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Abstract

Sample tracking errors have been and always will be a part of the practical implementation of large experiments. It has
recently been proposed that expression quantitative trait loci (eQTLs) and their associated effects could be used to identify
sample mix-ups and this approach has been applied to a number of large population genomics studies to illustrate the
prevalence of the problem. We had adopted a similar approach, termed ‘BADGER’, in the METABRIC project. METABRIC is a
large breast cancer study that may have been the first in which eQTL-based detection of mismatches was used during the
study, rather than after the event, to aid quality assurance. We report here on the particular issues associated with large
cancer studies performed using historical samples, which complicate the interpretation of such approaches. In particular we
identify the complications of using tumour samples, of considering cellularity and RNA quality, of distinct subgroups
existing in the study population (including family structures), and of choosing eQTLs to use. We also present some results
regarding the design of experiments given consideration of these matters. The eQTL-based approach to identifying sample
tracking errors is seen to be of value to these studies, but requiring care in its implementation.
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Introduction

It is a truism that, whatever the care taken, if a study becomes

large or complex enough then errors will occur in sample tracking.

This issue has had a high profile of late following an error at a

personalized genetic testing service (http://spittoon.23andme.

com/2010/06/08/update-from-23andme/), problems uncovered

by recent ‘forensic’ investigations of genomic scale studies [1], and

the recent highlighting of errors in several high-profile studies [2].

In addition to these major problems, throughout the years of high-

throughput studies, such errors have been nominated as the likely

cause of discrepant results [3,4]. Naturally, for some time, there

have been calls to take care to limit such errors [5], and a number

of strategies to reduce or detect errors are regularly used.

It is common to use replicated control samples at known points

on a plate [6], which should pick up any major errors (although if

these are in the same positions on each plate, then they will not

highlight the wrong plate being used). In addition to this

limitation, the expense of such an approach may make it

unattractive. Many expression platforms offer the opportunity to

mix external controls with the sample to be hybridized, and

initiatives such as the External RNA Controls Consortium

(ERCC) [7] can only be advantageous in this regard. Indeed the

use of such controls has recently been demonstrated for Affymetrix

GeneChips [8]. When genotyping arrays are being used (possibly

for the purpose of inferring DNA copy-number) then we have a

fundamental metric for identifying samples that will be of use if

multiple samples are hybridized from the same individual [9], or if

we have prior knowledge of genotypes [10].

Known phenotypes with a sole (or strong) genetic component

can also be used to check sample validity (or rather to seek to

detect plating errors - as they are unlikely to have enough power to

confirm that a sample is that which it claims to be). Sex is the

obvious phenotype in this regard. With a careful sample layout, as

is discussed later, errors on a plate scale would be detected by a

sex-check, but individual switches of any pair may not. Clearly for

some studies, e.g. in prostate cancer, this will not be an option.

Other traits such as blood group could be compared to the

appropriate genotypes, but for a trait with a narrow driving locus

there is too great a chance that there will be a miscalling of the

genotype class simply to exclude samples based upon this metric.

Many such traits are therefore needed.

Expression Quantitative Trait Loci (eQTLs) that regulate the

transcript abundance of particular mRNAs can be identified

systematically using high-throughput technologies [11] and can

provide this large number of traits, with approximately 5% of

genes showing cis-eQTL driven behaviour [12]. Many studies aim

to infer eQTLs given a set of genotypes, a set of expression

measurements and a mapping between the two. It follows then

that given the genotypes, the expression measurements and a set of

eQTLs one should be able to say something about the mapping. In

short, given a set of expression arrays and eQTLs, one can make

predictions as to the genotypes that one might expect to drive the

expression and then seek to identify a genotype array that has

measured similar values.

The ability to predict SNPs from expression data has recently

been considered from a data-security context [13], but it is an

approach we have used to prospectively ensure data integrity in
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the Molecular Taxonomy of Breast Cancer International Consor-

tium (METABRIC) study [14], and have applied to other cancer

studies. The approach we termed BADGER (‘‘Bead Array

Diagnostic for Genotype and Expression Relationships’’) and it

is described in the Methods section. Examples of two situations

(one simple, one more complex) where confusion over sample

identity has arisen in large-scale studies, and been resolved by

BADGER, are given in Figures 1 and 2.

Our approach is conceptually similar to the recently published

MixupMapper approach to this problem [2], but differs in

implementation due to the nature of the data to which we apply

it. It also differs in the choice of implementation environment, with

BADGER being developed in R [15] and MixupMapper in Java.

In particular, Westra and colleagues’ approach looks to find the

best expression match for a genotype array, while ours has been to

look, in the first instance, for the best genotype match for an

expression array. It is generally easier to identify duplicate

genotype arrays than duplicate expression arrays and thus we

can ensure, if we wish, that we are mapping towards a set of

unique arrays.

Both approaches rely on defining a distance between an

expression array and a genotyping array. Our measure (the

‘BADGER score’) is the sum (across eQTLs) of the squared

difference between the number of ‘B’ alleles called from the

genotype array and the number predicted from the expression

array. MixupMapper, on the other hand, uses a normalized sum

of z-scores for the difference between predicted and observed

expression values. As a minor additional detail, MixupMapper

considers the magnitude of their score, while BADGER looks at

the rank. Naturally, a low score is indicative of a match. The vast

majority of arrays (ideally all but one) will not be a match, so the

score of an array that does match should be outlying and take a

rank of one.

As the concept of identifying plating errors using eQTLs has

been demonstrated, we will not focus on justifying or demonstrat-

ing the approach once more (although a few such results are

presented). Rather, we shall highlight the challenges of applying

such an approach to a population cancer genomics study, and note

where the distinctions of our take on the approach lend themselves

to such data.

