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ABSTRACT
Objectives Medical image analysis practices face 
challenges that can potentially be addressed with 
algorithm- based segmentation tools. In this study, we map 
the field of automatic MR brain lesion segmentation to 
understand the clinical applicability of prevalent methods 
and study designs, as well as challenges and limitations in 
the field.
Design Scoping review.
Setting Three databases (PubMed, IEEE Xplore and 
Scopus) were searched with tailored queries. Studies were 
included based on predefined criteria. Emerging themes 
during consecutive title, abstract, methods and whole- text 
screening were identified. The full- text analysis focused 
on materials, preprocessing, performance evaluation and 
comparison.
Results Out of 2990 unique articles identified through 
the search, 441 articles met the eligibility criteria, with 
an estimated growth rate of 10% per year. We present a 
general overview and trends in the field with regard to 
publication sources, segmentation principles used and 
types of lesions. Algorithms are predominantly evaluated 
by measuring the agreement of segmentation results with 
a trusted reference. Few articles describe measures of 
clinical validity.
Conclusions The observed reporting practices leave 
room for improvement with a view to studying replication, 
method comparison and clinical applicability. To promote 
this improvement, we propose a list of recommendations 
for future studies in the field.

INTRODUCTION
MRI has become an integral part of diagnos-
tics to detect, differentiate and characterise 
brain lesions. Properties that determine this 
success are safety, high tissue contrast and 
sensitivity to abnormality. Conditions that can 
lead to brain lesions include traumatic brain 
injury, vascular disease (including ischaemic 
and haemorrhagic stroke), neoplasms, auto-
immune disorders, infection, degenerative 
diseases, congenital conditions and systemic 
diseases with secondary effects on the central 
nervous system. In some of these conditions, 
accurate estimation of lesion size and its 
progression may be essential to treatment 

planning, disease monitoring and/or treat-
ment evaluation.

Visual image interpretation is still the most 
common and accepted way to analyse clinical 
images. In some cases, the visual examination 
must be extended to include lesion delinea-
tion. For example, the boundaries of a tumour 
and structures at risk need to be localised 
accurately for radiation therapy planning. 
Such delineation depends on a skilled rater, is 
time consuming, and is characterised by high 
variability between raters and high variability 
between repeated delineations on the same 
images by the same rater (ie, low objectivity 
and reliability, respectively). In other clin-
ical examinations, surrogate metrics, which 
can be based on the largest perpendicular 
diameters1 2 or visual scoring,3 are used for 
estimating the size of a lesion rapidly. Such 
visual or area- based lesion volume estimates 
may not be accurate enough.4

Developments in magnetic resonance 
(MR) image acquisition procedures resulted 
in high- quality and complex images that 
capture a variety of structural and functional 
phenomena. On one hand, the images carry 
more information about the lesions, thereby 
enabling more accurate diagnosis. On the 
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 ► This is the first overarching review of MR- based au-
tomatic brain lesion segmentation methods without 
restriction to a particular lesion type.
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published protocol.
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our work for clinical practice.

 ► The rigorous study design restricted our ability to 
expand on emerging themes, but did not entirely 
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 ► The restriction to a one- pass full- text analysis en-
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other hand, each image requires more analysis time. This 
reduces the rate at which radiologists can analyse images. 
The increasing accessibility to MR scanners furthermore 
results in more images being acquired, further straining 
image processing capacity and potentially diminishing 
the quality of interpretation.5 6

To summarise, three major issues with current clin-
ical practices for image analysis are: subjective and time- 
consuming manual segmentation, limited accuracy of the 
surrogate volume estimates, and increasing information 
content and number of images to process.

Automatic lesion segmentation algorithms promise 
to alleviate these issues through fast and consistent 
lesion delineation that scales with demand. Quantita-
tive image analysis using automatic lesion segmentation 
further has the potential to increase diagnostic and 
prognostic accuracy of lesion examination by providing 
radiologists with prompt and explicit information about 
a lesion.

