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Abstract: Graphene oxide (GO) is widely used in various fields and has raised concerns regarding its
potential environmental fate and effect. However, there are few studies on its influence on coexisting
pollutants. In this study, the phototransformation of GO and coexisting sulfamethazine (SMZ) under
UV irradiation was investigated, with a focus on the role of reactive oxygen species. The results
demonstrated that GO promoted the degradation of SMZ under UV irradiation. The higher the
concentration of GO, the higher the degradation rate of SMZ, and the faster the first-order reaction
rate. Two main radicals, ·OH and 1O2, both contributed greatly in terms of regulating the removal
of SMZ. Cl−, SO4

2−, and pH mainly promoted SMZ degradation by increasing the generation of
·OH, while humic acid inhibited SMZ degradation due to the reduction of ·OH. Moreover, after UV
illumination, the GO suspension changed from light yellow to dark brown with increasing absorbance
at a wavelength of 225 nm. Raman spectra revealed that the ID/IG ratio slightly decreased, indicating
that some of the functional groups on the surface of GO were removed under low-intensity UV
illumination. This study revealed that GO plays important roles in the photochemical transformation
of environmental pollutants, which is helpful for understanding the environmental behaviors and
risks of nanoparticles in aquatic environments.

Keywords: graphene oxide; sulfamethazine; phototransformation; free radicals

1. Introduction

As a kind of two-dimensional layered nanomaterial, graphene oxide (GO) possesses
good mechanical, electrical, and thermal properties, and is widely applied in various
fields, including biology, medicine, chemistry, and electronic engineering [1]. The global
production of GO is expected to reach 3800 metric tons in 2027 [2]. Due to the presence of
a large number of oxygen-containing functional groups, such as hydroxyl, carboxyl, and
epoxy groups, GO has excellent hydrophilicity and a high probability of being present in
natural aquatic environments, thus having uncertain environmental impacts and ecological
risks. It has been reported that GO and its derivatives exhibited cytotoxicity to bacteria,
biofilms, and algae [3,4]. Moreover, GO could cause developmental genotoxicity in aquatic
animals such as zebrafish at trace concentrations [5], and could even accumulate in humans
through the food chain [6]. Therefore, an increasing number of studies on the environmental
behaviors of GO have received attention.

Once released into the environment, GO can interact with other pollutants mainly
through π bonds, hydrophobic interactions, hydrogen bonds, and electrostatic interac-
tions [7–10], thus affecting the transport and fate of coexisting compounds. For example,
GO exhibited a high affinity for heavy-metal ions, which improved the transport ability
of Pb2+ and Cd2+ in saturated porous media [11]. GO also facilitated the transport of
antibiotics (levofloxacin, ciprofloxacin, and tetracycline) in saturated or unsaturated porous
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media because of the high sorption capacity of antibiotics by GO [12,13]. Furthermore,
highly hydrophilic and mobile GO could serve as a carrier and promote the transport
of nano-TiO2 in porous media [14]. In addition, the interaction between GO and other
pollutants would change their combined toxicity to organisms. GO enhanced Cd toxicity
on photosynthesis, biomass, and cell membrane lipids in wheat seedlings [15]. GO also
promoted lipotoxicity and hepatic function deficits caused by cis-bifenthrin exposure in
tadpoles [16]. Cao et al. revealed that environmentally relevant concentrations of GO
(1 mg/L) significantly increased the phytotoxicity of As (III) and As (V) in plants, which
resulted in more severe oxidative stress and a significant reduction in nutrient content [17].

However, it should be noted that GO may be subjected to the phototransformation
process in the environment because its special sp2 domains can effectively adsorb sunlight,
especially UV light [18–20]. GO was structurally degraded and chemically formed reduced
GO under UV or sunlight irradiation [21]. After phototransformation, the toxicity of GO to
bacteria (such as Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus)
and algal cells (Chlorella pyrenoidosa) was enhanced [22,23]. Meanwhile, GO can be regarded
as a semiconductor with a zero energy gap to generate electrons, holes, and a series
of reactive oxygen species (ROS) [24,25], which can mediate the transformation of the
coexisting pollutants in the environment. For example, Cao et al. reported that silver
nanoparticles could be formed from aqueous Ag2+ in the presence of GO under light [26].
Cu2+ on the surface of GO sheets could also trap e− generated by GO and be reduced to
Cu(I) and then form Cu2O nanoparticles with the assistance of ROS, which suppressed
the joint toxicity of GO and Cu2+ to freshwater algae after phototransformation [22]. In
addition, GO could oxidize 42% of the adsorbed As (III) to As (V) under light irradiation,
which was induced by electron-hole pairs on the surface of GO. However, coexposure
to GO greatly enhanced the toxicity of As (III, V) to algae [27]. Therefore, it is of great
significance to explore the photochemical transformation of GO on coexisting contaminants,
especially when evaluating their environmental fate and possible toxicity and risks.