Results

While our primary purpose is not to demonstrate once more

that an eQTL-based approach to calling and identifying

mismatched samples can work, we note that our results here

would support the message of Westra and colleagues [2]. We

instead seek to highlight some of the factors that can lead to

misinterpretation of the results of an eQTL-based approach to

identifying mismatches when applied in large tumour studies.

Specifically, we will consider the effects of the loss-of-heterozy-

gosity (LOH) and departure from diploid status that we expect to

see in tumour samples, the impact of cellularity, and the

consequences of having a mixture of ethnicities in a study. In

addition, we will report how study design affects our ability to use

such an approach.

Calling Mis-mappings with Tumour Samples
Westra and colleagues [2] note that it is possible to ‘‘identify

genotypes that clearly did not match any gene expression arrays’’.

With prospectively obtained collections of normal tissue this would

seem to be the case, but with retrospective studies of tumour tissue,

a number of additional problems have come to light. Most obvious

is the fact that these methods expect to see diploid genotype calls,

and the tumour samples may be anything but diploid (although

many algorithms will still generate diploid genotype calls from

these samples). Then there is the issue of stromal contamination of

the tumour samples. This may, in the sample from which DNA

was extracted, be at a different level from that in the sample from

which RNA was extracted. Finally, there may be a mutation

within the tumour that disrupts the biology driving the eQTLs on

which our tests are based.

For the 127 samples for which all four arrays (SNP/expression

for tumour and normal tissue) are available, the qualities of the

matches from normal and tumour tissues are shown in Figure 3. In

general, for both normal and tumour expression arrays, the

‘normal’ genotype array proved to be a better match than the

‘tumour’ genotype array.

The concern then is that, in circumstances where we have not

processed the normal genotype, the tumour genotype would

sometimes not be a good enough match to allow us to assign the

match correctly. Anecdotally, this does seem to occur. A possible

Figure 1. Example of a simple sample switch. One expression BeadChip (12 arrays), and two plates of samples for genotyping are illustrated. In
particular, in the left panel, the intended locations of two samples are highlighted (in blue and red) for the two technologies. The BADGER ranks for
the association between these two expression arrays and genotype arrays are high and indicate that there is a mis-mapping. On the right hand side
the resolution to this example is shown. Not only with a simple switch can we match the expression arrays to the genotype arrays (now with BADGER
ranks of 1), but since the two genotyping arrays are from different plates, while the two expression arrays are neighbouring, we can deduce that the
error took place on the expression chip.
doi:10.1371/journal.pone.0041815.g001
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explanation is that the non-diploid (or diploid but suffering from

LOH) nature of the tumour genotype interferes with the calling of

diploid SNPs. If the majority of the SNP/expression relationships

observed are not directly causally linked, then this would explain

the relatively poor match qualities of tumour SNP arrays as

compared to normal tissue SNPs.

Cellularity and RNA Quality
Since the normal genotype array is shown to be a better match

than the tumour genotype array, even though our eQTLs were

defined mainly from tumour samples, it seems reasonable to

suppose that cellularity (the contamination of tumour tissue with

stromal tissue) will have little effect on the performance of

approaches such as BADGER. Normal contamination will

increase the chances of calling heterozygous SNPs, even when

the tumour has undergone LOH or allele-specific DNA copy-

number changes.

Although the disrupted genotyping calls due to the copy-

number aberrations in tumours can impede approaches such as

BADGER, these remain an accurate description of the tumour

and we must endeavour to identify the sample and match it to an

expression array. As has previously been noted, a poor quality

expression array can also disrupt the process [2], but the quality of

an array is estimable and can be compensated for, or the array can

simply be discarded (at least when defining the eQTL relation-

ships).

Figure 4 shows the association between two measures of array

quality (see Methods) and the minimum BADGER score

associated with an array (an indicator of whether a matching

SNP array could be found). Both statistics are good predictors of

the performance of an array, with the DRANK statistic doing better

than P95. Clearly at least one of the arrays scheduled to be empty

actually had a sample hybridized to it, and a number that had

samples assigned to them failed to hybridize. Note that when there

is no signal on an array, the rank difference is not zero as one

might expect, but rather it is substantially negative.

Ethnicities
Using principal component loadings published for the shellfish

tool (www.stats.ox.ac.uk/̃davison/software/shellfish/shellfish.

php), one can project Affymetrix SNP data onto a triangle where

the three corners represent the HapMap populations from which

the loadings were derived. For convenience we will term the

groups of samples that form in these corners the ‘Europe group’,

the ‘Africa group’, and the ‘Asia group’. We have also observed

individuals lying between the Africa and Europe groups (whom we

shall combine in the ‘Africa/Europe group’) and between the

Europe and Asia groups (whom we shall combine in the ‘Europe/

Asia group’).

We plot the average BADGER score (NB score not rank)

associated with each genotype array against group in the left hand

panel of Figure 5. We see that the mean score is lower in the

Europe group. This is to be expected, as the Europe group

contributes the vast majority of expression arrays in our collection

and one would not be surprised that these may predict genotypes

that are more similar to those obtained from other samples in the

Europe group. Also, being in the majority, the Europe group

patients drive the eQTL-like associations used by BADGER and

these associations may differ between the groups.

