates in endosomal processes, autophagy regulation and exosome liberation [16].

PIKfyve controls phosphatidylinositol (PtdIns) (3,5) P2 levels to trigger the action of the SAC3

phosphatase to regenerate PtdIns3P or of the MTMR3 phosphatase to generate PtdIns5P.

PtdIns5P is an intermediate that regulates the PI3K/Akt pathway and has been postulated as a

second messenger in cellular migration, which suggests a role in oncogenesis [17]. Oppelt et al
showed that FYV1 and MTMR3 are expressed in most cancerous cells and that decreased lev-

els of these proteins produce an alteration of cell migration and are involved in the invasive

behavior of cancer cells [18].

The hierarchical grouping produced in our analysis showed a group separation among the

decreased differentially expressed proteins. The 12 proteins that presented a Bonferroni-

adjusted P-value <0.05 and a fold>3 were interestingly grouped, given that they allowed a

Fig 3. Grouping of networks based on functionally enriched GO terms. The functionally grouped network of

enriched categories was generated for the differential proteins using ClueGO. GO terms are represented as nodes, the

edges connecting the nodes are based on the kappa statistic that measures the overlap of shared genes between terms

(less to 0.4). The node size indicates the number of proteins mapped to each term and the color represents the term

enrichment significance. Only the most significant term in the group is labeled. Functionally related groups partially

overlap. Visualization has been carried out using Cytoscape 3.4.0.

https://doi.org/10.1371/journal.pone.0221509.g003
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complete separation of the patients and the controls. We postulated that quantification of

these proteins may be applied to achieve identification of B-ALL patients.

The functional annotation analysis showed that several of the identified proteins are

involved in the blood coagulation process and have been reported as down-regulated in leuke-

mia cases. For example, the coagulation factor F13A is a plasma transglutaminase that

increases the coagulum resistance to fibrinolysis by forming covalent bonds between adjacent

fibrine monomers and interweaving plasmin with fibrin inhibitors. Our proteomic approach

showed that the F13A concentration was decreased in the blood plasma of patients with

B-ALL. This observation has also been documented in whole plasma by ELISA assay in a study

by Shi and Wang, in which a decrease of F13A in patients with acute myeloid and lymphoblas-

tic leukemia and in solid tumors was reported [19]. Normal lymphoid cells do not synthesize

or contain any F13 subunits, while lymphoid cells in bone marrow samples derived from

patients with acute leukemia F13A do. This indicates F13A as a possible intracytoplasmic

marker that can be used in the identification of aberrant phenotypes, which could provide a

valuable diagnostic tool for the identification of acute leukemia from myeloid and B-lymphoid

lineages [20].

Fig 4. Plasma levels of PGCA, FETUA, F13A, and GELS. Plasma levels of PGCA (A), FETUA (B), F13A (C) and GELS (D) was detected by ELISA in

B-ALL patients (n = 10) and control groups (n = 10). Statistical significance was determined by two-tailed non-paired Student’s t-test. Data as

mean ± SEM. The analysis was performed using GraphPad Prism 7.0 ��P<0.01 is significant, ����P<0.0001 is highly significant.

https://doi.org/10.1371/journal.pone.0221509.g004
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Fibrinogen, another important member of the coagulation cascade, undergoes altered

expression in different types of cancer, and it has been reported that the expression of FGA is

increased in serum from ALL patients [21]. However, we observed a decreased level of all

three-polypeptide chains (α, β and γ) probably due to a common thrombocytopenia stage in

the leukemic patients.

A second identified group of proteins is involved in adhesion, extracellular matrix organiza-

tion, and cell morphogenesis processes. Of these, fibulin 1, gelsolin, histidine-rich glycopro-

tein, cadherin EGF LAG seven-pass G-type receptor 2 and cadherin-13 are highlighted and

discussed below.

Fibulin 1, an extracellular matrix protein, and gelsolin, an actin-binding protein and key

regulator in the assembling/disassembling of actin filaments, were found to be down-regulated

in B-ALL samples. Down-regulation of these proteins has also been shown in other types of

cancers, suggesting that they may function as tumor suppressors [22,23]. In leukemia U937

cells, gelsolin overexpression induced a retarded growth, an improved monocytic morphology,

increased NADPH activity and enhanced superficial expression of the CD11b β-integrin

receptor in comparison with U937 parental cells [24]. Our study showed concordant results

with these previous findings. Gelsolin was decreased in plasma from B-ALL patients, a result

that was confirmed by the ELISA measurement of the protein in whole plasma.

Interestingly, cadherin EGF LAG seven-pass G-type receptor (CELSR2) and cadherin-13

have not previously been reported in blood plasma, but they appear to be related to the malig-

nancy processes of hematopoietic stem cells (HSC). These cadherins belong to the subfamily

of Flamingo (Fmi) or CELSR cadherins and are involved in adhesion and cell-cell recognition

processes [25]. These two cadherins intervene in the non-canonical Wnt pathway through

binding with Frizzled (Fz) to regulate planar cell polarity and increase free intracellular cal-

cium. Non-canonical Wnt signaling is necessary to maintain HSC quiescence by suppressing

the Ca2+-nuclear factor signaling of activated T-cell (NFAT)-gamma-interferon (IFNγ) and

the antagonist signaling of canonical Wnt. Fz8 and Fmi binding results in a non-canonical

receptor of Wnt signaling, which response to non-canonical Wnt signaling as Wnt5a. Under

stress conditions, canonical Wnt signaling activates HSCs to induce auto-renovation and dif-

ferentiation. Non-canonical signaling by Wnt5a is increased in the new HSC population for a

short term through the maintenance of HSCs in the quiescent phase (G0) [26,27]. The

decreased expression of these two cadherins in B-ALL patients suggests an alteration of the

Wnt signaling pathway to produce a change in the quiescence state of HSCs. Truncated

cadherin-13 (T-cadherin) is an atypical member of the cadherin superfamily. It lacks trans-

membrane and cytoplasmic domains and is bound to the plasma membrane through a glyco-

sylphosphatidylinositol anchor. T-cadherin has been suggested as a tumor suppressor, since in

several types of cancer, including B-cell lymphoma and chronic myeloid leukemia (CML), it

has been found to be down-regulated by allelic deletion and/or by promoter hypermethylation

[28]. It is interesting to find these two related-to-non-canonical-Wnt-signaling cadherins

decreased in B-ALL patients, we could speculate an alteration of this signaling pathway and

thus a change of quiescence state of HSC.