Antibiotics, as emerging contaminants, have gained increasing attention in recent
years due to their widespread application and large production amounts [28,29]. As a
result, antibiotics will inevitably find their way into the environment. Sulfamethazine
(SMZ), one of the most common broad-spectrum antibiotics, is widely used in aquaculture,
animal husbandry, hospitals, pharmaceutical factories, and other processes. Previous
studies revealed that SMZ was frequently detected in wastewater, surface water, and even
groundwater at concentrations ranging from ng L−1 to µg L−1 [30,31]. An increasing
number of studies have focused on the environmental behaviors of SMZ, including its
adsorption, migration, photooxidation, and so on [32–35].

Therefore, in this study, SMZ was selected as the model compound to reveal the effect
of phototransformation of GO on coexisting contaminants. We systematically investigated
the interaction between GO and SMZ under UV light, considering the influence of different
environmental factors, including pH values, ionic strength and species, and natural organic
matter (NOM). The phototransformation of GO together with the generation mechanisms of
ROS were further explored to reveal the possible cotransformation pathways of antibiotics
and GO.

2. Materials and Methods
2.1. Materials

GO was synthesized by an improved Hummers’ method [36]. SMZ (≥99%) was
purchased from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). The other
reagents used in this study were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). All aqueous samples were prepared with ultrawater.

2.2. Photochemistry Experiment

All experiments were conducted in a multichannel photocatalytic reaction system
(PCX50C, Beijing Perfect Light Science and Technology Co., Ltd., Beijing, China). The
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system was operated at an average light intensity of 10.0 mW cm−2 with 5 W LED white
lamps (365 nm). During the 6 h photochemical experiments, 50 mL of the reaction solutions
was magnetically stirred at 300 rpm in quartz tubes that were maintained at constant
temperature (22 ± 2 ◦C) with the circulating water bath of the reactor.

2.3. SMZ Degradation

One batch experiment was first conducted with a fixed amount of SMZ (5 µM) with
GO ranging from 10 mg/L to 50 mg/L. Dark control experiments were also conducted
under the same conditions. To investigate the effects of solution chemistry factors on the
photochemical transformation, another three sets of experiments were also performed
with 5 µM SMZ and 30 mg/L GO. The pH effect experiments were conducted with the
solution pH ranging from 3.0 to 9.0, which was adjusted with 0.1 M HCl or NaOH. Ionic
strength and species effect experiments were performed in the presence of 0–600 mM NaCl
or 0–30 mM Na2SO4. In addition, the photochemical transformation of SMZ was tested
in the presence of humic acid (HA) in the range of 0–10 mg/L. All the above experiments
were performed in triplicate. During the experiments, 3 mL of solution was sampled at
determined time intervals and filtered with 0.22 µm nylon membranes to remove GO. Then,
SMZ was analyzed at a determination wavelength of 270 nm by high-performance liquid
chromatography (HPLC, Shimadzu LC-20AT, Tokyo, Japan) with a UV detector using a
C18 column (25 cm × 4.6 mm, 5 µm). The mobile phase was acetonitrile/0.05 M acetic acid
(30:70, v:v) with a flow rate of 1 mL/min. The injection volume was 10 µL, and the column
temperature was maintained at 40 ◦C.

