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Abstract. circular rnas (circrnas) regulate several physi-
ological and pathological processes, but their role in visceral 
lipid deposition has not been explored. in the present study, 
human preadipocytes from visceral fat tissue (HPa-v) were 
induced to form adipocytes, and the circrna expression 
profiles in HPa-v and adipocytes were detected using 
circrna microarrays. The microarray data revealed that 
2,215 and 1,865 circRNAs were significantly up‑ and down-
regulated, respectively, in adipocytes compared with HPa-v. 
Moreover, the parental genes of differentially expressed 
circrnas were associated with fatty acid metabolism based 
on Kyoto encyclopedia of Genes and Genomes analysis. 
Three circrnas (hsa_circ_0136134, hsa_circ_0017650, 
and hsa-circrna9227-1) were selected for quantitative Pcr 
(qPcr) validation, and the qPcr results were consistent with 
the microarray results. Furthermore, Miranda software was 
used to predict the micrornas (mirnas) potentially targeting 
the top 10 up- and downregulated circrnas, and 14 mirnas 
with more than two mirna response elements targeting these 
circRNAs. This is the first study of the expression profiles of 
circrnas in HPa-v and adipocytes and may suggest potential 
therapeutic targets for the visceral obesity.

Introduction

obesity, especially excess visceral lipid deposition, increases 
the risks of numerous diseases, including type 2 diabetes, 
cardiovascular disease, and some cancers (1-4). Generally, 
obesity involves hypertrophy and hyperplasia of excess 
adipocytes (5,6). adipocyte hyperplasia is dependent on 
preadipocyte proliferation and differentiation. research on 
adipocyte hyperplasia has been focused largely on deciphering 
the molecular mechanisms underlying obesity and developing 
novel therapeutics for obesity.

circular rnas (circrnas) are non-coding rnas that 
form a closed circular loop by back-splicing circulariza-
tion (7), and they exhibit higher stability and resistance 
against rna exonucleases compared with linear rnas (8). 
recent research has revealed that circrnas regulate gene 
expression via multiple mechanisms, such as regulating 
gene transcription and splicing (9,10), acting as microrna 
(mirna) sponges (11), and forming rna-protein 
complexes (12). Moreover, some circrnas can be transcribed 
into proteins (13). in mammals, circrna expression is tissue- 
and developmental stage‑specific (14). Numerous studies have 
reported that circrnas participate in the regulation of various 
physiological and pathological processes, such as regulating 
myogenesis and tumorigenesis (13,15,16). However, the role of 
circrnas in visceral adipogenesis has not been investigated, 
and no circrna examined to date has been associated with 
visceral adipogenesis.

examination of the genes differentially expressed in 
preadipocytes and adipocytes should identify novel factors 
promoting or inhibiting lipid deposition. To identify the 
circrnas associated with visceral adipocyte hyperplasia, 
the expression profiles of circRNAs in human preadipocytes 
derived from visceral fat tissue (HPa-v) and adipocytes were 
analyzed using circrna microarrays. The results revealed 
that HPa-v and visceral adipocytes had different circrna 
expression patterns, and the parental genes of the differentially 
expressed circrnas were related to lipid metabolism; more-
over, the candidate circrnas were revealed to target many 
potential mirna sites. 
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Materials and methods

Preadipocyte differentiation. HPa-v (cat. no. 7210; Sciencell 
research laboratories, inc.) were isolated from human 
visceral fat tissue and cultured in preadipocyte medium (cat.
no 7211; Sciencell research laboratories, inc.) containing 5% 
fetal bovine serum, 100 iu/ml penicillin-streptomycin, and 
1% preadipocyte growth supplement (cat.no. 7252; Sciencell 
Research Laboratories, Inc.). After reaching confluence, the 
HPa-v were induced to differentiate for 3 days in dMeM 
containing 0.1 mM 3-isobutyl-1-methylxanthine, 1 µM dexa-
methasone, and 5 µg/ml insulin. The differentiated HPa-v 
were then maintained in dMeM containing 5 µg/ml insulin 
for 6 days. 

Oil Red O staining. cellular lipids were detected using oil 
Red O staining. Briefly, upon reaching 100% confluence or 
differentiation, the preadipocytes were washed three times 
with phosphate‑buffered saline and fixed in 10% formalin 
for 15 min at room temperature. After fixation, the cells were 
stained with oil red o for 20 min at room temperature. Stained 
cells were visualized using a Leica DMI 4000 B fluorescent 
microscope on the white light setting (magnification, x100). 