Several reviews on automated brain lesion segmenta-
tion methods have previously been published. Most of 
these outline and analyse commonly used segmentation 
algorithms or general segmentation principles.7–16 The 
perspective of the clinical applicability of automated 
segmentation algorithms has been explored by Garcia- 
Lorenzo et al10 and Bauer et al.7 In both reviews, the authors 
recommend improvements concerning study designs and 
formulation of research questions (RQs). The authors 
stress the importance of validating the robustness of the 
segmentation algorithms under variation stemming from 
three causes: differences between scanners and acquisi-
tion protocols, natural variability in normal anatomy and 
lesion appearance, and artefacts. Moreover, Bauer et al7 
expressed the need for better communication between 
researchers developing segmentation methods and clin-
ical radiologists who are the intended users of these 
methods.

A comprehensive review of automatic segmentation 
methods without restriction to lesion type is still lacking 
today, perhaps because of the challenge associated with 
the large and growing literature. We therefore present 
a scoping review of such methods and, given the rapidly 
growing extent of the literature, provide a timely account 
of the field that may not be feasible in the future. To 
ensure rigour, reproducibility and comprehensive-
ness, we adopted scoping review methods proposed 
earlier.17–21

Furthermore, there is a disconnection between devel-
opers and users of automatic brain lesion segmentation 
methods.7 We therefore aim to examine clinical relevance 
of the research conducted in the field and seek to under-
stand how the most prevalent methods (segmentation 
algorithms) and study designs (how they are validated) 
reflect the clinical applicability of methods described in 
the reviewed articles. Moreover, we aim to identify issues, 
limitations, and grand challenges of the field, and suggest 
actions to bridge the gap between research and clinical 
practice.

METHODS AND DESIGN
This study has been conducted according to a previously 
published protocol22 and based on scoping review methods 
proposed by Arksey and O’Malley17 and further developed 
by Levac et al and Colquhoun et al.18 19 We also incorporate 
relevant parts of the Preferred Reporting Items for System-
atic Reviews andMeta- Analyses (PRISMA)20 and PRISMA 
extension for Scoping Reviews21 protocol for this type of 
review. Here, we provide a summary of the protocol as well 
as an account of changes made, along with their respective 
rationale.

Stage 1: identifying RQs
The following RQs were posed in the protocol22:
1. Which common image processing steps are neces-

sary for automatic brain lesion segmentation on MR 
images?

2. Which mathematical and computational theories are 
most commonly applied in which types of brain lesions?

3. What is the efficacy of existing implementations?
4. What are the limitations of those methods and issues 

that should be addressed in future studies to develop a 
tool that is suitable for clinical use?

5. What are the most commonly used MR data sets that pro-
vide reference lesion segmentation and/or diagnostic 
classification?

While getting familiar with the abstracts of the sample, 
we questioned the relevance of RQs 1 and 2. We recognised 
the need for consultation at this early stage of the project 
as opposed to consultation on the findings as originally 
proposed by Arksey and O’Malley.17 The RQs do not reflect 
fully the potential of our study to address issues critical to 
advancing the field and bringing a benefit to the community. 
The consultation was conducted as semistructured interviews 
with five clinicians who have experience in brain image anal-
ysis. We interviewed two neurosurgeons, an oncologist, a radi-
ation oncologist and a neuroradiologist. The interviews were 
structured to elicit understanding of their daily workflow, of 
how they use and analyse images, and of their opinions on 
automating the process of brain lesion segmentation.The 
initial screening of the sample abstracts and, in parallel, the 
consultations directed our analysis towards examining the 
clinical relevance of the prevalent methods and study designs.

Stage 2: identifying relevant articles
For the purpose of this study, we define an article as an 
individual published item that was found according to the 
presented search strategy and that meets the inclusion 
criteria of this review.