2.4. ROS Generation

It should be noted that O2·− was not detected with the XTT sodium salt (probe for
O2·−) in this study; therefore, we only focused on the production of ·OH and 1O2. Free
radical quenching experiments were first carried out with L-histidine and potassium iodide
(KI) as radical quenchers to identify the contribution of 1O2 and ·OH, respectively [37,38].
The inhibition rate of SMZ degradation was determined after introducing free radical
scavengers. In addition, 200 µM terephthalic acid (TPA) and 300 µM furfuryl alcohol
(FFA) were used as indicators to quantify the amount of ROS [39,40]. TPA reacted with
·OH and produced 2-hydroxyterephthalic acid (HTPA), which could be measured by a
fluorescence spectrophotometer (HITACHI, F-2500, Tokyo, Japan). The excitation and
emission wavelengths were 315 nm and 425 nm, respectively [23,40]. FFA was analyzed by
HPLC at 218 nm. The mobile phase was 30% acetonitrile and 70% phosphoric acid and run
at 1.0 mL/min.

2.5. GO Characterization

To investigate the phototransformation of GO, the changes in GO in the photoreac-
tion system were characterized by UV–vis spectrophotometry from 200 nm to 600 nm.
Additionally, the Raman spectra were measured at 1000 cm−1 to 2000 cm−1 with 532 nm
excitation with a Raman spectrometer (Renishaw inVia Reflex, New Mills, UK) before and
after UV illumination.

3. Results and Discussion
3.1. SMZ Degradation

The effects of different concentrations of GO on SMZ degradation were first studied.
GO did not adsorb SMZ much in the dark, and little degradation of SMZ occurred under UV
illumination without GO (Figure S1). However, the degradation of SMZ was accelerated
in the presence of GO. The degradation rates of SMZ were 33.32 ± 2.54%, 34.90 ± 2.69%,
and 37.44 ± 2.12% in the presence of 10 mg/L, 30 mg/L, and 50 mg/L GO, respectively
(Figure 1a). According to the first-order kinetic fitting of the reaction in the first two hours
(Figure S2), the observed reaction rate constants (kobs) were 0.0732 h−1, 0.0964 h−1, and
0.1129 h−1 (Figure 1b).
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3.2. ROS Generation

Generally, nanoparticles can generate ROS under UV light irradiation, which can
participate in the degradation of chemicals. ROS generation by GO is similar to that of
semiconductors. A large number of oxygen-containing functional groups attached to the
GO surface play an important role in electron transfer and promote ROS generation [21].
To further explore the mechanism of GO on SMZ transformation, free radical scavengers,
including L-histidine and KI, were added to the reaction solution to identify the role of
1O2 and ·OH. As shown in Figure 2a,b, 5 mM/10 mM L-histidine significantly inhibited
SMZ degradation, reducing its degradation rate from 32.52 ± 4.34% to 6.57 ± 3.24% and
4.18± 1.63%, with kobs decreasing from 0.1004 h−1 to 0.0080 h−1 and 0.0265 h−1 (Figure S3),
respectively. Similar results were also observed in the presence of KI, where the decompo-
sition of SMZ reduced to 26.36% for 10 mM KI and 18.59% for 50 mM KI. Compared with
the initial kobs of 0.1004 h−1, kobs decreased to only 0.0753 h−1 and 0.0457 h−1 (Figure S3),
respectively. Thus, the above results showed that both 1O2 and ·OH participated in
SMZ degradation.

ROS quantification was performed during the photochemical experiments. Figure 2c,d
shows that the free radical production of GO was proportional to the illumination time;
75.70 µM 1O2 and 0.35 µM ·OH could be produced after 6 h of illumination in the pres-
ence of 30 mg/L GO. Based on the above experimental results, possible ROS generation
pathways were further proposed, as shown in the following reaction formulas [23,41,42]:

GO + hv→ GO∗
(
e−CB − h+

VB
)
, (1)

GO∗ + O2 → O2
1 + GO, (2)

e−CB + O2 → O2·−, (3)

h+
VB + H2O→ ·OH + H+, (4)

h+
VB + OH− → ·OH, (5)

O2·− + h+
VB → O2

1, (6)

O2·− + e−VB + 2H+ → H2O2, (7)

H2O2 + e−CB → ·OH + OH−, (8)

3.3. Effects of Different Conditions on SMZ Degradation
3.3.1. Effect of pH

The pH value of the solution has a great influence on the photolysis of SMZ (Figure 3).
The degradation rates were 26.02± 3.05%, 41.06± 4.23%, 49.33± 5.11%, and 51.14± 5.63%
as the pH increased from 3.0 to 9.0, and kobs were 0.0641 h−1, 0.0814 h−1, 0.1214 h−1,