Total RNA isolation. Total rna was isolated from 5x106 
HPa-v cells and adipocytes, which were differentiated from 
HPa-v cells, using Trizol® reagent (cat. no. 15596018; 
Invitrogen; Thermo Fisher Scientific, Inc.) and reverse tran-
scribed into cDNA using the HiScript Ⅲ 1st Strand cDNA 
Synthesis kit (cat. no. r312-01; Vazyme Biotech co., ltd.), 
according to the manufacturer's protocol. rna integrity was 
evaluated by electrophoresis on 2% (w/v) denaturing agarose 
gels. The concentration and purity of rna were determined 
according to the od260/od280 values using the nanodrop1000 
Spectrophotometer (Thermo Fisher Scientific, Inc.). 

CircRNA microarray analysis. a human circrna micro-
array (agilent Technologies, inc.) containing 170,340 human 
circrna probes was used. Six samples (three HPa-v and three 
adipocyte samples) were detected by capitalBio corporation 
using circRNA microarrays. CircRNAs were purified, ampli-
fied, labeled with Cy3‑dCTP, and hybridized onto the circRNA 
array according to the manufacturer's protocol. The circrna 
expression data were normalized using the GeneSpring GX 
software version 13.0 (https://www.agilent.com). differentially 
expressed circrnas between HPa-v and adipocytes were 
selected according to the following thresholds: |fold change| 
≥5 and P‑value <0.01. Volcano plots were generated to visu-
alize the circrnas differentially expressed between HPa-v 
and adipocytes. Hierarchical cluster analysis was used to 
evaluate differential circrna expression patterns across the 
six samples. The parental genes of the differentially expressed 
circrnas were analyzed using the Kyoto encyclopedia of 
Genes and Genomes (KeGG) database within the database 
for annotation, Visualization and integrated discovery 
(https://david.ncifcrf.gov). The homology of circrnas between 
human and mice was analyzed using circpedia version 2 
software (http://circatlas.biols.ac.cn). The mirna response 
elements (Mers) within circrnas were predicted using 
Miranda version 3.3 software (http://www.microrna.org).

Quantitative PCR (qPCR). The expression levels of peroxi-
some proliferator-activated receptor gamma 2 (PPARG2), 
ccaaT enhancer binding protein alpha (CEBPA), fatty 
acid binding protein 4 (FABP4), hsa_circ_0136134, hsa_
circ_0017650, and hsa-circrna9227-1 were detected by 
qPcr. ribosomal protein lateral stalk subunit P0 (RPLP0) 
was used as an invariant control. qPcr was performed using 
the chamQ SYBr® qPcr Master mix (cat. no. Q311-02; 
Vazyme Biotech co., ltd.), according to the manufacturer's 
instructions, on an aBi 7300 instrument (aBi; Thermo 
Fisher Scientific, Inc.). The primers used for qPCR were as 
follows: PPARG2 forward, 5'-cGG aTT GaT cTT TTG cTa-3' 
and reverse, 5'-cTT TcT GGG Tca aTa GGa G-3'; CEBPA 
forward, 5'-cGT GGa Gac Gca Gca Gaa-3' and reverse, 
5'-GGc cTT Gac caa GGa GcT-3'; FABP4 forward, 5'-caG 
cac ccT ccT Gaa aac-3' and reverse, 5'-Gca aaG ccc 
acT ccT acT-3'; RPLP0 forward, 5'-cTc TGc aTT cTc 
GcT Tcc-3' and reverse, 5'-Gac TcG TTT GTa ccc GTT 
G-3'; hsa_circ_0136134 forward, 5'-aaG Gca ccT GcG GTa 
TTT-3' and reverse, 5'-aGc cac GGa cTc TGc Tac T-3'; 
hsa_circ_0017650 forward, 5'-aaG acc TTc cTc cTT Tac 
cc-3' and reverse, 5'-Gca aca GTc TGa cTT Gcc Tc-3'; 
and hsa-circrna9227-1 forward, 5'-ccG acG cac caT caG 
TTT-3' and reverse, 5'-GaG cGa GGc aca Gaa aGG-3'. The 
thermocycling conditions for the qPcr were as follows: initial 
denaturation at 95˚C for 30 sec; 45 cycles of denaturation at 
95˚C for 5 sec; and annealing and extension at 60˚C for 30 sec. 
The relative expression levels of rna were analyzed with 
the 2-ΔΔcq method (17) and normalized to the loading control 
rPlP0. 