Eligibility criteria were unchanged from those defined 
in the protocol: articles evaluating an automatic brain 
lesion segmentation method applied to MR images 
acquired for human brain lesion inspection, and articles 
evaluating the performance of the method by compar-
ison with a reference segmentation were suitable for the 
study.

The initial search strategy remained mostly unchanged. 
Three databases (PubMed, IEEE Xplore and Scopus) were 
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queried. Initially, a broad search phrase on automatic brain 
lesion segmentation methods on MRI was used to generate 
a first sample for each database. Controlled vocabulary tags 
were extracted from the articles and arranged in descending 
order of frequency. From this list, tags were selected to refine 
and customise the search phrase for each database. These 
refined and customised search phrases were used to retrieve 
the sample for our study. The search was conducted on 4 
November 2018.

The relevant articles were identified through hier-
archical screening at four levels with given aims and 
objectives:
1. Title level: exclusion of clearly ineligible articles.
2. Abstract level: refinement of inclusion and exclusion 

criteria based on literature content; identification of 
100 eligible articles by reading of randomly selected 
abstracts out of a sample of 1359; identification of 
themes to guide the study selection process (stage 3).

3. Methods level: identification of two core concepts: al-
gorithm validation and applicability of an automatic 
segmentation method for clinical parameter predic-
tion; exclusion of studies using manual or semiau-
tomatic segmentation, not stating the source of the 
tested images/patients, only using synthetic images, 
conducing the algorithm validation on fewer than 10 
unique scans/images, or not providing results of the 
algorithm’s performance.

4. Full paper screening level (see stage 3).
The same hierarchical screening procedure was applied 

to references of the eligible sample also screening for 
duplicates and excluding conference proceedings that 
were later published in journal articles if the patient 
cohort was similar in both articles. Screening was discon-
tinued on finding an exclusion criterion.

Stage 3: study selection
In the full- text screening, we applied the above criteria 
again and excluded papers that:

 ► Did not perform segmentation or did not provide 
segmentation evaluation outcome measures (wrong 
outcome).

 ► Proposed methods that require user interaction.
 ► Did not provide information about the gold standard 

or a reference measurement.
 ► Did not provide information about the origin of the 

images or used only synthetic images.
 ► Did not provide the number of images used for 

evaluation.
 ► Evaluated the method on fewer than 10 unique scans.

Stage 4: data charting
The data extracted were charted in a spreadsheet (online 
supplemental material) with five categories of variables:
1. Bibliographic category (first authors’ name, arti-

cle title, journal or conference name, and year of 
publication).

2. Segmentation category (preprocessing procedures, 
algorithms and computational theories, if lesion clas-

sification used, required or allowed input modalities, 
processing time of the method and availability of the 
software).

3. Validation category (process of obtaining reference 
segmentations, number of raters or observers, and 
evaluation metrics).

4. Study cohort category comprised patients’ diagnoses, 
lesion type, sources and number of images).

5. General comments category (information that did not 
fit in other categories, but was considered relevant) 
stage 5: collating, summarising, and reporting the data.

Stage 5: collating, summarising and reporting the data
The collected data are disseminated through numerical 
analysis of bibliographic information overview, trends in 
the field and study design characteristics. We provide the 
account of both prevalent study design choices and less 
common ones that are relevant to the clinical applica-
bility assessment. Study design features are grouped into 
materials, preprocessing, performance evaluation and 
performance comparison.

Patient and public involvement
No patients nor members of the public were involved in 
this research project.

RESULTS
The results of the scoping review include answers to RQs 
2, 4 and 5. The answers to questions 1 and 5 are directly 
presented in the results. The answer to question 4 is 
formulated in the discussion based on the presented find-
ings. In the discussion, we also justify why questions 1 and 
3 could not be explicitly answered.