Nanomaterials 2021, 11, 2134 5 of 11

and 0.1193 h−1 (Figure S4), respectively. The relative high degradation of SMZ at higher
pH conditions was probably due to the following two reasons: firstly, SMZ (pKa1 = 2.6,
pKa2 = 8.0) can be degraded more easily in its ionic forms compared with the neutral
form [43]. Secondly, similar to semiconductors [44], GO produces holes after UV illumi-
nation, which can further react with OH− to produce ·OH [45,46]. The generation of ·OH
increased with increasing pH, resulting in the promotion of SMZ conversion. In addition,
the dispersion of GO was higher at higher pH because of the deprotonation of oxygen-
containing functional groups on the GO surface [47], which might result in an increase in
the steady-state concentration of ROS. Therefore, SMZ degradation by GO was higher at
high pH than at low pH.
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3.3.2. Effect of Coexisting Anions

The effects of ionic strength and species on SMZ degradation are presented in Figure 4.
NaCl improved the degradation of SMZ, with the degradation rate rising from 35.36± 1.69%
to 43.83 ± 2.21%, 45.18 ± 2.88%, and 47.9 ± 2.79% in the presence of NaCl from 100 mM to
600 mM, respectively. Similarly, when 10 mM, 20 mM, and 30 mM Na2SO4 were added to
the solution, the SMZ decomposition rate increased to 37.92 ± 2.38%, 41.94 ± 2.57%, and
46.52± 2.78%, respectively.
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Figure 4. Effect of Cl− (a) and SO4
2− (b) on SMZ degradation kinetics.

To further explore the effect of Cl− and SO4
2− on the photolysis of SMZ, quantitative

analysis of 1O2 and ·OH was carried out (Figure 5). It was evident that Cl− showed
a negative influence on the production of 1O2, whose level was reduced to 21.63 µM
with increasing Cl− concentration, compared with that of the control 75.70 µM. However,
the presence of Cl− accelerated the generation of ·OH, especially 100 mM NaCl, which
increased the amount of ·OH by 1.6 times compared with the control. This could be
explained by the fact that Cl− generated hydrated electrons under UV irradiation, which
were then transferred to nanomaterials to generate more ROS (Equation (9)) [48]. It should
be noted that excessive Cl− would agglomerate GO under high ionic strength [48,49],
which would reduce the surface area of GO and the concentration of ROS. Thus, the
steady-state concentration of ·OH first increased and then decreased with increasing NaCl
concentration. The presence of Cl− promoted the decomposition of SMZ, which was in
accordance with the role of ·OH. Therefore, ·OH was expected to be the main ROS species
that regulated SMZ degradation.

Cl− + hv→ Cl + eaq
−, (9)

Similar to Cl−, the presence of SO4
2− also inhibited the generation of 1O2 but prompted

the production of ·OH. The concentration of 1O2 decreased from 75.70 µM to 30.28 µM
with increasing SO4

2− from 0 to 30 mM, but the ·OH concentration gradually increased
from 0.35 µM to 0.51 µM. Therefore, the introduction of SO4

2− into the solution pro-
moted SMZ degradation by increasing the steady-state concentration of ·OH. On the other
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hand, SO4
2− existing on the GO surface would form reactive sulfate radicals by holes

(Equation (10)) [46], which may also accelerate the transformation of SMZ [50].

SO2−
4 + h+ → SO.−

4 , (10)
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3.3.3. Effect of NOM

As the representative NOM, HA is a macromolecular polymer containing carboxyl,
phenolic, and keto groups, which is widely distributed in natural waters. Previous studies
showed that NOM might play different roles in the transformation of organic pollutants.
For example, Chen et al. reported that HA could consume a large amount of ·OH under UV
light [51], which decreased the degradation of diethyl phthalate. However, Niu et al. pro-
posed that NOM could be transformed into excited-state substances or free radicals under
UV irradiation, which enhanced the degradation of norfloxacin [38]. In the present study,
as shown in Figure 6, the degradation of SMZ significantly decreased from 41.06 ± 2.34%,
to 29.80 ± 2.64%, 24.72 ± 2.56%, and 23.95 ± 2.59% in the presence of 1 mg/L, 5 mg/L
and 10 mg/L HA, respectively. HA had an inhibitory effect on the degradation of SMZ. As
HA might react with ·OH, we only measured the production of 1O2 in the presence of HA.
As shown in Figure 6b, compared with the control, HA slightly influenced the generation
of 1O2, indicating that 1O2 contributed little to SMZ degradation. Therefore, it could be
speculated that HA mainly quenched ·OH to decrease the decomposition of SMZ.