Statistical analysis. The data are presented as the 
means ± standard deviation. The significance of the differences 
was analyzed using Student's t-test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

HPA‑v differentiation. To obtain mature visceral adipocytes, 
HPa-v were induced to differentiate in medium containing 
0.1 mM 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, 
and 5 µg/ml insulin. The characteristics of HPa-v differentia-
tion were confirmed by Oil Red O staining and evaluation of 
adipogenic marker gene expression (Fig. 1). oil red o staining 
revealed substantial lipid deposition in the cytoplasm after 
differentiation (Fig. 1a). in addition, PPARG2, CEBPA and 
FABP4 mRNA expression levels were significantly increased 
in mature visceral adipocytes (Fig. 1B).

Expression profiles of circRNAs in HPA‑v and adipocytes. 
To investigate whether circrnas are associated with lipid 
deposition, a human circrna microarray (version 2.0; agilent 
Technologies, inc.) was used to assess circrna expression 
profiles in HPA‑v and adipocytes. The distribution of circRNA 
expression was illustrated in a box plot after normalization 
using the GeneSpring GX software (Fig. 2a), which revealed 
that the distribution of log2 ratios was similar among all 
samples. Volcano plots were generated to compare the circrna 
expression profiles between HPA‑v and adipocytes (Fig. 2B). 
The circrnas differentially expressed between HPa-v and 
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adipocytes were identified as those with a fold change ≥5.0 and 
a P‑value ≤0.01. In total, 2,215 up‑ and 1,865 downregulated 
circRNAs were identified in adipocytes compared with HPA‑v 
(Table S1). Table i lists the top 10 up- and downregulated 
circrnas, and the homologous circrnas of hsa_circ_0094183, 
hsa_circ_0116913 in mice were MMu_circpedia_216382, 

MMu_circpedia_14213, respectively, while the other 18 
circRNAs did not find their homologous circRNAs in mice 
(Table i). The expression patterns of the differentially expressed 
circrnas were visualized by hierarchical cluster analysis 
(Fig. 2c), which indicated different expression circrna 
patterns between visceral adipocytes and HPa-v. 

Figure 2. Comparison of circRNA expression profiles between HPA‑v and adipocytes. (A) Box plots revealed the distribution of circRNAs in the six samples 
after normalization. (B) Volcano plots revealed the differentially expressed circRNAs. Green and red dots represent significantly down‑ and upregulated 
circRNAs in adipocytes compared with HPA‑v, respectively (fold change ≥5.0, P<0.01). (C) Hierarchical clustering was performed to reveal the differentially 
expressed circrnas between HPa-v and adipocytes. (d) expression patterns of select differentially expressed circrnas in HPa-v and adipocytes were 
determined by qPcr. (e) The heatmap revealed the selected differentially expressed circrnas in HPa-v and adipocytes. *P<0.05. circrna, circular rna; 
HPa-v, human preadipocytes from visceral fat tissue; ad, adipocytes; n.d., not detected.

Figure 1. Characteristics of differentiated HPA‑v. (A) Lipid droplets were detected by Oil Red O staining in HPA‑v and adipocytes (magnification, x100). 
(B) The expression of adipogenic marker genes in HPa-v and adipocytes was analyzed by qPcr. *P<0.05. HPa-v, human preadipocytes from visceral fat 
tissue; PPARG2, peroxisome proliferator-activated receptor gamma 2; CEBPA, ccaaT enhancer binding protein alpha; FABP4, fatty acid binding protein 4.
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To examine the reliability of the circrna microarray 
data, three circrnas were selected for validation by qPcr. 
according to the qPcr results, hsa_circ_0136134 was 
detected in adipocytes exclusively, hsa_circ_0017650 and 
hsa-circrna9227-1 were upregulated 30.0- and 2.3-fold 
in adipocytes compared with HPa-v, respectively (Fig. 2d). 
The qPcr results were consistent with those of the circrna 
microarrays (Fig. 2d and e).

General characteristics of the differentially expressed 
circRNAs. The distribution of the differentially expressed 
circrnas on human chromosomes was analyzed, and the that 
4,080 differentially expressed circrnas were derived from 
genes located on all chromosomes, although rarely on chro-
mosomes 13, 18, 21, and Y (Fig. 3a). When the distribution of 
these circrnas was analyzed among the parental genes, it was 
revealed that 3,968 (97.25%) circrnas were mapped to 971 
parental genes, with 437 (45.01%) parental genes generating 
one circrna and 179 (18.43%) parental genes generating more 
than five circRNAs (Fig. 3B).