More important than the average score is the minimum score

that, for any genotyping array with a matched expression array in

the data set, we might expect to be comparable regardless of

ethnicity. In the right hand panel of Figure 5 we see that this is not

the case, and that while most groups are indeed comparable, the

Africa group exhibits minimum scores that are higher. We have no

a priori reason to believe that this group will be over-represented in

Figure 2. Example of a complex sample switch. A series of patients (referred to by letter) from whom samples are taken (middle row, samples
depicted as squares) are seen at some point. Some time later, six of these patients (E,F,G,I,J,L) satisfy the criteria for inclusion in a retrospective study
and it is intended to run the samples from those patients on expression arrays (circles, top-left) and genotype arrays (circles, top-right). Since the
patients (and thus samples) formed a sequence, we include space-holders in the depiction of the arrays for those samples that were not suitable for
the study in question (denoted by dashed circles for the arrays and grey shading for the samples). The BADGER ranks for the expression and
genotype arrays that were supposed to be associated with these six samples range from 949 to 2473 suggesting that not one of the six is correctly
mapped. The resolution is difficult to find unless one knows about the original sample sequence, including the samples that are not part of the
retrospective study. When resolved (bottom row) we see that the samples going onto the genotype arrays have ‘slipped’ by one position with the
result that samples G and J have been run on expression, but not genotyping arrays, while samples H and K (which were not meant to have been run
at all) have been run on genotype, but not expression arrays. For the four arrays that have been run on both technologies, we can see that the
BADGER ranks are now perfect. It is worth noting that the expression arrays on which samples G and J were run have a high ‘minimum BADGER score’
which is a sign that the sample does not feature on any genotyping array in the study.
doi:10.1371/journal.pone.0041815.g002
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the number of genotyping arrays for which no matched expression

array exists. For a relatively high proportion of this group we

cannot be sure of the match between genotype and expression, but

this is more likely to be a consequence of the higher scores seen in

the Africa group than a cause of it.

We cannot claim, for any eQTL pair we use, that the genotype

we observe is actually driving the expression (see next section). At

best it is likely to be a tagging SNP for the causal variant (if one

exists), and the performance of the tagging SNP will vary between

ethnic groups. It has been observed that only 50% of eQTLs are

seen in more than one population, and a very small minority in

several [16,17]. Thus it should not surprise us to see behaviour

such as that shown in Figure 6 where the association between

genotype and expression that is so clear in the Europe and Asia

groups is not evident in the Africa group. Since this group is in the

minority, the predicted genotypes generated for these individuals

from an association defined by the Europe and Asia groups will be

poor at best.

Close Relatives and Validation
To illustrate further aspects we consider an additional data set:

the genotype and expression data associated with the HapMap

(Phase I) samples [18], as originally studied by Stranger et al. [16],

and used as one of the illustrative datasets in the MixupMapper

paper [2]. While not a cancer study, this allows us first to confirm

that BADGER can identify the problems that MixupMapper

identified, second it allows us to examine a dataset with known

family structures, and third it provides an illustrative study with

greater balance of ethnicity, balance of sex, and presumed better

quality of data since this was a prospective study. Finally, it

provides a more useful data set for investing the ‘power’ of these

techniques. See Sweave S1 for full details.

MixupMapper identified only one mix-up in this data set,

finding that the best expression match for the genotype data

supposedly from sample NA18515 was that supposedly from

sample NA18517.

In the CEU population, there is a problem with one of the

expression arrays associated with "NA10856" (labelled

GSM232786_NA10856_2_2). However it is clear that the other

three expression arrays are good matches, and with some

investigation, it is apparent that the values for this array are

identical to one of the Yoruban arrays (labelled

GSM232802_NA18503_1_1), but that the values differ in GEO,

making it unclear where the problem arose. We can speculate that

since MixupMapper would have found a good match for the

NA10856 genotype array, that it would not have flagged this as

being problematic.

With BADGER, we also find that the four expression samples

associated with NA18515 all offer the genotype array mapped to

Figure 3. The effect of tumour expression and genotypes on apparent matching quality. For 127 quartets of matched tumour-and-normal
genotype-and-expression arrays we illustrate the relative quality of the matches between the four different expression-genotype combinations. The
127 genotype array pairs are all clearly well-matched (not shown). Our approach is to identify the quality of a genotype array’s match to an expression
array, and all results given are reflective of this direction of comparison. For the sets of tumour and normal expression arrays, indicated in the arrows
are the number of expression arrays for which the two genotyping arrays are equally good matches (have the same genotype calls), the number for
which the tumour genotyping array for that sample has a better score than the normal genotyping array, and vice versa. Additionally, in the corner
panels, the BADGER ranks for the matches amongst the entire data set to which we have access are presented.
doi:10.1371/journal.pone.0041815.g003
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NA18853 as the best match. It is true that the expression arrays

associated with NA18517 are the best matches for the SNP array

mapped to NA18515, however this is because NA18517 is a

parent of NA18515. The expression arrays associated with

NA18516 (the other parent) are the next best match. In the

absence of an expression array for the child, we would expect the

best match to be one of the parents. In fact, we can easily see from

the genotypes of the mother/father/child trio that the error (if

there is an error) must be in the expression array.

The genotype array that offers the best match to all of the

NA18515-associated expression arrays is that associated with

NA18853. The match is marginally worse than that for the

expression array associated with NA18853, but noticeably better

than that associated with NA18854 (the child of NA18853).

Comparison of the full expression profile suggests that the

Figure 4. Expression array quality scores and association with BADGER performance. In order to illustrate a wide range of array qualities,
this figure includes some poor quality arrays that (for this very reason) were excluded from METABRIC. Left panel: Illustrating the association between
the 95th percentile of observed log-intensities (p95) and the minimum BADGER score associated with the array. Right panel: the association between
DRANK and minimum BADGER score. Also indicated, in both cases, are the arrays where no sample was scheduled to be hybridized.
doi:10.1371/journal.pone.0041815.g004

Figure 5. The effect of ethnicity on BADGER performance. Every genotyping array is compared to every expression array, and a score assigned
to the match (the lower the score the better the match). In the left hand panel, the mean score by genotype array is compared to the ethnicity of the
patient as inferred from the genotyping array. In the right hand panel the minimum score associated with a genotyping array (a better indicator of
whether a match exists) is plotted by ethnicity.
doi:10.1371/journal.pone.0041815.g005
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NA18515 expression arrays are not simply accidental replicates of

NA18853. Thus the mix-up is difficult to resolve from such a

distance, and we would recommend removing the expression

arrays associated with NA18515 from analyses but would leave the

genotype arrays as they are. Note that we are using the expression

matrix given by Westra et al. so can make no claims regarding the

original study [16].

