SYSTEMATIC REVIEW

Open Access

The effectiveness of treatment with probiotics in preventing necrotizing enterocolitis and related mortality: results from an umbrella meta-analysis on meta-analyses of randomized controlled trials

Jiaju Han¹, Yufeng Ren^{1*}, Peini Zhang¹, Chengfeng Fang¹, Leilei Yang¹, Shenkang Zhou¹ and Zhiqing Ji¹

Abstract

Introduction Probiotic supplementation has been proposed as a preventive measure for necrotizing enterocolitis (NEC) in preterm infants. This umbrella meta-analysis assesses the effects of probiotics, including single-strain and multi-strain formulations, on NEC and related mortality.

Methods A comprehensive search was conducted in PubMed, Scopus, ISI Web of Science, and Embase for studies up to August 2024. The AMSTAR2 tool assessed the quality of included studies. Meta-analysis studies were selected based on the PICOS framework, focusing on preterm neonates (< 37-week gestation), probiotic supplementation (single-strain or multi-strain), placebo or standard care comparison, and outcomes of NEC and mortality. Pooled relative risks (RR) and odds ratios (OR) with 95% confidence intervals (CI) were calculated using random-effects models.

Results Overall, 35 eligible studies were included into the study. Twenty-six and 32 probiotic intervention arms used single- and multi-strain probiotics, respectively. The findings revealed that probiotics decreased NEC significantly (ES_{RR}: 0.51; 95% CI: 0.46, 0.55, p < 0.001, and ES_{OR}: 0.59; 95% CI: 0.48, 0.72, P < 0.001), and mortality rate (ES_{RR}: 0.72; 95% CI: 0.68, 0.76, P < 0.001, and ES_{OR}: 0.77; 95% CI: 0.70, 0.84, p < 0.001).

Conclusion The present review suggests that supplementation with probiotics reduced NEC and related mortality. Probiotic supplementation can be recognized as a NEC-preventing approach in preterm and very preterm infants, particularly Multi-strain probiotics.

Keywords Probiotics, Necrotizing enterocolitis, Umbrella meta-analysis, Mortality

Introduction

Necrotizing enterocolitis (NEC) is a multifactorial disease and a leading cause of mortality and morbidity in premature infants. The incidence of NEC varies significantly across neonatal units, ranging from 2 to 13% in preterm and very low birth weight infants [1]. The incidence of NEC in very low birth weight infants (birth weight < 1500 g) is approximately 5–10% [2]. Several clinical risk factors for NEC have been identified, including immaturity, premature rupture of membranes, assisted ventilation, sepsis, and hypotension [3]. Additional contributors include formula feeding, the use of acid suppression, and prolonged antibiotic therapy [4]. The clinical presentation of NEC is often

*Correspondence: Yufeng Ren Ryfron2020@126.com

¹ Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai 317000, China

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Han et al. BMC Gastroenterology (2025) 25:245 Page 2 of 16

nonspecific, with symptoms ranging from apnea, abdominal distension, and bloody stools to severe complications such as intestinal perforation, peritonitis, sepsis, shock, and death. Standard treatment strategies encompass bowel rest, parenteral nutrition, broad-spectrum antibiotics, ventilatory support, blood pressure stabilization, and, in severe cases, peritoneal drainage or surgical resection of necrotic bowel tissue [5]. However, these treatments have significant limitations, including impaired bowel function, prolonged reliance on parenteral feeding with central catheter insertion, extended hospitalization, and substantial healthcare costs. As a result, there is a critical need for more effective treatments with fewer side effects. Probiotic supplementation has been proposed as a preventive strategy against NEC [6]. Although some meta-analysis studies have suggested that probiotic supplementation reduces the incidence of NEC and related mortality [7–9], these findings remain inconsistent [10, 11].

Probiotics are increasingly employed in neonatal intensive care units as a strategy to manage NEC. Commonly used probiotics include species from the Bifidobacterium, Lactobacillus, and Saccharomyces genera [12]. These microorganisms are stable and can survive the harsh gastrointestinal environment due to their resistance to low pH, acidic conditions, and proteolytic enzymes [13]. The human gastrointestinal tract harbors over 10,000 microbial species, each influencing the health and disease status of host. Research has demonstrated that probiotics can effectively prevent or manage a range of conditions, including intestinal inflammation and infections [14, 15], obesity, diabetes, liver disease [16], respiratory diseases [15], arthritis, pouchitis, ulcerative colitis, and Crohn disease [17]. Probiotics are also known to enhance both innate and adaptive immunity and are often used prophylactically to mitigate the adverse effects of cancer therapies [16]. Nevertheless, the exact mechanisms underlying the therapeutic benefits of probiotics remain incompletely understood [17].

Several mechanisms have been proposed to explain the effects of probiotics in the gastrointestinal tract. First, they restore endogenous microbiota by colonizing the gut, competing for adhesion sites and nutrients, and secreting beneficial metabolites [18]. Second, probiotics interact with the intestinal epithelial cells, promoting mucin production, modulating pro-inflammatory markers, and reinforcing tight junctions to prevent apoptosis [19]. Lastly, they modulate the innate immune system. Recent studies have highlighted the role of microbial overgrowth and a lack of microbial diversity in the gastrointestinal tracts of preterm infants as key contributors to NEC [20]. These findings suggest that disturbances in the microbiome, rather than a single pathogen, may drive

NEC development. The lower prevalence of protective *Lactobacillus* and *Bifidobacterium* species in preterm infants compared to full-term infants underscores the potential of probiotics as a preventive intervention for NEC [21, 22].

Several meta-analysis studies have pointed to the effectiveness of probiotics in preventing the occurrence of NEC [7–9]. However, the results are not entirely conclusive [10, 11]. To address this uncertainty, we aim to conduct an umbrella meta-analysis to comprehensively evaluate the efficacy of probiotics in preventing and managing NEC.

Methods

This meta-analysis and systematic review followed the JBI Manual for Evidence Synthesis guidelines for comprehensive reporting and analysis [23]. The protocol of the current review was submitted to PROSPERO.

Search strategy

To identify the most relevant literature, a comprehensive search was conducted in PubMed, Scopus, ISI Web of Science, and Embase. The search was conducted up to August 15, 2024 using a detailed set of keywords and Boolean operators. The full search strategy, including specific Boolean terms and database query strings, is provided in the Supplementary Table 1 for transparency and reproducibility. No restrictions were imposed on the publication date or language. Additionally, the reference lists of relevant papers were thoroughly reviewed to identify additional publications.

Eligibility criteria

Relevant studies were selected based on the PICOS (population/intervention/comparison/outcome/study design) framework: population (preterm neonates < 37-week gestation), intervention (probiotic supplementation), comparison (placebo or standard care), outcome (standardized relative risk (RR) or odds ratio (OR) of necrotizing enterocolitis or NEC-related mortality), and study design (meta-analysis studies of randomized controlled trials). Animal studies, in-vitro studies, and non-meta-analytic designs were excluded.

Data extraction

Titles and abstracts were screened independently by JH, PZ, and CF, and the full texts of potentially eligible articles were reviewed based on the inclusion criteria. Data extraction was performed systematically and independently by two reviewers (JH and YR) using a predesigned extraction form to ensure consistency and accuracy. Information was extracted from each included meta-analysis to capture comprehensive

Han et al. BMC Gastroenterology (2025) 25:245 Page 3 of 16

details relevant to the study objectives. Extracted data included the citation (author and year of publication), number of studies included in the meta-analysis, geographical location of the studies, number of participants, age of the participants (e.g., gestational age or birth weight), the type of intervention (e.g., singlestrain or multi-strain probiotics, specific probiotic strains), and the quality assessment methods used (e.g., Cochrane Risk of Bias, Jadad score, or NOS). Additionally, outcomes extracted included the relative risk (RR) or odds ratio (OR) for necrotizing enterocolitis (NEC) incidence and mortality.

Quality assessment

The methodological quality of the qualified metaanalysis was assessed independently by two reviewers using the assessment of multiple systematic reviews (AMSTAR2) questionnaire, which evaluates critical domains such as the comprehensiveness of literature search, adequacy of included study evaluation, and appropriateness of data synthesis [24]. According to AMSTAR2, there are four categories of quality, "high quality", "moderate quality", "low quality" and "critically low quality". While specific perspectives such as measurement, attrition, and reporting bias are not directly applicable at this level, AMSTAR2 indirectly addresses these concerns by requiring systematic reviews to evaluate these elements in their included studies. We also extracted and reported the results of the quality assessment of the clinical trials included in each meta-analysis, as well as the methods used for quality evaluation.