KEGG analysis of the circRNA parental genes. To investigate 
the potential functions of the differently expressed circrnas, 
971 parental genes were analyzed using the KeGG database. 
The top 15 most significantly enriched pathways, which 
included fatty acid metabolism, fatty acid degradation, fatty 
acid biosynthesis, and PPar signaling pathways are presented 
in Fig. 4. The most significantly enriched pathway was fatty 
acid metabolism (P=7.83e-08), and most genes were involved 
in metabolic pathways (Gene count=104).

CircRNA‑miRNA interactions. To dissect the potential 
functions of differentially expressed circrnas, the Mers 
of top 10 up- and downregulated circrnas were predicted. 
Table ii lists the mirnas with more than two Mers 
targeting the top 10 up- and downregulated circrnas. 

Table i. Top 10 up- and downregulated circrnas in adipocytes.

circrna id Fold change regulation conservation

hsa_circ_0136134 1925.3240 Up Species‑specific
hsa_circ_0136132 1141.0890 Up Species‑specific
hsa_circ_0136131 680.3070 Up Species‑specific
hsa_circ_0067409 581.1932 Up Species‑specific
hsa_circ_0094183 546.6634 up MMu_circpedia_216382
hsa_circ_0060972 526.6423 Up Species‑specific
hsa_circ_0017650 447.0942 Up Species‑specific
hsa_circ_0128428 355.4433 Up Species‑specific
hsa‑circRNA9227‑1 343.7039 Up Species‑specific
hsa_circ_0060971 336.8149 Up Species‑specific
hsa‑circRNA9333‑2 292.9276 Down Species‑specific
hsa‑circRNA1786‑2 248.5333 Down Species‑specific
hsa_circ_0116913 214.6204 down MMu_circpedia_14213
hsa_circ_0023242 207.2891 Down Species‑specific
hsa_circ_0032023 197.7922 Down Species‑specific
hsa‑circRNA9333‑9 197.0217 Down Species‑specific
hsa‑circRNA2910‑9 187.1047 Down Species‑specific
hsa_circ_0032024 184.9652 Down Species‑specific
hsa_circ_0052586 125.1419 Down Species‑specific
hsa_circ_0003543 113.2247 Down Species‑specific

circrnas, circular rnas.

Table ii. mirnas with >2 mirna response elements targeting 
the top 10 upregulated and downregulated circrnas.

mirna id circrna id

hsa-mir-3138 hsa_circ_0136134
hsa-mir-4717-5p hsa_circ_0067409
hsa-mir-665 hsa-circrna9227-1
hsa-mir-6791-5p hsa_circ_0060971
hsa-mir-4725-3p hsa-circrna9333-2
hsa-mir-6824-5p hsa-circrna9333-2
hsa-mir-6808-5p hsa-circrna2910-9
hsa-mir-4514 hsa-circrna2910-9
hsa-mir-6752-5p hsa-circrna2910-9
hsa-mir-6757-5p hsa-circrna2910-9
hsa-mir-7112-5p hsa-circrna2910-9
hsa-let-7e-5p hsa_circ_0052586
hsa-mir-6840-3p hsa_circ_0052586
hsa-mir-7851-3p hsa_circ_0052586

circrnas, circular rnas; mirna/mir, microrna.
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hsa_circ_0136134, hsa_circ_0067409, hsa-circrna9227-1, 
hsa_circ_0060971, hsa-circrna9333-2, hsa_circ_0052586, 
and hsa-circrna2910-9 potentially interact with 1, 1, 1, 
1, 2, 3, and 5 Mers, respectively. The interaction between 
circrnas and mirnas requires further study.

Discussion

adipocytes are traditionally classified into white, brown, 
and beige adipocytes (18,19). White adipocytes are involved 
mainly in energy storage and can trans-differentiate into beige 
adipocytes and de-differentiate into preadipocyte-like precur-
sors (20-22), while brown and beige adipocytes are involved 
in adaptive thermogenesis (23). removing visceral fat (white 
adipose tissue) (24,25) or increasing the activity or number of 
beige adipocytes can reverse or reduce metabolic dysfunction, 
including insulin resistance and obesity (20,26). in the present 
study, the expression profiles of circRNAs between HPA‑v 
and visceral adipocytes were compared, which were produced 

by HPa-v differentiation, to reveal the potential molecular 
mechanisms of visceral fat accumulation and provide clues for 
the treatment of visceral obesity.

circrnas participate in numerous physiological and 
pathological processes (13,15,16). However, it is not clear 
whether circrnas are associated with adipogenesis and lipid 
metabolism. li et al reported that circrnas have different 
expression profiles in the subcutaneous adipose tissues of the 
laiwu pig and large White pig, which implies that circrnas 
participate in subcutaneous adipose deposition (27). in this 
study, the circRNA expression profiles in HPA‑v and adipo-
cytes were first analyzed by microarray analysis, which 
identified 4,080 circRNAs differently expressed circRNAs 
in HPa-v and adipocytes, suggesting that HPa-v and adipo-
cytes have different circrna expression patterns, and that 
these circrnas may be associated with visceral adipocyte 
hyperplasia.