While the match to a close relative tends not to be as good as

that to the correct sample, we do see enough overlap in values that

if one of the samples were missing then we would be in danger of

mistakenly associating the two as being from the same individual.

This would presumably be more of a danger if the genotype array

were missing as the existence of relatives will be harder to deduce

from the expression data.

Taking the Han Chinese and Japanese individuals, as these do

not contain complicating family groups, we can simulate sample

switches and confirm the utility of BADGER. We find that half of

the samples have to be switched to require more than one

productive iteration (the final iteration is always to confirm that

there are no more switches to make), and two-thirds must be

switched for there to begin to be unresolved switches. This may be

an over-estimation of performance, since our ‘external’ eQTL set

was, in fact, defined by Westra et al. from these data, but

competing against this are the lack of subtlety in the corrections

that in practice is afforded by the human assessment of the

potential switches and lab-validation between iterations. The

assessment here was simplistic and automated for the simulation

study. Even allowing for these points, the fact that 80 of the 90

samples would need to be deranged before an approach such as

BADGER is unable to add value is remarkable.

Choice of eQTLs
Defining the eQTLs from the data set therefore can potentially

impact upon any genetically distinct minority group in a study.

Westra and colleagues [2] mention some of the potential benefits

of using externally defined eQTLs. There would certainly be

benefits to doing so if we could ensure that all subgroups were

represented. It is known that the performance of expression probes

can be affected by SNPs [19] that happen to be covered by a

particular probe and that this phenomenon can mimic eQTL

behaviour (‘cis-eQTL artefacts’ [20,21]). We have shown specif-

ically that this is a problem for the longer probes of Illumina

BeadArrays [22].

Many eQTL studies separate out such expression probes in

order to avoid spurious associations [23]. We would suggest that

these ‘cis-eQTL artefacts’ not only assist in the process as noted by

Westra et al., but may provide a robust basis for correcting errors.

By exploiting a technical artefact in this way, we would hope to be

less sensitive to genuine biological differences between groups of

patients than we would be if relying in uniformity of genuine

eQTL behaviour across populations.

We initially chose a set of 383 eQTLs on the basis of the

strength of association seen in our data. The significance of the

association is as much a measure of the distribution of genotypes as

it is the discriminatory power of the expression-SNP association,

but this is a first pass and the set is refined as part of the BADGER

approach as detailed in the Methods. Naturally some of these

eQTLs are ‘cis-eQTL artefacts’. Indeed, this initial set of

expression probes is already enriched for probes that cover SNPs

with 184 out of 383 (48%) falling into this category as opposed to

11,027 out of 34,361 (32% ) of reliable probes on the array. Full

details of SNP coverage for Illumina expression arrays are given in

Table 1. Similar information is available for Affymetrix arrays

[24].

When the set of expression-SNP associations is reduced to 125

probe-pairs, it is further enriched for SNP-covering probes. Only

26% of the 199 probes that do not cover SNPs survive into the

refined set, while this increases to 33% for the 119 probes that

Figure 6. Example of eQTL behaviour differing by ethnicity. Depicted are the log-intensity values for the Illumina ILMN_1710752 probe in the
NAPRT1 gene plotted against the genotype calls for the rs10112966 SNP from the Affymetrix SNP_A-4292499 probe (all in the 8q24.3 region of the
human genome). Naturally only data from those genotyping and expression arrays that can be matched are shown. The association is shown for
three groups. The association between this SNP and gene has previously been noted [26], as have the differing allele frequencies between groups.
doi:10.1371/journal.pone.0041815.g006
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cover one SNP, 47% for the 38 probes that cover two SNPs and

59% for the 27 probes that cover more than two SNPs.

To reinforce this point, amongst our set, there is a trend that the

more SNPs the expression probe covers, the smaller the

discrepancies between the predicted and observed values of the

SNP-probe in the eQTL association. This is shown for the Europe

and Africa groups in Figure 7. Our eQTLs are biased towards the

Europe group that contains the majority of our samples and so the

observed associations are stronger for this group. Despite

associations in the Africa group being generally weaker, the

probes that cover multiple SNPs still explain a useful proportion of

the variation of log-expression and if chosen in an unbiased way

(e.g. solely based on annotation) they may provide a set of probes

that will be reliable across the different population groups.

Design of Experiments

Plate Layout for Sex-based Diagnostics
By choosing distinct but differing patterns, by sex, for the

sample layout on a plate, and ensuring that the patterns do not

have rotational symmetry, the plotting of the inferred sexes of

samples by plate will provide a clear and definitive diagnostic as to

whether the correct plate has been used and whether in the correct

orientation. Individual, simple, switches of neighbouring samples

(in column or row) may not be picked up, but we can maximize

the chances of doing so by choosing patterns under our constraints

that minimize the numbers of neighbouring pairs (in columns or

rows) of the same sex.

If the numbers of the sexes are equal in a study, a chequer-

board pattern minimizes the numbers of neighbouring pairs of the

same sex, but has rotational symmetry. Small perturbations from

the chequer-board pattern will be susceptible to confusion (either

to themselves via a rotation and small number of switches), or to

one another (via slightly more switches). It seems likely that a

regular pattern will be preferable, for ease of setting up the plate,

and if only a small number of plates are required then this may be

feasible. Note though that in order to avoid rotational symmetries,

and indistinguishable plates, the number of simple switches on a

plate that cease to be detectable (i.e., the number of pairs of

neighbouring samples of the same sex) increases rapidly (shown in

Figure 8).