Statistical analysis

The ESs and their CIs for NEC in the probiotics and control groups/ periods were utilized to calculate the overall ESs. A random-effects model was applied to generate overall effect sizes, accounting for variations between studies. Heterogeneity was assessed using the I² statistic and Cochrane's Q test. We considered the I² value > 50% or P < 0.05 for the Q-test as significant heterogeneity between studies. To explore the potential sources of heterogeneity, subgroup analyses were conducted based on the predefined variables such as age, weight, and type of strain probiotics. Sensitivity analysis was performed to assess the influence of a specific study on the overall ES was done using the leave-one-out method [25]. The potential for publication bias was assessed using funnel plots and statistical asymmetry tests (Begg's adjusted rank correlation test and Egger's test). All analyses were carried out using STATA software (version 16 software). We considered *P*-value < 0.05 as a significant level.

Results

Study selection

A total of 278 articles were detected through electronic search of databases. After removing 27 duplicates, 251 remained studies were screened based on title and abstract. After removing irrelevant studies, 51 studies were selected to be considered by full-text evaluation and 16 studies excluded. Finally, 35 studies met our specified inclusion criteria that 33 studies were in relation to NEC and 28 studies have reported the mortality. The study search process is illustrated as PRISMA flow diagram in Fig. 1.

Study characteristics

In the umbrella meta-analysis of interventional studies, there were 36 meta-analysis studies that 30 studies have reported RR for NEC (52 effect sizes), 3 studies OR for NEC (6 effect sizes), 25 studies RR for mortality (45 effect sizes) and 4 OR for mortality (10 effect sizes). The included studies were conducted between 2008 up to 2024. Twelve studies were conducted in China [10, 11, 26-34], 6 in Australia [35-40], 4 in UK [41-43], 3 in Saudi Arabia [7, 44], 2 in Germany [45], 2 in the USA [9, 46], one in India [47], Taiwan [48], Canada [49], Italy [8], Denmark [50], Poland [51]. The mean age of participants was < 37 weeks and most of the included studies have evaluated the effect of probiotic mixture [7-11, 26,30, 33, 38, 40, 41, 43–48] in relation to NEC or mortality. In addition, Bifidobacterium [8, 11, 26, 29, 30, 36, 42, 48, 51, 52], Lactobacillus [8, 11, 26, 35, 42, 48], Sacchromyces [11, 26, 42, 48], Bacillus [26, 42] and Enterococcus [32] were used in the included studies. The Cochrane Risk of Bias Tool [7, 26, 28, 29, 31, 39, 42, 44, 45, 49, 52] and Jadad scores [10, 11, 30, 32, 34, 43, 48] and Grading of Recommendations Assessment, Development and Evaluation (GRADE) [8, 27, 38, 47] were used for the quality assessment of included RCTs in the current meta-analysis. Detailed characteristics of the included studies are outlined in Table 1.

Risk of bias assessment

Overall, all of the included studies in the current umbrella review were evaluated as high quality. The results of the quality assessment of included studies using AMSTAR2 questionnaire are summarized in Supplementary Table 2.

The effect of probiotics supplementation on NEC

Thirty studies with 52 effect sizes enrolling 312,438 patients evaluated the effect of probiotics using RR for the NEC value. Combining the results of included studies due to the random-effects model illustrated that probiotics decreased RR of NEC significantly (ES_{RR}: 0.51; 95% CI: 0.46, 0.55, p < 0.001). Also, a significant

Han et al. BMC Gastroenterology (2025) 25:245 Page 4 of 16

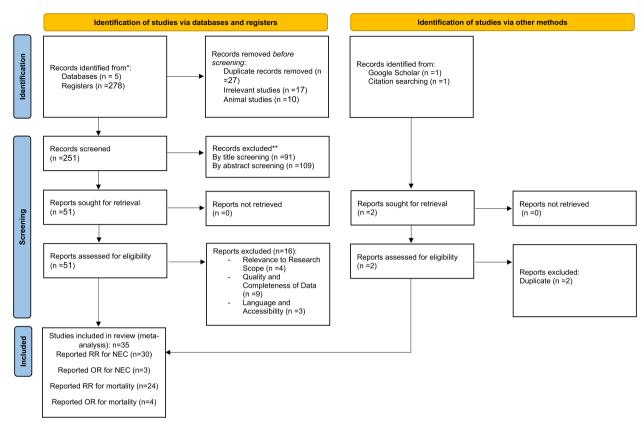


Fig. 1 PRISMA flow chart indicating the study selection process

heterogeneity was detected among studies ($I^2 = 66.2\%$, p < 0.001) (Fig. 2A). According to subgroup analysis, mean age, mean weight and type of strain probiotics were identified as potential source of heterogeneity. Likewise, subgroup analysis revealed that preterm infants age (32-37 weeks), weighted lower than 2500 g and which were treated with Bifidobacterium and Multi-strain probiotics were possible source of heterogeneity (Table 2). Moreover, we found no significant effect of any individual study on the overall effect size of study outcomes using sensitivity analysis. Also, three studies with six effects sizes reported the effect of probiotics supplementation based on OR of NEC. Moreover, random-effects analysis showed a significant reduction in OR of NEC following probiotics supplementation (ES $_{
m OR}$: 0.59; 95%CI: 0.48, 0.72, P < 0.001) with almost low between study heterogeneity ($I^2 = 57.5\%$, p = 0.038) (Fig. 2B). Egger's (p = 0.002) and Begg's (p = 0.032) tests indicated a small study effect. In addition, visual inspection of the funnel plot showed an asymmetry distribution. Therefore, the trim-and-fill method was carried out with eight imputed studies (RR: 0.45; 95% CI: 0.42, 0.49, p < 0.05), and the result is still significant (Supplementary Figure 1).

The effect of probiotics supplementation on mortality

Twenty-five eligible studies with 44 effect sizes enrolling 229,699 patients evaluated the effect of probiotics using RR for the mortality rate. In the pooled-effect analysis, probiotics supplementation significantly reduced mortality rate (ES_{RR}: 0.72; 95% CI: 0.68, 0.76, P < 0.001). The amount of heterogeneity was low between the studies $(I^2 = 30.2\%; P = 0.033)$ (Fig. 3A). However, type of probiotic's strain may be introduced as the possible source of heterogeneity based on subgroup analysis. Specifically, Lactobacillus strain could affect the mortality rate (Table 2). Also, four studies with ten effects sizes reported the effect of probiotics supplementation based on OR of mortality. Combined results from the random-effects model presented a significant reduction in mortality rate after probiotics supplementation (ES_{OR}: 0.77; 95%CI: 0.70, 0.84, p < 0.001) (Fig. 3B). Moreover, sensitivity analysis demonstrated that no study is likely to affect the pooled ES of mortality rate. No significant small-study effect was found using Egger's and Begg's tests (p=0.144and p = 0.440, respectively). Additionally, visual inspection of the funnel plot revealed publication bias. Accordingly, the trim-and-fill method was carried out with two