Overview
The number of papers included at each stage of the 
review is shown in figure 1. Among 2500 articles returned 
by the searches and 490 titles identified through refer-
ence screening, we included 441 articles in the review. 
Among the eligible papers, 255/441 were published in 
journals23–277 and 184/441 in conference proceedings 
or conference workshops,278–460 and 2/441 articles were 
uploaded as preprints.461 462 The following journals or 
conferences occurred most frequently as the publica-
tion source: International Conference on Medical Image 
Computing and Computer- Assisted Intervention (66 
articles), NeuroImage (20 articles), IEEE Transactions on 
Medical Imaging (20 articles), SPIE Medical Imaging Confer-
ence (18 articles), NeuroImage: Clinical (15 articles), IEEE 
International Symposium on Biomedical Imaging (13 articles) 
and PloS One (12 articles).

Figure 2 shows the distribution of articles that propose 
a method to segment a particular brain lesion type. The 
dominance of methods segmenting brain tumours is 
evident from the data.

Trends
Substantial growth of the field was evident from the 
number of articles published annually (figure 3). Three 

https://dx.doi.org/10.1136/bmjopen-2020-042660
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distinct periods with an increase in the number of 
published articles compared with preceding years were 
noticeable. During these years, an increase is also evident 
in the number of articles addressing segmentation of 
lesion types corresponding to the challenges taking place. 
The first wave corresponds to the 3D Segmentation in the 
Clinic: A Grand Challenge II: MS Lesion Segmentation.463 The 
second wave started in 2012 coinciding with the advent of 
The Multimodal Brain Tumor Image Segmentation Benchmark 
(BraTS).464 The third wave started in 2015 when three 
brain lesion segmentation challenges took place: BraTS, 
the Longitudinal MS Lesion Segmentation Challenge,465 and 
the Ischemic Stroke Lesion Segmentation challenge (ISLES).466

Image sources and databases
The distribution of the image sources is presented in 
table 1. Most commonly, the image data were collected 
from non- public sources (254 articles). Publicly avail-
able data with reference segmentations were used in 217 
articles. The most popular database was BraTS464 (157 
articles) followed by the 3D Segmentation in the Clinic: A 
Grand Challenge II: MS Lesion Segmentation463 and ISLES (17 
articles).466 10 articles rely on publicly available sources 
without reference segmentations. Forty- one articles vali-
date the method on both publicly available data sets with 
reference segmentations and non- public data.

The distribution of the cohort sizes used to validate the 
proposed methods (figure 4) shows that more than half of 
the studies described in included articles test methods on 
50 or fewer individuals’ brain images (260/441). Among 
the eligible articles, 280/441 describe a method validated 
on images obtained from more than one scanner.

Sequences
The majority of the proposed methods operated on multi-
sequence scans as inputs (307/441) while 6 accepted both 

Figure 1 Flow chart of the article selection process from 
the result of querying three databases. For each stage, 
the number of articles selected is shown and numbers of 
excluded articles and reasons are given.

Figure 2 The number of algorithms described in the 
included articles developed for and validated on particular 
lesion type. The distinction is made between multiple 
sclerosis (MS) lesions and other white matter lesions (WML) 
following the similar distinction present in the reviewed 
articles and lesion segmentation challenges. ‘Multiple lesion 
types’ refers to algorithms that were evaluated on more 
than one type of lesion. ‘Other lesion types’ types of lesions 
included focal cortical dysplasia, metastasis, traumatic brain 
injury, cerebral palsy, abscess and necrosis.

Figure 3 The number of articles published per year in the 
eligible sample with an indication of the number of articles 
that presented a segmentation method for a particular 
lesion type. We fit a linear function to the number of papers 
published each year from 2012 to estimate the development 
of the field in the upcoming years.



5Gryska E, et al. BMJ Open 2021;11:e042660. doi:10.1136/bmjopen-2020-042660

Open access

single- sequence and multisequence input. Seventy- nine 
methods were built to evaluate single- sequence input 
and 22 did not specify the input modality. Articles that 
compared or evaluated a previously proposed method 
were not included in the analysis (27/441).