Some circrnas regulate the expression of their parental 
gene (e.g., ci-ankrds regulate the ankyrin repeat domain) (28), 

Figure 4. The top 15 significantly enriched pathways associated with the differentially expressed circRNA parental genes according to KEGG analysis. 
circrnas, circular rnas; KeGG, Kyoto encyclopedia of Genes and Genomes.

Figure 3. General characteristics of the differentially expressed circrnas. (a) chromosome distributions of the 4,080 circrnas. (B) The percentages of six 
types of circrnas, 1, 2, 3, 4, 5 and 5+ denote the number of differentially expressed circrnas in the parental gene. circrnas, circular rnas.
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sometimes by affecting the alternative splicing of the parental 
gene (9,29,30). The parental genes of hsa_circ_0136134 
and hsa_circ_0017650 are lipoprotein lipase (LPL) and 
inter-alpha-trypsin inhibitor heavy chain 5 (ITIH5), respec-
tively. lPl, a key enzyme in adipose tissue triglyceride 
metabolism, is an adipocyte differentiation marker and upreg-
ulated during preadipocytes differentiation (31,32). iTiH5 
is a secreted protein, and the ITIH5 expression in adipose 
tissue is increased in obesity and reduced after diet-induced 
weight loss, but the role of ITIH5 in preadipocyte differen-
tiation has not been reported (33). Thus, hsa_circ_0136134 
and hsa_circ_0017650 may influence HPA‑v differentiation 
by regulating the expression of their parental genes. Further 
studies are required to confirm the regulatory relationship 
between circrnas and their parental genes. 

Visceral adipocyte hyperplasia is a complex process that 
involves multiple intracellular signaling pathways. in the 
present study, the signaling pathways related to fatty acids, 
which are the substrates of triglyceride synthesis (34), such as 
‘fatty acid metabolism’, ‘fatty acid degradation’, and ‘fatty acid 
biosynthesis’ were enriched. This indicated that circrnas 
influence the expression of genes associated with fatty acid 
metabolism to regulate the accumulation of triglycerides. 
The ‘PPar signaling pathway’, ‘aMPK signaling pathway’, 
‘Metabolic pathways’, and ‘cell cycle’ serve important roles 
in preadipocyte differentiation, fatty acid oxidation, fatty acid 
transport, fatty acid synthesis, lipolysis, gluconeogenesis, 
glycolysis, and cell growth, and may induce the expression 
of genes related to preadipocyte differentiation or alter the 
activities of enzymes related to lipid metabolism, contributing 
to lipid storage. The circrnas related to these pathways may 
play critical roles in visceral adipocyte hyperplasia.

circrnas can recruit mirnas to regulate target gene 
expression (11), and most circrnas have more than one mirna 
binding site; for example, cirS-7 contains over 60 target sites for 
miR‑7 and can function as a miR‑7 sponge and influence miR‑7 
target gene expression (11). in the present study, it was revealed that 
the top 10 up- and downregulated circrnas had many potential 
mirna binding sites; for example, hsa-circrna9227-1, which 
was upregulated in visceral adipocytes (Table i), contained at 
least two target sites for hsa-mir-665 (Table ii). Previous studies 
revealed that hsa-mir-665 is downregulated during adipocyte 
differentiation of human mesenchymal stem cells, and Seipin, 
which promotes adipocyte differentiation (35), is a potential 
target gene of mir-665 (36). These results indicated that 
hsa-circrna9227-1 was involved in regulating adipogenesis 
by recruiting hsa-mir-665. However, more research is required 
to elucidate the function of circrnas as mirna sponges in 
visceral lipid deposition.

The present study assessed the circrna expression 
profiles in human visceral preadipocytes and adipocytes. The 
markedly different circRNA expression profiles between the 
two cell types reflect the close association between circRNAs 
and adipogenesis. Further research is required to clarify the 
function of circrnas in visceral preadipocyte differentiation 
and lipid deposition to develop novel therapeutics for obesity.
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