 Table 1
 Characteristics of the included meta-analyses studies

Citation (First author et al., year)	No. of Studies in Meta-analysis/ Location	No. of Participants in Age (year) Intervention Meta-analysis	Age (year)	Intervention	Health conditions	Weight	Quality Assessment Scale and Outcome	
Batta et al. (a) 2023 [36]	15 Australia 14 Australia	4962 4288	<34 week	Bifidobacterium longum (B. infantis)	LBW Infants	<2500	Yes (ROB)	RR for NEC RR for mortality
Batta et al. (b) 2023 [36]	48 Australia 40 Australia	9080 6424	< 34 week	Probiotic Mix without Bifi- dobacterium longum (B. infantis)	LBW Infants	<2500	Yes (ROB)	RR for NEC RR for mortality
Guo et al. (2023) [29]	6 China	3152	<37 weeks	Bifidobacterium longum or Bifidobacterium subsp. longum or Bifidobacterium subsp. infantis	Preterm infants + young children aged 0–3 years	æ Z	Yes (Cochrane ROB 2.0) 2/6 high	RR for NEC
Men et al. 2023 [32]	6 China	1237	<37 weeks	Enterococcus faecium	Preterm infants	NR	Yes (Jadad score) 2/6 high	RR for NEC
Wang et al. (a) 2023 [33]	28 China	17,602	<35 weeks	Single-strain	Preterm and term neonates	Z Z	Yes (NOS) 70/73	RR for NEC RR for mortality
Wang et al. (b) 2023 [33]	21 China	17,602	<35 weeks	Two-strain	Preterm and term neonates	N N	Yes (NOS) 70/73	RR for NEC RR for mortality
Wang et al. (c) 2023 [33]	20 China	17,602	<35 weeks	Multiple-strain	Preterm and term neonates	Z Z	Yes (NOS) 70/73	RR for NEC RR for mortality
Wang et al. 2023 [33]	73 China	17,602	<35 weeks	Probiotic Mix	Preterm and term neonates	N N	Yes (NOS) 70/73	RR for NEC RR for mortality
Ang et al. 2023 [53]	8 Australia	3900	<37 weeks	Lactobacillus reuteri	LBW & preterm infants	<2500	Yes (NOS) 8/8 high	RR for NEC RR for mortality
Liu et al. 2022 [31]	7 China	947	<34 week	Probiotic Mix	VLBW neonates	<1500	Yes (Cochrane)	RR for NEC
	10 China	1723						RR for mortality
Deshmukh and Patole 2021 [37]	30 WesternAustralia 30 WesternAustralia 27 WesternAustralia	77,018 77,018 70,977	<37 weeks	Probiotic Mix	ELBW neonates	<1000	Yes (NOS)	RR for NEC OR for NEC OR for mortality
Balasubramanian et al. 2020 [47]	9 India 8 India	1514	<37 week	Probiotic Mix	Preterm infants	N. N.	Yes (GRADE)	RR for NEC RR for mortality
Sharifi-Rad et al. (a) 2020 [54]	14 UK 12 UK 12 UK	2988 2761 2761	<32 week	Bifidobacterium spp	Very preterm or VLBW infants	<1500	Yes (Cochrane) 29/56 high	RR for NEC RR for mortality OR for mortality
Sharif et al. (b) 2020 [42]	12 UK 12 UK 12 UK	2000 2000 2000	<32 week	Lactobacillus spp	Very preterm or VLBW infants	<1500	Yes (Cochrane) 29/56 high	RR for NEC RR for mortality OR for mortality
Sharif et al. (c) 2020 [42]	4 U K 3 U K 3 U K	621 534 534	<32 week	Sacchromyces spp	Very preterm or VLBW infants	<1500	Yes (Cochrane) 29/56 high	RR for NEC RR for mortality OR for mortality

Table 1 (continued)

2 UK 2 UK 2 UK 8 China 2 China 14 China 6 China 7 China 3 China 3 China	465 465 465 1100 1100 4686 4686 3561 3561 2210 2210 2036 2513	< 32 week < 37 weeks < 37 weeks NR NR	Bacillus spp	Very preterm or VLBW infants	<1500	Yes (Cochrane)	RR for NEC
2 UK 8 China 2 China 14 China 5 China 6 China 7 China 3 China	55 00 00 00 86 86 110 110	< 37 weeks < 37 weeks NR NR		ınfants			
2 UK 8 China 2 China NR China 14 China 6 China 7 China 3 China 3 China	55 00 00 886 661 159 113	< 37 weeks < 37 weeks NR NR				29/56 high	RR for mortality
8 China 2 China NR China 14 China 6 China 7 China 3 China 3 China 3 China	00 00 886 661 159 210 336	< 37 weeks < 37 weeks NR NR					OR for mortality
2 China NR China 14 China 6 China 7 China 3 China 3 China	00 586 661 159 110 113	< 37 weeks NR NR	Saccharomyces boulardii	ELBW	NR	Yes (Cochrane)	RR for NEC
NR China 14 China 6 China 1 China 3 China 3 China 3 China	386 161 170 336 13	< 37 weeks NR NR					RR for mortality
14 China 5 China 1 China 3 China 7 China 3 China	661 159 210 336 513	Z Z	Lactobacillus spp	Preterm infants	<1500	NR	RR for NEC
14 China 5 China 1 China 3 China 7 China 3 China	661 159 210 336 513	K K					RR for mortality
5 China 6 China 1 China 3 China 3 China 3 China	559 110 336 113	Z.	Probiotic Mix	Preterm infants	<2500	Yes (cochrane)	RR for NEC
5 China 6 China 1 China 3 China 7 China 3 China	110 336 113	Z.				21/34 high	RR for mortality
6 China 1 China 3 China 7 China 3 China)36 ;13		Lactobacillus spp	Preterm infants	<2500	Yes (cochrane)	RR for NEC
6 China 1 China 3 China 7 China 3 China	513					21/34 high	RR for mortality
1 China 3 China 7 China 3 China		NR	Bifidobacterium spp	Preterm infants	<2500	Yes (cochrane)	RR for NEC
1 China 3 China 7 China 3 China	2328					21/34 high	RR for mortality
3 China 7 China 3 China	4 :	NR	Bacillus spp	Preterm infants	<2500	Yes (cochrane)	RR for NEC
3 China 3 China	4						RR IOI MOLIAIILY
7 China 3 China	21	Z Z	Sacchromyces spp	Preterm infants	<2500	Yes (cochrane) 21/34 high	RR for NEC RR for mortality
3 China	2429	<34 week	Bifidobacterium spp	VLBW preterm infants	<1500	Yes (Jadad score) 16/16 high	RR for NEC
	1371	<34 week	NR	VLBW preterm infants	<1500	Yes (Jadad score) 16/16 high	RR for NEC
Jiao et al. (c) 2020 [30] 6 China 832	32	<34 week	Probiotic Mix	VLBW preterm infants	<1500	Yes (Jadad score) 16/16 high	RR for NEC
Jiang et al. (a) 2020 [11] 11 China 308	3083	<37 weeks	Probiotic Mix	Premature infants	<2500	Yes (Jadad score)	RR for NEC
12 China 317	3175						RR for mortality
Jiang et al. (b) 2020 [11] 8 China 322	3222	<37 weeks	Lactobacillus spp	Premature infants	<2500	Yes (Jadad score)	RR for NEC
7 China 2647	547						RR for mortality
Jiang et al. (c) 2020 [11] 6 China 2117	17	<37 weeks	Bifidobacterium spp	Premature infants	<2500	Yes (Jadad score)	RR for NEC
6 China 241	2414						RR for mortality
Jiang et al. (d) 2020 [11] 2 China 479	6,	<37 weeks	Sacchromyces spp	Premature infants	<2500	Yes (Jadad score)	RR for NEC
2 China 479	6,						RR for mortality
Zhu et al. 2019 [52] 24 China 6155	55	<37 week	Bifidobacterium	Preterm infants	N N	Yes (cochrane)	RR for NEC