Image processing steps, algorithms and computational 
theories
Preprocessing procedures
The most commonly applied preprocessing procedures 
and tools (disregarding publicly available databases for 
this purpose) are shown in table 2. Although authors 
commonly document individual steps and corresponding 
algorithms, information on whether these algorithms are 
integrated in the segmentation tool is rarely available.90 195 
Fifteen articles mention visual supervision,93 114 133 semi-
automatic preprocessing,186 226 267 328 405 manual correc-
tion,155 171 209 273 error or failure of preprocessing (usually 
at the brain extraction step).135 136 160

Five methods proposed in the reviewed articles use 
minimal268 400 or no preprocessing,163 164 220 and in each 
case this is presented as an advantage of the proposed 
algorithm.

Algorithms and computational theories
Among the most commonly used algorithms or models 
in the segmentation methods were machine learning 
(decision trees, mixture models, fuzzy clustering, support 
vector machines, expectation maximisation) and in 
particular deep- learning algorithms (artificial neural 
networks) (figure 5). The analysis accounted for the same 
methods published in separate articles that deal with 
either different lesion types or similar lesion type with 
different image sources.

Performance evaluation
Comparison with the reference by overlap measures was 
by far the most commonly used criterion to evaluate the 
accuracy of the automatic segmentation. Among arti-
cles that specify how the reference segmentations had 
been generated265 in publicly non- available data sets, 
most specified manual segmentation by one rater85 or 
two raters.61 More than two raters contributed in 38 arti-
cles, and 33 articles used semiautomatic procedures for 
constructing the reference. When multiple raters delin-
eated the region of interest, the reference segmentation 
was obtained through consensus of the raters or majority 
voting. Forty- five articles have also included inter- rater 
and intrarater variability evaluation on data sets used 
in their studies. The most frequently applied measures 
were the Dice coefficient,330 sensitivity, also expressed as 
true positive ratio TPR, or overlap fraction,227 positive 
predictive value,102 Jaccard coefficient,58 and specificity.82 
Volumetric measures, such as volume difference, error 

Table 1 Distribution of image sources used for algorithm validation

Non- public data 
sources

Publicly available data with reference segmentations

Publicly available data without 
reference segmentationsBraTS464

Grand challenge II: MS 
lesion segmentation463 ISLES466 Other

254 157 31 17 12 10

BraTS, Multimodal Brain Tumor Image Segmentation Benchmark; ISLES, Ischemic Stroke Lesion Segmentation challenge.

Figure 4 The number of patients (n) whose images were 
used to validate the methods in the eligible articles.

Table 2 Prevalent image preprocessing steps in 374/414 
articles (not specified in 67 articles). FSL - FMRIB Software 
Library; BET - Brain Extraction Tool; SPM - Statistical 
Parametric Mapping.

Procedure Common tool/approach
N (of 
374)

Intensity normalisation Histogram matching, 
intensity scaling

224

Bias field (field 
inhomogeneity) 
correction

N3, N4476 477 192

Brain extraction FSL BET478 190

Image (co- )registration rigid/affine; SPM, FSL479 480 179

Denoising anisotropic diffusion filtering 60

None or minimal   5
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or correlation between the automatic and reference 
segmentation were used in 133 articles, and distance- 
based measures (such as Hausdorff distance, mean abso-
lute distance, surface distance) in 41.

In addition to segmentation accuracy, reliability of 
a method was estimated in some of the articles. Reli-
ability was directly evaluated through a test–retest proce-
dure, where participants were scanned twice at a short 
interval, with repositioning between the scans in five arti-
cles.127 177 196 321 347 In other articles, indirect approaches 
were described where consistency of longitudinal data 
with clinical findings of stable or progressive disease was 
used as a proxy for reliability.38 270 454

Performance comparison
Maldjian et al,133 Lesjak et al150 and de Sitter et al224 exam-
ined previously proposed methods and compared the 
results they obtained in their studies to the performance 
reported in the original papers. All three articles reported 
poorer independent testing results. The authors pointed 
out a lower lesion load of the studied population than in 
the original papers that accounted for reduced scores in 
the replication attempts. In their paper, de Sitter et al224 
strongly called for improvements to automatic lesion 
segmentation before their introduction to routine clin-
ical use.