3.4. GO Transformation

Under UV illumination, the color of the GO suspension changed from light yellow to
dark brown (Figure S5), indicating that some oxygen-containing functional groups attached
to the GO surface might be removed [19]. The variation of the solution absorbance with
time was further determined by UV–vis spectrophotometry (Figure S6). The peak at 225 nm
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was attributed to the π -π* transition of unsaturated C-C bonds of GO. After 6 h of UV
irradiation, the absorbance at 225 nm increased, indicating that the sp3 structure of GO
was reduced and the sp2 structure had been recovered [21]. It should be noted that our
previous study demonstrated that UV light intensity greatly affected the absorbance of GO,
and the absorption peak at 225 nm could be redshifted to 255 nm at a high light intensity
of 54 mW cm−2 in 4 h [23]. In the present study, the light intensity was only 10 mW cm−2;
thus, the absorption peak did not shift significantly. Raman spectra were further used to
analyze the GO samples before and after UV illumination. The D band at approximately
1350 cm−1 and the G band at approximately 1580 cm−1 are the two characteristic peaks of
GO. Peak D represents the vibration of sp3 carbon atoms, and peak G is the characteristic
peak of carbon sp2. The ratio of ID/IG is usually used as a qualitative measurement of the
disorder degree caused by nonaromatic sp3 carbon defects. After 6 h of illumination, ID/IG
decreased only from 0.8481 to 0.8438 (Figure S7), indicating that the graphitization structure
of GO was somewhat improved and that the sp2 region was expanded. However, the
insignificant decrease in ID/IG suggested that the UV light intensity was not high enough
in the current study, which was in accordance with the changes in UV–vis absorbance.
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Based on the above results, we proposed the possible cotransformation pathways of
GO and SMZ (Figure 7). Similar to semiconductors, GO generated electrons and holes
under illumination. Electrons could be captured by O2 to generate O2·−, which was
further converted into 1O2 and ·OH. Meanwhile, GO could form excited-state GO* under
illumination, and then O2 accepted excess energy and generated 1O2. Therefore, ROS
generated in the above ways promoted SMZ degradation. At the same time, GO could
capture electrons to reduce its surface oxygen-containing functional groups.
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4. Conclusions

In this study, the photochemical behaviors of GO and the degradation of SMZ were
quantitatively analyzed. GO could promote the degradation of SMZ under UV light. ·OH
and 1O2 were the main free radicals participating in the cotransformation between GO
and SMZ. High pH, Cl−, and SO4

2− improved the degradation of SMZ by affecting
the formation of ·OH. However, the presence of HA consumed ·OH, leading to less
degradation of SMZ. As for GO, its color changed from light yellow to dark brown under
UV illumination. However, the absorption peak did not shift significantly, and the ratio
of ID/IG was slightly smaller, which indicated that GO was somewhat reduced. The
findings of this work may have significant implications for predicting the fate and assessing
the potential risks of environmental pollutants and nanoparticles. However, to better
understand the environmental behaviors of nanoparticles, long-term experiments under
natural solar radiation are still needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11082134/s1, Figure S1: Figure S1. Photolysis kinetics of SMZ (5 µM) under UV light
without GO (a) and the adsorption of SMZ (5 µM) by GO (10 and 100 mg/L) in the dark within
6 h (b), Figure S2: Pseudo first-order fitting results for SMZ degradation kinetics under various
GO concentrations (10-50 mg/L), Figure S3: Pseudo first-order kinetics fitting for kinetics of SMZ
degradation with L-histidine and KI, Figure S4: Pseudo first-order kinetics fitting for kinetics of SMZ
degradation at pH 3.0-9.0, Figure S5: Changes in the color of GO under UV light as a function of
irradiation time, Figure S6: Variation of GO absorbance with time under light, Figure S7: Raman
spectra of GO before and after UV illumination.
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