	C.	J
	a	j
	Ξ	3
		Ξ
•	Ξ	5
	Ċ	Ξ
	C)
	Ū)
,	-	-
	_	•
•		
•	٥	J
•	_	,
	_	2
	_	5

Citation (First author et al., year)	No. of Studies in Meta-analysis/ Location	No. of Participants in Meta-analysis	Age (year)	Intervention	Health conditions	Weight	Quality Assessment Scale and Outcome	a.
Thomas et al. 2017 [43]	23 UK	7325	N.	Probiotic Mix	VLBW infant, ELBW infants	<1500	Yes (Jadad score) 23/23 high	RR for NEC
Dermyshi et al. 2017 [27]	44 (30 RCT and 14 OBZ) China	22,401	<34 week	N.	Preterm Infants	<1500	Yes (GRADE, NOS)	RR for NEC
	27 RCT China	8156						RR for ortality
Sun et al. 2017 [40]	25 Australia	8492	<32 week	Probiotic Mix	Preterm infants	<1500	Yes (Physiotherapy Evi-	RR for NEC
	21 Australia	7332					dence Database tool)	RR for mortality
Rees et al. 2017 [41]	19 UK	3975	<34 week	Probiotic Mix	Preterm infants	<1500	ON	RR for NEC RR for mortality
Thomas et al. (a) 2017 [43]	23 UK 22 UK	7325 6954	W Z	Probiotic Mix	VLBW infant	<1500	Yes (Jadad score) 4/5 high	RR for NEC RR for all cause mortality
Thomas et al. (b) 2017 [43]	5 UK 4 UK	1596 1121	Z Z	Probiotic Mix	ELBW infants	<1000	Yes (Jadad score) 4/5 high	RR for NEC RR forall cause mortality
Thomas et al. (c) 2017 [43]	10 UK	4642	N R	Probiotic Mix	VLBW infant	<1500	Yes (Jadad score) 4/5 high	RR for NEC related mortality
Chang et al. (a) 2017 [48]	12 Taiwan 10 Taiwan	2889 2867	<34 week	Probiotic Mix	Preterm very low birth weight	<1500	Yes (Jadad score) 25/25 high	OR for NEC OR for mortality
Chang et al. (b) 2017 [48]	5 Taiwan 3 Taiwan	1646 701	<34 week	Lactobacillus spp	Preterm very low birth weight	<1500	Yes (Jadad score) 25/25 high	OR for NEC OR for mortality
Chang et al. (c) 2017 [48]	6 Taiwan 6 Taiwan	2244 2244	<34 week	Bifidobacterium spp	Preterm very low birth weight	<1500	Yes (Jadad score) 25/25 high	OR for NEC OR for mortality
Chang et al. (d) 2017 [48]	3 Taiwan 2 Taiwan	566 479	<34 week	Sacchromyces spp	Preterm very low birth weight	<1500	Yes (Jadad score) 25/25 high	OR for NEC OR for mortality
Deshpande et al. 2017 [38]	23 Australia	4783	<37 week	Probiotic Mix	Preterm neonates in low-income and medium-income countries	<2500	Yes (GRADE)	RR for mortality
Sawh et al. (a) 2016 [49]	37 Canada 29 Canada	10,520 9507	<37 weeks	Probiotic Mix	Preterm infants	<2500	Yes (Cochrane)	RR for NEC RR for mortality
Sawh et al. (b) 2016 [49]	25 Canada	6587	<37 weeks	Probiotic Mix	VLBW Infants	<2500	Yes (Cochrane)	RR for NEC
Sawh et al. (c) 2016 [49]	6 Canada	1618	<37 weeks	Probiotic Mix	ELBW Infants	<2500	Yes (Cochrane)	RR for NEC
Billimoria et al. 2016 [46]	30 USA	8000	<37 week	Probiotic Mix	Preterm infants	<2500	ON	OR for NEC
	24 USA	7739						OR for mortality

ntinued)	
Table 1	

Citation (First author) No. of Studies in Letting No. of Participants in Letting Age (year) Intervention Health conditions Weight care in January Acett et al. (a) 2015 [8] 1 al. administry 1815 <37 week Lactobaci/lus spp Preterm infants NR Acett et al. (a) 2015 [8] 1 al. lady 1024 <37 week Probiotic Mix Preterm infants NR Acett et al. (b) 2015 [8] 1 al. lady 2992 <37 week Probiotic Mix Preterm infants NR Lau et al. 2016 [9] 10 Denmark 10800 <37 week Probiotic Mix Preterm infants <15 Alfaleh and Anabues 24 Saudi Aabia 2525 <37 week Probiotic Mix Preterm infants <15 Alfaleh and Bassler 2010 27 Saudi Aabia 2755 <37 week Probiotic Mix Preterm infants <15 Alfaleh and Bassler 2010 [4] 27 China 3290 <37 week Probiotic Mix Preterm infants <25 Alfaleh and Bassler 2010 [4] 37 denmary 27 week Probiotic Mix Preterm infants <25	(כסונווומנים)								
9 Haly 1815 <37 week	Citation (First author et al., year)	No. of Studies in Meta-analysis/ Location	No. of Participants in Meta-analysis	Age (year)	Intervention	Health conditions	Weight	Quality Assessment Scale and Outcome	
13 Italy 1024 <37 week Bifdobacterium spp Preterm infants 11 Iataly 2979 <37 week	Aceti et al. (a) 2015 [8]	9 Italy	1815	<37 week	Lactobacillus spp	Preterm infants	N.	Yes (GRADE) 7/26 high	RR for NEC
11 lataly 2979 <37 week Probiotic Mix Preterm infants 20 New Jersy 4450 <37 week	Aceti et al. (b) 2015 [8]	13 Italy	1024	<37 week	Bifidobacterium spp	Preterm infants	Z Z	Yes (GRADE) 7/26 high	RR for NEC
20 New Jersy 5982 <37 week Probiotic Mix VLBW Infants 16 New Jersy 4450 <37 week	Aceti et al. (c) 2015 [8]	11 lataly	2979	<37 week	Probiotic Mix	Preterm infants	N R	Yes (GRADE) 7/26 high	RR for NEC
12 Denmark 10800 <37 weeks Probiotic Mix Preterm infants 12 Denmark 8139 <37 week	Lau et al. 2015 [9]	20 New Jersy 16 New Jersy	5982	<37 week	Probiotic Mix	VLBW Infants	<1500	OZ	RR for NEC RR for mortality
24 Saudi Arabia 5529 <37 week Probiotic Mix Preterm infants 17 Saudi Arabia 5529 <37 weeks	Olsen et al. 2016 [50]	12 Denmark	10,800	<37 weeks	Probiotic Mix	Preterm infants	<2500	Yes (NOS)	RR for NEC
24 Saudi Arabia 5529 <37 week Probiotic Mix Preterm infants 17 Saudi Arabia 2755 S37 weeks NR Preterm infants 27 China 3583 S34 week Probiotic Mix Preterm infants 20 China 3816 S37 week Probiotic Mix Preterm infants 9 Saudi Arabia 1425 S37 week Probiotic Mix Preterm infants 8 Germany 1918 S37 week Probiotic Mix Preterm infants 3 Poland 293 S37 week Probiotic Mix Preterm infants NR Germany 1476 S37 week Probiotic Mix Preterm infants 9 Saudi Arabia 1425 S37 week Probiotic Mix Preterm infants		9 Denmark	8139						KK for mortality
27 China 6655 <37 weeks NR Preterm infants 14 China 3583 <34 week	AlFaleh and Anabrees 2014 [7]	24 Saudi Arabia 17 Saudi Arabia	5529 2755	<37 week	Probiotic Mix	Preterm infants	<2500	Yes (The Cochrane Collaboration and theNeonatal Review)	RR for NEC RR for mortality
14 China 3583 20 China 3816 <34 week	Yang et al. (a) 2014 [34]	27 China	6655	<37 weeks	NR	Preterm infants	NR	Yes (Jadad score)	RR for NEC
20 China 3816 <34 week Probiotic Mix Preterm very low-birth-weight weight weight 13 China 3090 <37 week		14 China	3583						RR for mortality
9 Saudi Arabia 1425 <37 week Probiotic Mix Preterm infants 8 Germany 1918 <37 week	Wang et al. 2012 [10]	20 China 13 China	3816 3090	<34 week	Probiotic Mix	Preterm very low-birth- weight	<1500	Yes (Jadad score) 20/20 high	RR for NEC RR for mortality
8 Germany 1918 <37 week Probiotic Mix Preterm infants 8 Germany 1918 <37 week	AlFaleh and Bassler 2010 [56]	9 Saudi Arabia	1425	<37 week	Probiotic Mix	Preterm infants	<2500	Yes (The Cochrane Collaboration and theNeonatal Review)	RR for NEC
8 Germany 1918 3 Poland 293 <37 week Bifdobacterium animalis Preterm infants ssp. lactis NR Germany 1476 <37 week Probiotic Mix Preterm infants 9 Saudi Arabia 1425 <37 week Probiotic Mix Preterm infants	Guthmann et al. 2010 [45]		1918	<37 week	Probiotic Mix	Preterm infants	NR	Yes (Cochrane)	RR for NEC
3 Poland 293 <37 week		8 Germany	1918						RR for mortality
I NR Germany 2331 <37 week	Szajewska et al. 2010 [51]	3 Poland	293	<37 week	Bifidobacterium animalis ssp. lactis	Preterm infants	<2500	Yes	RR for NEC RR for mortality
J NR Germany 1476 <37 week	AlFaleh et al. (a) 2010 [44]	NR Germany	2331	<37 week	Probiotic Mix	Preterm infants	<2500	NR	RR for mortality
9 Saudi Arabia 1425 <37 week Probiotic Mix Preterm infants	AlFaleh et al. (a) 2010 [44]	NR Germany	1476	<37 week	Probiotic Mix	Preterm infants	<2500	NR	RR for mortality
	AlFaleh and Bassler 2010 [56]	9 Saudi Arabia	1425	<37 week	Probiotic Mix	Preterm infants	<2500	Yes (The Cochrane Collaboration and theNeonatal Review)	RR for NEC