Of 441 articles, 233 included information regarding 
both the processing time (from less than 1 s to 7 hours) 
and computational system requirements used for 

segmentation. In 56 articles, we found information about 
only one of the two parameters; however, such informa-
tion is incomplete and cannot be used to estimate how 
well a method will perform on different hardware.

Only 24 of the included articles reported on methods 
that were made publicly available to download.43 50 53 67 76 

 84 90–92 126 134 138 144 149 154 170 173 178 190 195 196 199 228 230 426 One 
was available on request.111 Two articles promised future 
availability of the methods proposed41 193 but they were 
not available as of 4 May 2020.

Reporting recommendations
Based on our findings, we developed a checklist with 
reporting recommendations (table 3).

DISCUSSION
In this paper, we present a scoping study of automatic 
brain lesion segmentation on MR images based on 
rigorous literature review methodology.17 This is the 
first review that takes all methods into account, inde-
pendent of specialisation towards lesions of a partic-
ular aetiology. The key findings from our analysis of 
441 articles are (1) a rapid increase of interest in the 
field, (2) a plethora of proposed methods contrasted 
with a dearth of open documentation and available 
software, and (3) high prevalence of problematic 
reporting practices that restrict the ability of inde-
pendent researchers to replicate reported results and 
conduct method comparisons.

Variable design of automatic segmentation methods
RQ1: Which common image processing steps are necessary for 
automatic brain lesion segmentation on MR images?
Image preprocessing emerged as a pervasive step in 
the processing chain for lesion segmentation. From 
the collected data we identified procedures that are 
commonly agreed to constitute preprocessing: skull 
stripping, image coregistration, bias field correction 
and intensity normalisation. Some algorithms rely on 
additional preprocessing, such as tissue classification. 
The procedures vary considerably between methods, 
and a lack of a universal distinction between segmen-
tation steps and preprocessing steps became apparent 
during the analysis.

For a clinically suitable method, a distinction 
between preprocessing and segmentation steps may 
not be necessary since the final segmentation will rely 
on a whole processing chain (including the prepro-
cessing) applied to a raw image. Validation of the 
whole chain, and assessing the impact of each step 
on the outcome, however, are desirable in method 
evaluation studies. Unfortunately, authors rarely state 
whether preprocessing is integrated with the segmen-
tation algorithm and to what extent it relies on user 
input. Without such information, namely a list of all 
the steps that are performed on a raw image, the study 
cannot be replicated. This implies that the findings 

Figure 5 Distribution of the most common algorithms and 
models implemented in the lesion segmentation methods 
proposed by the articles eligible for the review. ANN - artificial 
neural networks; DT - decision trees; EM - expectation 
maximisation; FC - fuzzy clustering; MM - mixture models; 
RF - random fields; SVM - support vector machines; THR - 
thresholding.
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are of no help in assessing the potential clinical 
validity of the proposed method implementation.

Another implementation issue arises from the 
necessity of visual supervision or manual corrections 
of the preprocessing that was indicated in 15 articles. 
Any requirement of user interaction at any point in 
the processing chain entails disadvantages: it impedes 

implementation by increasing the complexity of the 
technical integration, and, once the tool is imple-
mented, permanently burdens staff with an additional 
task. Any potential benefit of user interaction (eg, 
increased robustness) has to be weighed carefully 
against these costs.

RQ2: Which mathematical and computational theories are most 
commonly applied in which types of brain lesions?
The most prevalent methods used were artificial 
neural networks. The finding is not surprising given 
the popularity and remarkable performance of deep 
learning algorithms particularly in image processing 
applications. In the absence of widely used and 
agreed- upon criteria for performance evaluation, we 
have abstained from attempting to rank methods or 
make specific recommendations.