If we had 100 plates on which the layout of the sexes was

random, then by simulations we expect the closest pair of plates to

differ in 30 wells (95% CI: 26 to 32), which would require a

minimum of 15 simple switches to explain. Thus a random

arrangement of the sexes will allow for the detection of plating

errors. We would expect, with a random layout, to miss

approximately 85 (95% CI: 72 to 98) of the potential simple

switches on a plate (as opposed to at least 56 for all but the most

trivial patterns of regular layout). Thus if the complication of

Table 1. Numbers of SNPs in reliable probes for Illumina
Human expression BeadArrays.

Generation of
BeadArray

0
SNPs

1
SNP

2
SNPs

3
SNPs

4 or more
SNPs

fourth generation 23454 8016 2060 517 429

third generation 23334 8188 2031 461 347

second generation 21734 7262 1680 364 239

first generation 16207 6786 1966 495 326

From the annotation packages in Bioconductor 2.9, for four generations of
Illumina expression BeadArray (illuminaHumanv3.db, illuminaHumanv3.db,
illuminaHumanv3.db, and illuminaHumanv4.db), noting the number of
expression probes annotated as being good or perfect and covering 0, 1, 2, 3 or
‘4 or more’ SNPs.
doi:10.1371/journal.pone.0041815.t001

Figure 7. The coincidence of expression probes and SNPs, and the magnitude of residuals. Plotting for the set of 383 eQTLs, the mean
squared residuals (predicted - observed B-allele counts) against the number of SNPs that are situated ‘under’ the expression probe according to the
annotation. On average, the predictions are closer to the observations for probes that lie over multiple SNPs.
doi:10.1371/journal.pone.0041815.g007
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attempting to use one of these regular designs was to come at the

cost of doubling the probability of making a simple switch, then we

might not expect it to bring benefits over a random layout. In such

circumstances, if the natural ordering of samples would provide an

‘effectively random’ ordering of the sexes, then employing it is a

highly defensible approach.

Plate Layout for eQTL-based Diagnostics
If using eQTLs to identify our mismatches, in a scenario where

only one sample per person is run on any technology, then

whatever our design, we will always be able to detect a simple

switch between samples run on neighbouring arrays. Once this is

observed we can correct the recorded association between the

genotype and expression arrays. If, however, we have additional

sample information (and we usually will), the question may still

remain as to which clinical sample is associated with each pair of

arrays (this may not matter for some studies). If the two samples

were neighbouring on the expression platform, but in completely

different batches for the genotyping platform, then the confusion

can be attributed to the expression platform and rectified (and vice

versa). If the samples were neighbouring on both platforms then it

may not be possible to identify the source of the error and so not

subsequently possible to correct it.

Thus, in contrast to the case where sex was used to identify mix-

ups, the natural approach (in this case to use the same layout for

genotyping and plates) is not acceptable. Rather there is a desire

then to have designs for the layout of the two experiments

(expression and genotyping) that avoid (in general) neighbouring

samples in one experiment being neighbouring samples in the

other. This divergence of layout would ideally happen at the

earliest possible stage in sample preparation. However, as with sex-

based detection, there is a concern that adopting such an approach

would enable us to detect plating errors at the expense of

increasing their number. One might argue that, if all such errors

were simple switches, then the success rate seen for resolving them

in our approach and that of Westra et al. would prevent this from

being a cause for concern. There are other errors such as

contaminating two samples, omitting a sample or introducing an

alien sample, from which we could not so easily recover, and

which would caution us against such an attitude.

There is no approach that will be optimal for all combinations

of study and laboratory. Each study group should then seek to

balance these tensions as best they can within their own

circumstances. What is clear though is that, for the successful

resolution of mix-ups, complete layouts of samples at all stages of

an experiment are required whether those layouts are ‘designed’ or

not.

Discussion

What is apparent from these results is that when dealing with

retrospective clinical studies, there may be legitimate reasons why

a genotyping array will not appear to be a match for an expression

array even if material from the same person were run on both.

Therefore, if one discards arrays solely on the basis that they do

not appear to match, then there is a risk that one is discarding

well-matched arrays. Moreover, these might be the really

interesting samples where something unusual and revealing is

happening. The importance of a predictor for the performance of

BADGER is also clear. We do not wish to expend energy pursuing

an apparent mismatch when the results have been driven by array

quality.

Ideally then, we should discard arrays not because they do not

appear to match, but because we can identify (possibly even

validate) the error that led to the mismatch and yet not a way to

correct for it. If we cannot identify the error then there are risks

both in retaining the arrays (we may contaminate the study with

erroneous data) or in removing them (by artificially making the

study population more homogeneous we may compromise the

external validity of our inferences).

If there is a distinct genotypic subgroup forming a small

minority of samples in the study, then we have seen that these are

particularly prone to being called as mismatches in error.

Depending on the nature and purpose of the study, it may be

that it makes sense not to include this subgroup in a primary

analysis. Studies are often designed with inclusion criteria that

restrict the heterogeneity of samples (sacrificing, in part, the

external validity of the study for increased internal validity), and

this could be seen in that context. If this is the view, it may make

little practical difference if the arrays are excluded on the basis of

the apparent mis-mapping of samples, or if they are excluded

Figure 8. The ability of different layout designs to detect simple switches of neighbouring samples. Illustrated are three different
patterns of sex (indicated by colour) by which samples could be laid out. There are 172 different sets of neighbouring pairs (ignoring diagonals) that
one can identify in a 8612 plate, and so 172 opportunities for a simple switch of neighbouring samples. For the simplest approach illustrated, 36 of
these (three in each column) are of the same sex and so we would not be able to use sex as an identifier to spot the switching of these samples. The
inverse of this design will be identical under rotation to the illustrated design and so it may not be desirable to use both. Thus we quickly see the
need for more complicated designs such as the second illustrated here. Several permutations of the four basic columns will produce acceptable (and
distinguishable) designs, with some small effect on the number of sample switches identifiable by the design. The third design shows how a possibly
appealing layout, from the point of view of convenience, has poor ability to detect simple switches of samples - barely doing better than a random
layout. Note that the 1–2–2–2–1 pattern of rows in the first and third examples is essential to avoid the rotational symmetry that would be present if
we used a 2–2–2–2 pattern.
doi:10.1371/journal.pone.0041815.g008
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because they represent a minority pattern, in which case the policy

of removing unresolved samples might be more attractive.