Abbrevations: LBW Low birth weight, VLBW Very low birth weight, ELBW Extremely low birth weight, NR Not reported, NEC necrotizing enterocolitis, RR Relative risk, OR Odds Ratio

Han et al. BMC Gastroenterology (2025) 25:245 Page 9 of 16

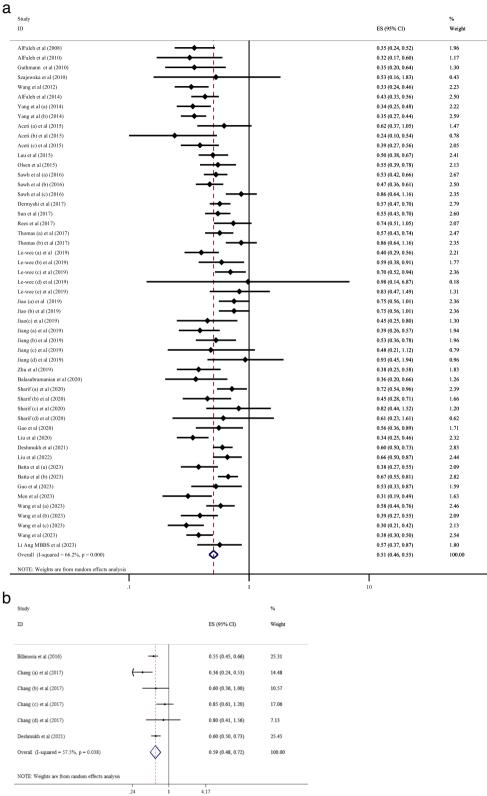


Fig. 2 A The Forest plot of the efficacy of probiotics supplementation in prevention of NEC according to relative risk (RR) analysis. **B** The Forest plot of the efficacy of probiotics supplementation in prevention of NEC according to odds ratio (OR) analysis

Han et al. BMC Gastroenterology (2025) 25:245 Page 10 of 16

Table 2 Subgroup analyses for the effects of probiotics on necrotizing enterocolitis and mortality

	Effect size, n	RR (95% CI)	P-value	<i>I</i> ² (%)	P-heterogeneity
Probiotics on NEC					
Overall	52	0.51 (0.46, 0.55)	< 0.001	66.2	< 0.001
Age (week)					
Very preterm or extremely preterm (< 32)	16	0.61 (0.53, 0.69)	< 0.001	61.5	< 0.001
Preterm (32–37)	30	0.45 (0.41, 0.50)	< 0.001	59.1	< 0.001
NR	6	0.54 (0.40, 0.72)	< 0.001	67.0	0.010
Weight (gram)					
< 1500	17	0.58 (0.51, 0.66)	< 0.001	64.5	< 0.001
1500–2500	20	0.53 (0.46, 0.60)	< 0.001	55.9	0.001
NR	15	0.40 (0.35, 0.45)	< 0.001	33.5	0.100
Type of strain probiotics					
Lactobacillus	6	0.49 (0.40, 0.60)	< 0.001	34.5	0.178
Bifidobacterium	9	0.53 (0.42, 0.68)	< 0.001	61.0	0.009
Saccharomyces	4	0.72 (0.54, 0.96)	0.024	0.0	0.560
Bacillus	2	0.67 (0.28, 1.60)	0.368	0.0	0.669
Enterococcus	1	0.31 (0.19, 0.50)	< 0.001	-	-
Multi-strain probiotics	25	0.49 (0.44, 0.55)	< 0.001	71.0	< 0.001
NR	5	0.50 (0.37, 0.66)	< 0.001	83.1	< 0.001
Probiotics on NEC related mortality					
Overall	44	0.72 (0.68, 0.76)	< 0.001	30.2	0.033
Age (week)					
Very preterm or extremely preterm (<32)	10	0.80 (0.73, 0.87)	< 0.001	0.0	0.873
Preterm (32–37)	9	0.69 (0.64, 0.74)	< 0.001	36.1	0.029
NR	5	0.77 (0.60, 0.98)	0.037	43.5	0.120
Weight(gram)					
< 1500	14	0.76 (0.71, 0.82)	< 0.001	13.7	0.303
1500–2500	20	0.70 (0.64, 0.77)	< 0.001	34.9	0.063
NR	10	0.66 (0.58, 0.75)	< 0.001	18.4	0.269
Type of strain probiotics					
Lactobacillus	5	0.70 (0.55, 0.88)	0.003	52.6	0.077
Bifidobacterium	6	0.77 (0.67, 0.88)	< 0.001	0.0	0.667
Saccharomyces	4	1.11 (0.72, 1.72)	0.636	0.0	0.943
Bacillus	2	0.86 (0.53, 1.40)	0.534	0.0	0.944
Multi-strain probiotics	24	0.70 (0.65, 0.75)	< 0.001	40.3	0.020
NR	3	0.71 (0.58, 0.86)	< 0.001	49.0	0.141

Abbrevations: NR Not reported, NEC necrotizing enterocolitis, RR Relative risk

imputed studies (RR: 0.66; 95% CI: 0.61, 0.72, P < 0.05), and finding did not alter (Supplementary Figure 2).

Discussion

This umbrella review of meta-analysis studies indicates that probiotic supplementation can significantly reduce the incidence of NEC and related mortality in preterm or very preterm infants. Subgroup analyses suggest that multi-strain probiotics are particularly effective in reducing the incidence of NEC and related mortality, especially in preterm infants aged 32–37 weeks and those with a

birth weight between 1500 and 2500 g. It is important to note that the conclusions drawn for these subgroups may not be fully generalizable or robust due to the sample size limitations. More detailed, stratified analyses, particularly for very low birth weight or extremely preterm infants, would be valuable for understanding the impact of probiotics on these specific subgroups. We recommend that future studies focus on including these more granular data to enhance the precision and applicability of probiotic recommendations for these vulnerable populations. Potential sources of heterogeneity in the pooled

Han et al. BMC Gastroenterology (2025) 25:245 Page 11 of 16

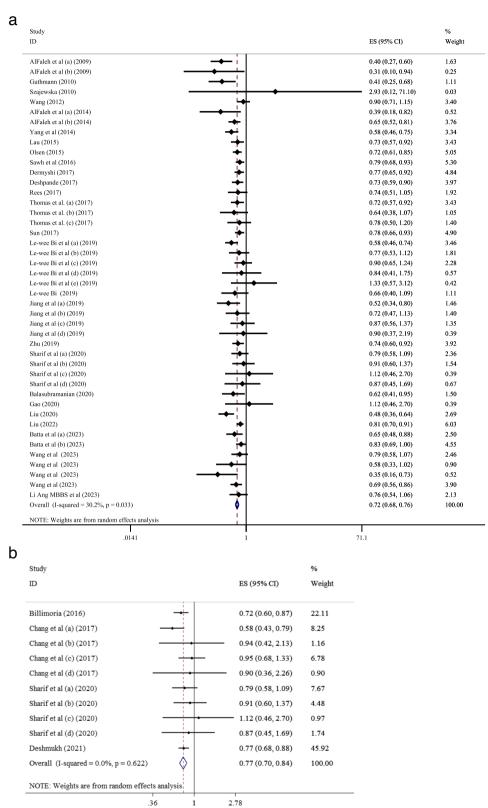


Fig. 3 A The Forest plot of the efficacy of probiotics supplementation on mortality related to NEC according to relative risk (RR) analysis. B The Forest plot of the efficacy of probiotics supplementation on mortality related to NEC according to odds ratio (OR) analysis

Han et al. BMC Gastroenterology (2025) 25:245

analyses include gestational age, birth weight, and probiotic strains. However, due to limited data on the dose and duration of probiotic supplementation, subgroup analyses based on these factors could not be conducted. Dosing and duration of probiotic supplementation were inconsistent, potentially leading to heterogeneity. Moreover, neonatal care practices, including feeding strategies (breast milk vs. formula), antibiotic use, and NICU protocols, vary by region, further contributing to variability in probiotic efficacy. To reduce heterogeneity and enhance the clinical applicability of probiotic supplementation, future trials should aim to establish standardized probiotic protocols. Specifically, consensus on the optimal probiotic strains, combinations, and dosages is needed to maximize efficacy while minimizing variability. Additionally, harmonization of NICU protocols, including feeding strategies and antibiotic stewardship, may help standardize probiotic interventions. Individualized probiotic therapy based on gestational age, birth weight, and gut microbiota composition should also be explored to optimize clinical outcomes. The high quality of the systematic reviews included in this study, as assessed by the AMSTAR checklist, supports the validity and safety of probiotic use for preterm infants globally. While we employed funnel plots and statistical tests to assess publication bias, it is important to acknowledge that this bias could still affect the balance and generalizability of our findings. However, the results of trim and fill analysis suggested that the significance of our findings is robust, even when adjusting for potential publication bias.