Validation process and efficacy of automatic segmentation 
methods
RQ2: What is the efficacy of existing implementations?
We found that in view of current practices, the ques-
tion cannot be answered: authors present assessments 
that are predicated on their own needs and biases, 
and there is no established standard that enables fair 
method comparison. Public challenges have been set 
up in an effort to address this problem, but they have 
only been partially successful, as illustrated in the 
following section. Three obstacles to fair compara-
tive method assessments are paramount: the principal 
lack of ground truth in in vivo imaging, the enormous 
parameter space of acquisition settings that leads to 
variable feature presentations, and the lack of objec-
tivity (as shown by inter- rater and intrarater vari-
ability467 468) of reference segmentations. More effort 
should thus be devoted to increasing the informative-
ness of the validation step. This can be achieved by 
painstakingly reporting the number of annotators, 
their experience, how the delineations were fused, 
and acquisition details that could conceivably have 
an impact. According to Gibson et al,469 such informa-
tion can be used to calculate the statistical power of 
segmentation studies with respect to the number of 
reference images.

To answer the question we posed regarding the efficacy, 
we recorded the values of the comparison measures from 
each article. The information, however, cannot be mean-
ingfully synthesised or compared and was not presented 
in the results section for this reason. Our investigation did 
not result in a direct answer to the question, but revealed 
a paucity of standard comparison procedures.

Inability to answer the posed question points to further 
issues on which we reflect from the perspective of clinical 
suitability of the proposed methods. The medical image 
analysis procedures commonly used in clinical diagnos-
tics today are strongly operator dependent. They also 
scale poorly to the growing workload that results from 
the increasing number of modalities,470 the increasing 

Table 3 Proposed reporting items for automatic brain 
lesion segmentation studies

Technical 
validation

Method List of processing steps necessary 
to apply to a raw image

Computational system parameters

Computation time

Open documentation of the 
algorithm

Reference 
segmentation

Number of raters

Raters’ training/experience

Method of segmentation

Method of consolidation (if multiple 
raters)

Validation List of validation metrics used

Number of images (split into 
training/validation/testing if 
applicable)

Input sequences

Number of scanners used to 
acquire images

Acquisition parameters

Number of time points and 
intervals for longitudinal data

Results Mean, median, SD for each 
validation metric

Number of failed cases (if 
applicable)

Preclinical 
validation

Patient 
information

Diagnosis and level of verification 
for example, clinical follow- up, 
tissue sampling, autopsy, etc.

Clinical presentation

Administered treatments (if 
applicable)

Clinical task Explicit definition of the clinical 
task for which the algorithm 
is applied (eg, lesion growth 
estimation, treatment evaluation, 
radiotherapy planning).

User validation List of optimisation metrics used 
for the clinical task (if applicable).

User’s method of evaluating the 
outcome.

Clinical 
validation

Information and 
storage system 
compatibility

Compatibility with picture 
archiving, communication, and 
storage systems

Regulatory 
approval

Compliance with the regulatory 
approvals for software as a 
medical device.
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accessibility of imaging scanners,471 and the increasing 
amount of image information due to technical advances 
that achieve enhanced spatial and contrast resolution.472 
Automatic image analysis methods in general, and among 
them automatic lesion segmentation methods promise 
to alleviate some of this pressure. Other requisite char-
acteristics that need to be assessed to evaluate the clin-
ical applicability of a tool are reliability, robustness, and 
generalisability of its findings.

Reliability of an automatic segmentation algorithm 
seems to be assumed since the decision whether a given 
voxel is a lesion or not is made based on well- defined rules. 
However, the characteristic is rarely tested in method vali-
dation studies. Only five articles in our sample included a 
test–retest evaluation with patient repositioning between 
the scans. Such testing yields crucial reliability data against 
which longitudinal variations of lesion measures need to 
be compared with distinguish actual lesion change from 
other sources of variability.