Had our purpose been to search for eQTLs, then removing the

Africa group from analyses would undoubtedly have increased the

number of ‘eQTLs’ that we would have found, but this can only be

reasonable if we can recognize the restrictions on the interpreta-

tion of our findings that would result. In this example, it is clear

what is happening, and it seems likely that we could relate our

findings to a valid external population. Matters may not always be

so clear, and the removal of samples on the basis of genetic

patterns (when an actual error cannot be identified) will always

have the potential to bias downstream analyses. A pragmatic

approach may be to perform multiple analyses with different

inclusion criteria in order to check the robustness of the results.

Crucial to this process is the existence of a set of eQTLs. These

do not need to be of ‘publishable’ standard, and indeed their

significance is not the same as their predictive power. One has the

choice of using an independent data set to define these (as did

Schadt et al. [13]), possibly exploiting an online catalogue of

eQTLs. An alternative is to use a subset of data for which one has

particular confidence, such as we have done. Finally, the definition

of pseudo-eQTLs by considering the technologies being used may

provide the required set. If none of these is available, then defining

eQTLs from the full data set is still likely to work and, so long as

the results are treated with appropriate caution, will do no harm.

Throughout we have referred to a process of working from the

expression array to identify a matching genotype array. We

propose working in this direction for a number of reasons. Firstly,

it is easier to identify duplicate arrays (or arrays otherwise from the

same sample) in the genotyping arrays and limiting the search to a

set of unique arrays can be beneficial for interpretation of the

BADGER results. If a genotyping array’s supposedly matching

expression array was not the array with best BADGER score, it

might not be as easy to identify that this is because an accidental

duplication of that array has occurred. From an expression array’s

point of view, since genotype duplicates can easily be removed, the

supposedly matching genotype array should always have a

BADGER rank of 1.

Additional beneficial factors include the greater consistency of

quality between the genotype arrays, an easier to define metric for

distance between genotypes than between expression values (some

eQTLs, while providing good discrimination, see much greater

variance of expression with some genotypes compared to others),

and a possibly lower chance (in our experience) of plating errors

occurring in the genotyping arrays than in the expression arrays.

If, however, we were using externally defined eQTLs, then we

may prefer to work from the genotype arrays towards the

expression arrays as the quantification of the eQTL association

may be dependent on factors, such as ethnicity, that we can infer

only from the genotyping arrays.

In determining what error may have occurred it is important

that we can access all information about a sample’s location at

various stages in its preparation. Because not all samples are

eligible for inclusion in a study, the ordering/layout of extracted

RNA/DNA may not match the ordering/layout of the samples. In

turn, perhaps to accommodate control samples or repeats of

earlier failed arrays, the processed RNA/DNA may have a

different ordering/layout again. Finally, if using a BeadChip with

multiple arrays, the layout may change once more (hence the

increased risk for the expression arrays mentioned above). If for

the RNA and DNA we have access only to the final layout

information then we may miss the source of an error or attribute it

to the wrong experiment (e.g. RNA rather than DNA), which

would be worse.

It would be preferable to minimize the number of plating errors,

or to increase the chances of identifying and correcting them. We

have mentioned some of the aspects of experimental design that

may impact on both of these objectives. Utilization of bar codes

from the earliest stages of sample preparation, and the automation

of processing to as great an extent as possible would seem desirable

to minimize the number of plating errors, or maximize the chances

of detecting any that do occur.

The confirmation of some sample switches via STR genotyping

is beneficial, but the level of BADGER evidence for some mix-ups

is so compelling that the validation of all sample switches in this

way would be a waste of time and resources. Moreover, there will

not always be sufficient residual DNA in the sample plates to

validate successfully in this manner, nor can all errors (particularly

errors in transferring from plate to microarray) be identified with

this approach. Given the considerable efforts required to conduct

such validation, any additional methods that might provide

evidence (e.g. video recording of all sample preparation) should

be given consideration.

Our exploitation of cis-eQTL artefacts ignores one particular

resource. Since the second generation of Illumina BeadArray,

there have been large numbers of pairs of probes that differ at a

single nucleotide (183 pairs in the fourth generation, 166 pairs in

the third, 176 pairs in the second, and 9 pairs in the first). These

pairs of probes most often differ at a known SNP, and so could

provide a stronger association between genotype and expression

measurements, although there are no guarantees that the

particular genes involved will be useful for any particular study.

The BADGER approach to identifying errors can undoubtedly

be extended and improved. We have already mentioned that more

informative priors could be used. Also tissue-specific eQTLs could

be used to identify errors where multiple tissues are being

contributed from each participant. We have been anticipating

that the process will begin with an intended matching of

expression and SNP arrays, however if pre-defined eQTLs are

used (either known tissue specific eQTLs or cis-eQTL artefacts)

then it will be possible to infer the matching of arrays from scratch.

A similar approach can be adopted for studies involving other

data types, for example methylation and miRNAs, as well as

purely expression studies involving multiple tissues where we

might want to predict genotypes from each tissue-type to validate

the identities of samples. There may be other resources on the

arrays that could be exploited to aid mapping. Ultimately though,

what matters is not how we find and correct the errors, but that we

can and do find and correct them.