The greater effectiveness of multi-strain probiotics is likely due to the more diverse bacterial composition they provide. Network meta-analysis indicated that single probiotics have limited efficacy in preterm infants, while combinations, especially those containing Lactobacillus or Bifidobacterium, offer optimal benefits [57]. Among single probiotics, Lactobacillus and Bifidobacterium had the more promising impacts on NEC, possibly because they are the most common species in the gut microbiota [58]. Conditioned media from Bifidobacterium infantis and Lactobacillus acidophilus have been shown to differentially modulate inflammation in immature human intestinal epithelial cells. The combined use of these probiotics resulted in a more pronounced anti-inflammatory effect, suggesting strain-specific interactions that enhance their protective properties against NEC [59]. In the subgroup analysis based on birth weight, most studies involving infants weighing less than 1500 g used single-strain probiotics, while those with a birth weight of 1500-2500 g used multi-strain probiotics. This may explain the greater benefit observed in the latter group. Regarding gestational age, very preterm infants (born at less than 32 weeks) experience significant gastrointestinal immaturity, including increased intestinal permeability, which is often referred to as a "leaky gut" [60]. This underdevelopment facilitates the translocation of pathogenic bacteria, raising the risk of NEC [61]. Therefore, more improving effect in preterm infants aged 32–37 weeks may be attributed to the more mature intestinal barrier in these infants [61].

Several potential mechanisms explain the beneficial effects of probiotics on NEC. Preterm infants often have a less diverse gut microbiota, dominated by pathogenic bacteria such as Enterobacteriaceae and Clostridium species [62], which can trigger immune responses and inflammation, leading to NEC [63]. Probiotic supplementation has been proposed as a strategy to normalize bacterial colonization, thereby reducing the incidence of NEC [64]. They also modulate inflammatory responses by influencing mucosal dendritic cells and inducing T-reg cells, which secrete anti-inflammatory cytokines [65, 66]. Probiotics inhibit key inflammatory pathways, such as those involving nuclear factor-kappa-B (NF-κB) and Mitogen-activated protein kinase (MAPK) [67, 68], some of which are mediated by short-chain fatty acids (SCFAs) produced by Lactobacillus and Bifidobacterium [69, 70]. Furthermore, probiotics promote intestinal growth and barrier function in preterm infants, stimulating mucin production and enhancing tight junctions between epithelial cells [71, 72]. It has been shown that Lactobacillus can induce production of mucins, resulting in augmentation of the mucous layer in the gut [73]. Also, probiotics have a strengthening effect on tight junctions between intestinal epithelial cells [74]. Probiotics can also reduce exposure to toxins by increasing GI motility [75]. Specific probiotic strains function also must be noted. Lactobacillus spp. contribute to intestinal barrier integrity by upregulating tight junction proteins such as like ZO-1, Claudin-1, and Occludin [76] and producing antimicrobial peptides (bacteriocins) [77], which help limit pathogen invasion. They also enhance the production of short-chain fatty acids (SCFAs), such as butyrate, which provide energy for enterocytes and have anti-inflammatory properties through inhibiting the activation of the toll like receptor (TLR)-4/NF-κB signaling pathway [78]. Bifidobacterium spp. modulate immune responses by increasing the production of anti-inflammatory cytokines like interleukin-10 (IL-10) while reducing proinflammatory mediators such as tumor necrosis factoralpha (TNF-α) and IL-6, thereby promoting a balanced immune environment [79]. Moreover, Bifidobacterium species are predominant in the intestines of breastfed infants and metabolize human milk oligosaccharides, SCFAs like acetate. This metabolic activity acidifies the intestinal environment, inhibiting pathogen growth and promoting the development of regulatory T cells, which

Han et al. BMC Gastroenterology (2025) 25:245 Page 13 of 16

are essential for immune tolerance [80]. Saccharomyces boulardii, a probiotic yeast, prevents pathogen adhesion to the intestinal epithelium, neutralizes bacterial toxins, and enhances mucosal immunity [81, 82]; however, its efficacy in NEC prevention appears to be lower compared to bacterial probiotics, as suggested by our findings.

The long-term implications of administering probiotics to preterm infants, including potential permanent alterations to the microbiome, remain uncertain. Notably, a study by Jacobs et al. found comparable rates of survival without major neurodevelopmental impairment among subjects enrolled in the ProPrems trial, suggesting no significant long-term adverse effects [83]. While probiotics are Generally Recognized as Safe (GRAS) (https://www.fda.gov/food/ food-ingredients-packaging/generally-recognized-safegras), concerns persist regarding their use in extremely low birth weight infants. The lack of FDA-regulated pharmaceutical-grade products in the United States, coupled with conflicting data on safety and efficacy, underscores the need for caution. Current evidence does not support the routine, universal administration of probiotics to preterm infants, particularly those with a birth weight of less than 1000 g [84]. Moreover, cases of sepsis involving Bifidobacterium longum have been documented in preterm infants receiving probiotic therapy. For instance, a case series reported bacteremia in three preterm infants associated with Bifidobacterium longum supplementation [85]. Given the limited data on the long-term effects of probiotic supplementation, future research should prioritize extended follow-up studies. These studies should assess potential benefits and risks, including neurodevelopmental outcomes, metabolic health, and immune function, to inform neonatal probiotic supplementation strategies effectively.

Despite the significant protective effects of probiotics against NEC and NEC-related mortality, our findings should be interpreted in light of the heterogeneity observed across studies. While subgroup analyses based on gestational age, study population, birth weight, and probiotic strain helped identify potential sources of variability, heterogeneity remained high in certain subgroups, particularly those involving multi-strain probiotics. This suggests that differences in probiotic composition and host characteristics may contribute to the observed variability. As the limitations, due to not reporting the dose, treatment protocol, and duration in some included studies, subgroup analysis based on them was not performed. The included studies did not consistently report detailed information on the specific dosage, duration of administration, or feeding regimens used across individual trials. These factors likely play a crucial role in determining probiotic efficacy but remain a source of uncertainty due to the lack of standardization. Future research should aim to establish optimal probiotic strains, dosages, and treatment durations to maximize clinical benefits while minimizing heterogeneity in study outcomes. As another limitation, results of subgroup analysis may not be fully generalizable or robust due to the sample size limitations. Another key limitation of our umbrella meta-analysis is the lack of detailed data on clinical factors such as comorbidities, the use of antibiotics, and ventilator support, all of which could influence the effectiveness of probiotics in preventing necrotizing enterocolitis (NEC). These factors may significantly alter the outcomes of probiotic supplementation. Future studies should aim to report and account for these clinical variables to provide a clearer understanding of how probiotics function in different clinical contexts, especially in high-risk populations such as premature or critically ill infants.

As strengths, the results of our study by summarizing all previous studies with conflicting results can provide evidence for prescribing probiotics to prevent NEC. The high quality of included studies also confirms the validity of the obtained results. In addition, our protocol is registered in PROSPERO.

Conclusion

Probiotic supplementation can be recognized as a NEC preventing approach in preterm and very preterm infants. As well, probiotics can reduce all case and NEC-related mortality in preterm and very preterm infants. Multi-strain probiotics have a better preventive effect on NEC compared to single-strain probiotics. While multi-strain probiotics show promise in preventing NEC and related mortality, key questions remain regarding the optimal strains, dosage, and duration. Future research should focus on large-scale trials to determine the most effective regimens and explore safety profiles, particularly for vulnerable populations, to guide clinical practice.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12876-025-03788-0.

Supplementary Material 1. The search strategy and results of publication

Acknowledgements

Not applicable.