Another highlighted protein is Aggrecan core protein (PGCA), a proteoglycan that is the

main component of the extracellular matrix of cartilaginous tissue [29]. The extracellular

matrix has been a focus of study in the examination of tumor invasion and metastasis, since

these processes imply a complex series of events, including extra-cellular matrix proteolysis.

PGCA is thought to be a tumor suppressor. In studies of larynx cancer, PGCA has presented a

reduced expression and has been correlated with a worse prognosis and an increased cancer

metastasis rate. PGCA homozygotic deletion is also related to the development of classic

Hodgkin’s lymphoma induced by the Epstein-Barr virus [30]. PGCA plasma expression levels
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measured by ELISA confirmed the decreased expression of the protein in plasma from patients

with B-ALL.

Lumican is a member of the small leucine-rich proteoglycan family, and it has been identi-

fied to undergo overexpression or negative regulation in different types of cancer. For instance,

a decrease of 2–3 times the normal expression has been reported for lumican in breast cancer

tissue. Additionally, lumican expression was further decreased in advanced disease stages than

in early disease stages. Plasma proteomic analysis has demonstrated that lumican levels were

significantly higher in patients with lung cancer in comparison with normal subjects [31].

Lumican is also implied in the negative regulation of the proteolytic activity associated with

endothelial cell membranes, in particular, that of matrix metalloproteinases MMP-14 and

MMP-9, as well as that of MMP-1, MMP-2, and MMP-13 [32]. Lumican blocks the migration

and invasion of tumor cells. In general, lumican seems to be a potent agent for the inhibition

of tumor progression, which is interesting given that MMP-2 and MMP-9 expression has been

reported as positively altered in ALL cases [33,34].

CSF1R, also known as the receptor for the macrophage colony-stimulating factor

(M-CSFR), is a member of the class-III tyrosine kinase receptor family. Along with its ligand

CSF1L, it has a critical role in cell survival regulation and in the myeloid cell differentiation

involved in macrophage lineage as well as bone formation. In adult hematopoiesis, CSF1R is

selective and highly expressed in myeloid and dendritic cells but is not detectable in lympho-

cytes, including progenitor and mature B-cells. It has been suggested that there exists a con-

nection between B-lineage development and myeloid lineages during fetal development,

which may explain the chromosomic translocations of the mixed lineage leukemia (MLL) gene

observed in breastfed infants diagnosed with B-ALL [35]. The CSF1R expression results are

particularly interesting due to its role in a translocation observed in high-risk patients with a

Philadelphia-like chromosome (Ph-like)+. Translocation t(1; 5) (q21; q33) has been reported

between CSF1R and MEF2D in one ALL case [36], and the fusion of CSF1R with SSBP2,

TBL1XR1 genes has also been reported [37].

Other differentially expressed protein related to diverse cell metabolic processes was the

fetuin-A, also down-regulated in B-ALL patients. Fetuin-A is a phosphorylated glycoprotein

with multipotent properties which plays an anti-inflammatory role by counteracting pro-

inflammatory cytokine production. Like haptoglobin, fetuin-A is an acute-phase protein, for

which the serum concentration diminishes in comparison with normal levels as a response to

inflammation. It is important to highlight that acute-phase proteins increase blood flow to the

tumor microenvironment, and they may be relevant in tumorigenesis processes. Acute-phase

proteins can also reflect a systemic inflammatory response. Fetuin-A is synthesized and

secreted predominantly by the liver in adults. It is also involved in calcium homeostasis and in

the decrease of insulin signaling through inhibition of the phosphorylation of insulin tyrosine-

kinase receptors. Fetuin-A has been proposed as a potential tumor marker in specific malign

neoplasia, including in pancreatic and breast cancer, and a decrease in Fetuin-A levels in

serum from patients with chronic lymphoblastic leukemia (CLL) compared to those of healthy

controls has been reported [38]. In proteomic studies, fetuin-A has been shown to be

decreased in several cancer types. Tian showed a fetuin-A decrease in plasma from patients

with hypopharyngeal squamous cell carcinoma (HSCC) [39]. Dowling reported decreased

fetuin-A levels in serum from breast cancer patients compared to those of healthy controls

[40]. Kwak also showed a fetuin-A decrease in serum from acute myeloid leukemia (AML)

patients in comparison with healthy controls [41]. Our results also indicated lower fetuin-A

expression levels in plasma from patients with B-ALL in comparison with those of healthy con-

trols via both the proteomic and ELISA approaches, which further indicates the potential of

fetuin-A as a possible tumor marker.
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Conclusion

This study makes public a first approximation of the alterations in the plasma proteome of

Colombian B-ALL patients. We report some potential biomarkers that could be used to differ-

entiate unhealthy patients from healthy individuals; these biomarkers would aid treatment

providers in one of the most complex and difficult clinical decisions in relation to certain age

groups. This exploratory work paves the way for new studies using the identified differentially

expressed proteins for further clinical development. To validate the specificity and the poten-

tial applicability of our proposed markers, it is necessary to perform a further study involving a

population of greater size and diversity.
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