Methods

Overview of Data Used
Across a number of studies we have assembled a large number

of genomic measurements of breast cancer samples (.2,500

Affymetrix SNP 6 genotyping arrays and .3,000 Illumina HT12

v3.0 expression arrays. The vast majority of these are primary

tumour samples, but some of them correspond to matched normal

tissue. In this paper we focus on the largest subset of these, the

2,136 expression and 2,465 genotyping arrays published in the

METABRIC study [14] (2122 of these are matched). Amongst

these, for 127 tumours, a complete set of high-quality genotype

and expression arrays for both tumour and matched normal tissues

was identified, the tumour and normal genotype arrays being

clearly matched. The data generated by METABRIC are revised

regularly as annotations and clinical information become avail-

able, thus the numbers presented here may differ a little from those

presented in the METABRIC paper [14].
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All results presented pertain to the published METABRIC

arrays except for Figures 2 and 4, which by their nature pertain to

arrays that it would not be appropriate to include in a mature data

set, and the initial derivation of the eQTL set that was defined

across all of the breast cancer data available at the end of the

METABRIC pilot study (some of which did not contribute directly

to the METABRIC dataset). For access to the array data, one

should see the METABRIC paper.

Definition of Our eQTL Set
Rather than using an externally defined set, we define our initial

set of eQTLs from the data, but using only the 96 samples that

formed an internal pilot for the study. Due to the additional

scrutiny to which the pilot was subjected, the low number of

samples available at the time (thus limiting scope for errors), and

the relatively ‘low-throughput’ nature of this stage of the study, we

are confident that no samples were switched in this data set.

We look for cis-acting eQTLs (log10(p).15 and the SNP within

1 megabase of the expression probe) and considered only the

expression probes with perfect annotation. This last criterion is

possibly excessive, but still returns 383 eQTLs for our data set,

despite the relatively small number of arrays from which we are

deriving them.

Overview of BADGER Method
The method we have used for finding plating errors we have

termed BADGER, ostensibly standing for ‘‘BeadArray Diagnostic

for Genotype and Expression Relationships’’, but also recognizing

the ‘nagging’ characteristic of the iterative procedure. We begin

with the intended mapping of samples to arrays, and a set of

strongly associated pairs of expression and genotyping probes

(eQTLs). Using our samples, these associations are quantified and

then used to ‘predict’ genotypes corresponding to each expression

array.

For every combination of expression and genotype array a

distance (the BADGER score) is calculated between the predicted

genotypes from the expression array and the observations from the

genotyping array. For each expression array, the matches to all

genotyping arrays are then compared and ranked such that the

best match is of rank 1. If the genotyping array that was thought to

match the expression array is of rank 1, then we accept this

mapping. Otherwise we search to see whether there is a likely

plating error. If a plating error is found then (ideally after

validation) we adjust the annotation of the samples on the arrays

accordingly and return to the beginning. At this step we may also

refine our set of eQTLs, removing any that show little or no

diagnostic value. We judge an eQTL pair of expression and SNP

probes based on the squared differences between the observed call

from the SNP probe and the predicted SNP from the expression

probe, summed over all pairs of arrays that we believe to match

well.

Genotype Prediction
We consider only three possible genotypes (AA, AB and BB),

despite the possible non-diploid status of the samples we are

investigating. Under our diploid assumption we can represent

these numerically by taking as our statistic the B-allele count (0,1,

or 2 respectively). For a given eQTL pair of an expression probe

and genotype (indexed by i), and a set of known well-mapped

arrays, we use kernel density estimation techniques to generate

three density functions for expression, corresponding to the three

genotypes. These we denote fi0(x), fi1(x), and fi2(x) in the obvious

manner.

For each expression array, j, we take the expression level

associated with the ith eQTL, xij , and estimate the value of the

three density functions at that level (fi0(xij), fi1(xij), and fi2(xij)).

Giving each genotype an equal prior probability, we obtain

posterior estimates for the B-allele count of

fi0(xij)

fi0(xij)zfi1(xij)zfi2(xij)
,

fi1(xij)

fi0(xij)zfi1(xij)zfi2(xij)
,

and
fi2(xij)

fi0(xij)zfi1(xij)zfi2(xij)
:

ð1Þ

We then take as our predicted B-allele count the posterior

expected value

G
0
ij~

fi1(xij)z2fi2(xij)

fi0(xij)zfi1(xij)zfi2(xij)
, ð2Þ

while our observed B-allele count for the probe associated with the

ith eQTL, on the kth genotype array, we denote Gik.

Comparison of Predicted and Observed B-allele Counts
Without loss of generality, assume we have l expression arrays

and m genotype arrays where the first n of each type should

correspond to the same n samples (i.e., G
0

ij should be an estimate of

Gij if jƒn but is not expected to be if jwn). We construct an l|m

matrix of BADGER scores, B, where

Bjk~
X

i

(G
0
ij{Gik)2: ð3Þ

Naturally, the smaller the value of Bjk, the better the match

between the predicted and observed genotypes. Thus we can

obtain the BADGER rank of the match (recalling that we are

working from expression to genotype arrays), BRjk, as the rank of

Bjk amongst the set fBj1,Bj2,:::,Bjmg. Note then that the diagonal

of the n|n upper-left sub-matrix of BR will ideally be a vector of

1 s.

Refinement of eQTL Set and Iteration
The performance of our eQTLs in the prediction of genotypes is

not guaranteed, as this was not the criterion on which they were

selected. Thus we choose to refine the set based on the

performance of the eQTL amongst the arrays we believe to be

matched. We can define, for the ith eQTL, a discrepancy statistic

Di~
Xn

j~1

(G
0
ij{Gij)

2, ð4Þ

which allows us to identify a cut off D
0

whereupon we will discard

all eQTL pairs for which DwD
0
. The value of D

0
to use is

somewhat arbitrary and can be suggested by consideration of the

distribution of the fDig. In our case, an inspection of a histogram

of fDig suggested that D
0
~1100 would be a suitable cutoff. This

reduces our set of eQTLs from 383 to 125. Since our SNPs

generally have a high minor allele frequency, and we anticipate

few mismatches, a value of D
0
& n

2
(as we have here with n~2122)

might not be unreasonable.
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After refining our eQTL set, our BADGER scores can be

quickly recalculated from the existing G
0

matrix.