Authors' contributions

Jiaju Han, Yufeng Ren came up with the idea for the study and designed the search strategy. Peini Zhang searched databases, while Chengfeng Fang, Leilei Yang, and Shenkang Zhou were responsible for selecting the studies and extracting data. Jiaju Han and Zhiqing Ji carried out statistical analyses. Yufeng Ren and Peini Zhang wrote the initial draft of the manuscript. The manuscript was then critically revised by Yufeng Ren, and all authors approved the final version.

Funding

This study was supported by Zhejiang medical and health science and technology plan project 2025KY442.

Han et al. BMC Gastroenterology (2025) 25:245 Page 14 of 16

Data availability

Information about the data and analysis performed in the present study is available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 28 October 2024 Accepted: 17 March 2025 Published online: 11 April 2025

References

- Alsaied A, Islam N, Thalib L. Global incidence of Necrotizing Enterocolitis: a systematic review and meta-analysis. BMC Pediatr. 2020;20(1):344.
- Jammeh ML, Adibe OO, Tracy ET, Rice HE, Clark RH, Smith PB, Greenberg RG. Racial/ethnic differences in necrotizing enterocolitis incidence and outcomes in premature very low birth weight infants. J Perinatol. 2018;38(10):1386–90.
- Seghesio E, De Geyter C, Vandenplas Y. Probiotics in the prevention and treatment of necrotizing enterocolitis. Pediatr Gastroenterol Hepatol Nutr. 2021;24(3):245–55.
- Samuels N, van de Graaf RA, de Jonge RC, Reiss IK, Vermeulen MJ. Risk factors for necrotizing enterocolitis in neonates: a systematic review of prognostic studies. BMC Pediatr. 2017;17(1):1–9.
- Duchon J, Barbian ME, Denning PW. Necrotizing Enterocolitis. Clin Perinatol. 2021;48(2):229–50.
- Underwood MA. Arguments for routine administration of probiotics for NEC prevention. Curr Opin Pediatr. 2019;31(2):188–94.
- AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid-Based Child Health: Cochrane Rev J. 2014;9(3):584–671.
- Aceti A, Gori D, Barone G, Callegari ML, Di Mauro A, Fantini MP, Indrio F, Maggio L, Meneghin F, Morelli L. Probiotics for prevention of necrotizing enterocolitis in preterm infants: systematic review and meta-analysis. Ital J Pediatr. 2015;41:1–20.
- Lau CS, Chamberlain RS. Probiotic administration can prevent necrotizing enterocolitis in preterm infants: a meta-analysis. J Pediatr Surg. 2015;50(8):1405–12.
- Wang Q, Dong J, Zhu Y. Probiotic supplement reduces risk of necrotizing enterocolitis and mortality in preterm very low-birth-weight infants: an updated meta-analysis of 20 randomized, controlled trials. J Pediatr Surg. 2012;47(1):241–8.
- Jiang T, Zhang H, Xu X, Li H, Yang J. Mixed probiotics decrease the incidence of stage II-III necrotizing enterocolitis and death: a systematic review and meta-analysis. Microb Pathog. 2020;138:103794.
- Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2023;7(7):Cd005496.
- 13. Jonkers D, Penders J, Masclee A, Pierik M. Probiotics in the management of inflammatory bowel disease. Drugs. 2012;72(6):803–23.
- Sanders ME. Probiotics and microbiota composition. BMC Med. 2016;14(1):1–3.
- Turner R, Woodfolk J, Borish L, Steinke J, Patrie J, Muehling L, Lahtinen S, Lehtinen M. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection—a randomised controlled trial. Benef Microbes. 2017;8(2):207.
- Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021.
- 17. Wasilewski A, Zielińska M, Storr M, Fichna J. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(7):1674–82.

- Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6(1):39–51.
- Bron PA, Kleerebezem M, Brummer R-J, Cani PD, Mercenier A, MacDonald TT, Garcia-Ródenas CL, Wells JM. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr. 2017;117(1):93–107.
- 20. Bron PA, Van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol. 2012;10(1):66–78.
- Sadeghpour Heravi F, Hu H. Bifidobacterium: host–microbiome interaction and mechanism of action in preventing common gut-microbiotaassociated complications in preterm infants: a narrative review. Nutrients. 2023:15(3):709.
- Murphy K, Ross RP, Ryan CA, Dempsey EM, Stanton C. Probiotics, prebiotics, and synbiotics for the prevention of necrotizing enterocolitis. Front Nutr. 2021;8:667188
- Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. JBI Evid Implement. 2015;13(3):132–40.
- 24. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. bmj. 2017;358:j4008.
- 25. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.
- Bi L-w, Yan B-I, Yang Q-y, Li M-m, Cui H-I. Probiotic strategies to prevent necrotizing enterocolitis in preterm infants: a meta-analysis. Pediatr Surg Int. 2019;35:1143–62.
- Dermyshi E, Wang Y, Yan C, Hong W, Qiu G, Gong X, Zhang T. The "golden age" of probiotics: a systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology. 2017;112(1):9–23.
- 28. Gao X, Wang Y, Shi L, Feng W, Yi K. Effect and safety of Saccharomyces boulardii for neonatal necrotizing enterocolitis in pre-term infants: a systematic review and meta-analysis. J Trop Pediatr. 2020;67(3):fmaa022.
- 29. Guo H, Fan M, Hou T, Li Y, Wang S, Wang X, Peng H, Wang M, Wu T, Zhang Y. Efficacy and Safety of Bifidobacterium longum Supplementation in Infants: A Meta-Analysis of Randomized Controlled Trials. Foods. 2023;12(24):4451.
- Jiao X, Fu M-D, Wang Y-Y, Xue J, Zhang Y. Bifidobacterium and Lactobacillus for preventing necrotizing enterocolitis in very-low-birth-weight preterm infants: a systematic review and meta-analysis. World J Pediatr. 2020:16:135–42.
- 31. Liu H, Wang B, Lu T, Pei Y. Safety and efficacy of probiotics in the prevention of necrotizing enterocolitis in premature and/or low-birth-weight infants: a systematic review and meta-analysis. Transl Pediatr. 2022;11(2):249.
- Men G, Wang L, Lu X, Wen G, Lü Q. Can Enterococcus faecium prevent NEC in preterm infants?: A systematic review and meta-analysis. Medicine. 2023;102(32):e34787.
- Wang H, Meng X, Xing S, Guo B, Chen Y, Pan Y-Q. Probiotics to prevent necrotizing enterocolitis and reduce mortality in neonates: A meta-analysis. Medicine. 2023;102(8):e32932.
- Yang Y, Guo Y, Kan Q, Zhou X, Zhou X, Li Y. A meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Braz J Med Biol Res. 2014;47(9):804–10.
- Ang JL, Athalye-Jape G, Rao S, Bulsara M, Patole S. Limosilactobacillus reuteri DSM 17938 as a probiotic in preterm infants: An updated systematic review with meta-analysis and trial sequential analysis. J Parenter Enter Nutr. 2023;47(8):963–81.
- 36. Batta VK, Rao SC, Patole SK. Bifidobacterium infantis as a probiotic in preterm infants: a systematic review and meta-analysis. Pediatr Res. 2023;94(6):1887–905.
- Deshmukh M, Patole S. Prophylactic probiotic supplementation for preterm neonates—a systematic review and meta-analysis of nonrandomized studies. Adv Nutr. 2021;12(4):1411–23.
- 38. Deshpande G, Jape G, Rao S, Patole S. Benefits of probiotics in preterm neonates in low-income and medium-income countries: a systematic review of randomised controlled trials. BMJ Open. 2017;7(12):e017638.