B�jk~
X

i:DivD
0
(G
0
ij{Gik)2: ð5Þ

If we see evidence that there are mismatched arrays, then the

process must return to step 1, as the eQTL densities will need to be

recalculated. In this case, it seems prudent to reinstate the full

eQTL set.

Assessment of BADGER Performance
The set of BADGER scores associated with an expression array

consists mainly of scores for non-matching arrays and just one (or

a few, depending on the design) for a matching array. If our eQTL

list is long enough, or our value of D
0

small enough, then we

expect the BADGER score associated with the true match to be

well-separated from the bulk of the BADGER scores.

Consequently, we sort the set fBj1,Bj2,:::,Bjng to generate order

statistics fB(j1),B(j2),:::,B(jn)g such that

B(jb)ƒB(jc) if and only if bƒc. Ideally, B(j2){B(j1) (the differ-

ence between the smallest and second smallest observations) will

then be large. If the set of genotype arrays contains multiple arrays

on which samples from the same person have been run, then this is

not the difference at which to look. Thus the statistic.

argmax
kvg

(B(jk){B(j(kz1))) ð6Þ

is required, where g is the largest number of replicate genotype

arrays that we might encounter in the data set.

Choice of Prior
Our choice of prior is somewhat naive; we might for example

make better use of known allele frequencies. Alternatively, if

desiring a ‘fair’ prior, we might wish to give more weighting to the

AB genotype, however our use of the expected B-allele count

ensures that as the information from the expression data decreases

the predicted genotype already tends to the AB genotype. Thus we

do not wish to punish too heavily differences in observed and

predicted B-allele counts when the predicted count is 1. Nor do we

wish to punish errors that could be genotype miscalling, which will

nearly always be between heterozygous and homozygous rather

than going from AA to BB.

Metrics for Expression Array Quality
A convenient measure of signal quality for the Illumina

expression BeadArray is the 95th percentile of log-intensities

(P95) reported by the scanner. This is a general indication of the

signal level, and while a useful quality statistic, it has no absolute

interpretation as batch effects and scanner settings can cause large

variation in the p95 value. This is true even after adjusting for the

similarly defined P05 value which can be regarded as a baseline.

We consider a second metric for the quality of signal on an

array. This statistic we denote DRANK and we base on the re-

annotation of the platform [22]. Here the average rank of the

probes (high rank = high expression) that are considered to be

well designed (denoted ‘perfect’ in the annotation files) is

compared to the average rank of the probes that map to intergenic

regions and so are not expected to show signal. While this statistic

might vary between tissues, between sexes, and between conditions

(and so require some adjustment to compensate for predictably

different patterns of expression), within a consistent tissue type

such as we have here it should be less affected by batch effects. For

this reason we may risk interpreting it in an absolute manner.

Unlike P95, the DRANK statistic is not generated automatically,

and we only have its value for a large subset (including the

METABRIC study arrays) of the data made available to us. For

data obtained from public repositories, the DRANK statistic may be

as easy to calculate as the P95.

For an overview of Illumina expression array quality metrics,

see Ritchie et al. [25].

Detection of Plating Errors
In the majority of cases the genotype array that is meant to match

the expression array will have a BADGER rank of 1. This genotype

and expression array can then be removed from the analysis. The

number of potential plating errors will hopefully be small enough

that the manual assessment of each case will be feasible. Our

experience is that the majority of simple cases can be resolved easily

by considering neighbouring arrays as potential matches (either

simple swaps, or accidental duplications). Care must be taken that

one is identifying the entire error and not just a part of it. For

example if the order of four consecutive arrays was reversed, then

the middle two arrays might be identified as a simple pair of

swapped neighbours and removed from further analysis, hindering

the detection of the nature of the error for the outer two arrays.

If the design of the experiment allows, indeed if plating details

are available for all stages, then we may be able to write code to

investigate likely plating errors (use of the wrong plate, rotations of

plate, reversal of BeadChip etc.) systematically, and report if any

substantially increase the agreement between expression and

genotype arrays. Else we can use graph theoretic techniques to

suggest errors.

The problem can be represented as a bipartite graph where one

set of nodes represents unresolved expression arrays and the other

set of nodes represents unresolved genotyping arrays. An edge is

then drawn between two nodes if the BADGER rank for that

expression array/genotyping array combination is less than some

threshold. Swaps will then appear as short cycles in the graph,

more complicated rearrangements will appear either as long cycles

(detectable e.g. using the Floyd-Warshall algorithm) or long chains

on the graph. These can be detected algorithmically or spotted

easily by eye if the graph is visualized.

Validation of Plating Errors
Where BADGER suggested that there existed an inconsistency

between the expression and genotype data, and the scale of the

inconsistency is small enough that the BADGER prediction alone

is not sufficient evidence, validation has proven possible via the

residual DNA to be found in the wells of RNA extraction plates.

This approach is, of course, dependent on enough DNA being

present in those wells.

Code Availability
Sweave S1 and Sweave S2 contain the documents and

additional data required to reproduce the results presented here.

In addition, a BADGER R package is being developed and

maintained at http://badger.r-forge.r-project.org/.

Supporting Information

Sweave S1 Sweave file [27] and supporting data to enable

reproduction of the ‘Close relatives and validation’ section of this

article.

(ZIP)
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Sweave S2 Sweave file [27] and supporting data to enable

reproduction of analyses not relating to the ‘Close relatives and

validation’ section of this article.

(ZIP)
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