- McDougall A, Nguyen R, Nguyen P-Y, Allen C, Cheang S, Makama M, Mills K, Hastie R, Ammerdorffer A, Gulmezoglu AM. The effects of probiotics administration during pregnancy on preeclampsia and associated maternal, fetal, and newborn outcomes: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2024;6(4):101322.
- Sun J, Marwah G, Westgarth M, Buys N, Ellwood D, Gray PH. Effects of probiotics on necrotizing enterocolitis, sepsis, intraventricular hemorrhage, mortality, length of hospital stay, and weight gain in very preterm infants: a meta-analysis. Adv Nutr. 2017;8(5):749–63.
- Rees CM, Hall NJ, Fleming P, Eaton S. Probiotics for the prevention of surgical necrotising enterocolitis: systematic review and meta-analysis. BMJ Paediatr Open. 2017;1(1):e000066.
- Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2020;10(10):CD005496.
- 43. Thomas JP, Raine T, Reddy S, Belteki G. Probiotics for the prevention of necrotising enterocolitis in very low-birth-weight infants: a meta-analysis and systematic review. Acta Paediatr. 2017;106(11):1729–41.
- AlFaleh K, Anabrees J, Bassler D. Probiotics reduce the risk of necrotizing enterocolitis in preterm infants: a meta-analysis. Neonatology. 2010;97(2):93–9.
- 45. Guthmann F, Kluthe C, Bührer C. Probiotics for prevention of necrotising enterocolitis: an updated meta-analysis. Klin Padiatr. 2010;222(05):284–90.
- 46. Billimoria ZC, Pandya S, Bhatt P, Pandya B. Probiotics—to use, or not to use? An updated meta-analysis. Clin Pediatr. 2016;55(13):1242–4.
- Balasubramanian H, Ananthan A, Rao S, Patole S. Probiotics for preterm infants in India–systematic review and meta-analysis of randomized controlled trials. Indian J Pediatr. 2020;87:817–25.
- Chang H-Y, Chen J-H, Chang J-H, Lin H-C, Lin C-Y, Peng C-C. Multiple strains probiotics appear to be the most effective probiotics in the prevention of necrotizing enterocolitis and mortality: An updated metaanalysis. PLoS ONE. 2017;12(2):e0171579.
- Sawh SC, Deshpande S, Jansen S, Reynaert CJ, Jones PM. Prevention of necrotizing enterocolitis with probiotics: a systematic review and metaanalysis. PeerJ. 2016;4:e2429.
- Olsen R, Greisen G, Schrøder M, Brok J. Prophylactic probiotics for preterm infants: a systematic review and meta-analysis of observational studies. Neonatology. 2016;109(2):105–12.
- Szajewska H, Guandalini S, Morelli L, Van Goudoever JB, Walker A. Effect
 of Bifidobacterium animalis subsp lactis supplementation in preterm
 infants: a systematic review of randomized controlled trials. J Pediatr
 Gastroenterol Nutr. 2010;51(2):203–9.
- 52. Zhu X-L, Tang X-G, Qu F, Zheng Y, Zhang W-H, Diao Y-Q. Bifidobacterium may benefit the prevention of necrotizing enterocolitis in preterm infants: A systematic review and meta-analysis. Int J Surg. 2019;61:17–25.
- Ang JL, Athalye-Jape G, Rao S, Bulsara M, Patole S. Limosilactobacillus reuteri DSM 17938 as a probiotic in preterm infants: an updated systematic review with meta-analysis and trial sequential analysis. J Parenter Enteral Nutr. 2023;47(8):963–981.
- 54. Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Salehi B, Milton Prabu S: Probiotics: versatile bioactive components in promoting human health. Medicina 2020, 56(9):433.
- Liu D, Shao L, Zhang Y, Kang W. Safety and efficacy of Lactobacillus for preventing necrotizing enterocolitis in preterm infants. Int J Surg. 2020:76:79–87.
- AlFaleh KM, Bassler D. Cochrane review: probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid-Based Child Health Cochrane Rev J. 2010;5(1):339–68.
- 57. Chi C, Li C, Buys N, Wang W, Yin C, Sun J. Effects of probiotics in preterm infants: a network meta-analysis. Pediatrics. 2021;147(1):e20200706.
- Wall R, Hussey SG, Ryan CA, O'Neill M, Fitzgerald G, Stanton C, Ross RP. Presence of two Lactobacillus and Bifidobacterium probiotic strains in the neonatal ileum. ISME J. 2008;2(1):83–91.
- Guo S, Guo Y, Ergun A, Lu L, Walker WA, Ganguli K. Secreted Metabolites of Bifidobacterium infantis and Lactobacillus acidophilus Protect Immature Human Enterocytes from IL-1β-Induced Inflammation: A Transcription Profiling Analysis. PLoS ONE. 2015;10(4):e0124549.
- 60. Lemme-Dumit JM, Song Y, Lwin HW, Hernandez-Chavez C, Sundararajan S, Viscardi RM, Ravel J, Pasetti MF, Ma B. Altered Gut Microbiome and

- Fecal Immune Phenotype in Early Preterm Infants With Leaky Gut. Front Immunol. 2022;13:815046.
- Henderickx JGE, Zwittink RD, Renes IB, van Lingen RA, van Zoeren-Grobben D, Jebbink LJG, Boeren S, van Elburg RM, Knol J, Belzer C. Maturation of the preterm gastrointestinal tract can be defined by host and microbial markers for digestion and barrier defense. Sci Rep. 2021;11(1):12808.
- 62. Underwood MA, Sohn K. The Microbiota of the Extremely Preterm Infant. Clin Perinatol. 2017;44(2):407–27.
- Luedtke SA, Yang JT, Wild HE. Probiotics and necrotizing enterocolitis: finding the missing pieces of the probiotic puzzle. J Pediatr Pharmacol Ther. 2012;17(4):308–28.
- Ladd N, Ngo T. The use of probiotics in the prevention of necrotizing enterocolitis in preterm infants. Proc (Bayl Univ Med Cent). 2009;22(3):287–91.
- 65. Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303(5664):1662–5.
- Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.
- Li SC, Hsu WF, Chang JS, Shih CK. Combination of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis shows a stronger anti-inflammatory effect than individual strains in HT-29 cells. Nutrients. 2019;11(5):969.
- Kieper WC, Troy A, Burghardt JT, Ramsey C, Lee JY, Jiang H-Q, Dummer W, Shen H, Cebra JJ, Surh CD. Cutting edge: recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol. 2005;174(6):3158–63.
- Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011;22(9):849–55.
- 70. Park JS, Lee EJ, Lee JC, Kim WK, Kim HS. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int Immunopharmacol. 2007;7(1):70–7.
- 71. Sherman PM, Ossa JC, Johnson-Henry K. Unraveling mechanisms of action of probiotics. Nutr Clin Pract. 2009;24(1):10–4.
- Lin PW, Nasr TR, Stoll BJ. Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin Perinatol. 2008;32(2):70–82.
- Caballero-Franco C, Keller K, De Simone C, Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G315–322.
- Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function. Int J Mol Sci. 2021;22(13):6729.
- Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv Nutr. 2017;8(3):484–94.
- Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components 1,2. J Nutr. 2011;141(5):769–76.
- 77. Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol. 2021;12:616713.
- 78. Xu B, Wang Z, Wang Y, Zhang K, Li J, Zhou L, Li B. Milk-derived Lactobacillus with high production of short-chain fatty acids relieves antibiotic-induced diarrhea in mice. Food Funct. 2024;15(10):5329–42.
- Choi YJ, Shin S-H, Shin HS. Immunomodulatory Effects of Bifidobacterium spp. and use of bifidobacterium breve and bifidobacterium longum on acute diarrhea in children. J Microbiol Biotechnol. 2022;32(9):1186–94.
- Lin C, Lin Y, Zhang H, Wang G, Zhao J, Zhang H, Chen W. Intestinal 'Infant-Type' Bifidobacteria Mediate Immune System Development in the First 1000 Days of Life. Nutrients. 2022;14(7):1498.
- 81. Terciolo C, Dapoigny M, Andre F. Beneficial effects of Saccharomyces boulardii CNCM I-745 on clinical disorders associated with intestinal barrier disruption. Clin Exp Gastroenterol. 2019;12:67–82.
- Czerucka D, Rampal P. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes Infect. 2002;4(7):733–9.
- Jacobs SE, Hickey L, Donath S, Opie GF, Anderson PJ, Garland SM, Cheong JLY. Probiotics, prematurity and neurodevelopment: follow-up of a randomised trial. BMJ Paediatr Open. 2017;1(1):e000176.

Han et al. BMC Gastroenterology (2025) 25:245 Page 16 of 16

- 84. Poindexter B, FETUS CO, NEWBORN, Cummings J, Hand I, Adams-Chapman I, Aucott SW, Puopolo KM, Goldsmith JP, Kaufman D et al. Use of probiotics in preterm infants. Pediatrics. 2021;147(6):e2021051485.
- 85. Zbinden A, Zbinden R, Berger C, Arlettaz R. Case series of Bifidobacterium longum bacteremia in three preterm infants on probiotic therapy. Neonatology. 2015;107(1):56–9.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.