Generalisability of a method is tested by processing 
images acquired from different scanners on a sufficient 
number of images from populations that are at least as 
heterogeneous as the population expected to be exam-
ined clinically. While more than half of the articles 
(280/441) used images coming from more than one 
scanner, validation on fewer than 50 images were equally 
prevalent (260/441). Such small sample sizes are insuffi-
cient for clinical validation, even if the images originate 
from multiple scanners. Using images acquired from 
multiple sources and validating a method on a large 
number of images reduces a method’s bias towards the 
data set or sets on which a given method was originally 
developed.

To us, one of the most surprising findings was how few 
methods are publicly available. Authors who share their 
software enable independent testing in unanticipated 
conditions and with various cohorts. Finally, to evaluate 
clinical relevance of the results of automatic segmen-
tation, a method should be tested in genuine clinical 
scenarios for a well- defined task, such as monitoring 
disease progression, treatment response evaluation or 
radiotherapy planning. Each of these tasks may require 
a different level of error margin and validation standard 
and the relevance of the results must be evaluated by 
clinicians. Various metrics may be used to either optimise 
the method or evaluate its accuracy for a particular clin-
ical question, lesion type and size.

Many papers claim usefulness of their algorithm for 
particular clinical tasks, but do not test the acceptability 
of the results for the intended purpose.

Limitations and issues of the proposed methods, and grand 
challenges of the field
RQ4 (a) What are the limitations of those methods (…)?
Due to the inherent reference, image, and lesion vari-
ability, a meaningful comparison of algorithms evaluated 
independently on separate data sets to establish which 
method performs better is challenging. One solution to 

the problem has been proposed in the form of segmen-
tation challenges. The challenges have become a quasi- 
standard for comparing brain lesion segmentation 
algorithms. The setup, however, comes with certain short-
comings with respect to evaluating clinical applicability of 
the evaluated algorithms. As mentioned, evaluating the 
whole chain of processing steps is especially important 
for validation of a clinical tool. In a challenge set- up, the 
algorithms are tested on partially preprocessed images. 
Even when the individual steps are described in detail, the 
impact of the preprocessing on the segmentation algo-
rithms outcome is unknown. Validation of the processing 
chain becomes questionable if a step is changed, either 
based on the users’ subjective judgement or due to imple-
mentation of a different procedure for a particular step. 
According to ISLES466 and several articles in our sample, 
the skull- stripping step may need to be supervised and 
manually corrected. The choice of interpolation method 
is yet another issue that can influence the outcome of 
an automatic segmentation algorithm, especially in tasks 
requiring high accuracy.

Another aspect of the challenges is the prestige and 
publicity for the authors and their method after proposing 
a winning segmentation algorithm. The final rank is 
calculated by the organisers who evaluate the methods 
on hidden data sets. Organisers effectively take the role 
of independent arbiters. Participation in challenges and 
postcontest use of the challenge data as reference mate-
rial indicate that organisers are generally trusted in this 
role. Maier- Hein et al suggest, however, that the results 
of such competitions should be considered carefully.473 
The authors point to several issues that have a significant 
impact on the final ranking of evaluated methods. The 
first problem they report is lack of thorough reporting 
of relevant information that is essential for result inter-
pretation. Moreover, it turns out that changes in metrics 
and aggregation methods for the scores of individual test 
cases alter the ranking of evaluated methods. A similar 
effect on the ranking was observed when the reference 
segmentations were exchanged against those of another 
rater. The final rank in such a competition depends also 
on the test data and on how missing data is handled.

These concerns cast doubt on the validity of testing clin-
ical applicability of automatic brain lesion segmentation 
methods in a challenge setup. Even if the challenge data-
bases contain images from multiple scanners, it cannot 
be regarded as generalisable if it has not been tested on 
raw images (reconstructed, but not otherwise processed) 
as produced by the scanning equipment. In our sample, 
only 10% of the articles explicitly report on such evalua-
tion. While obtaining independent data sets is expensive, 
it is a crucial step on the way of creating a clinically appli-
cable automatic lesion segmentation tool.

Ultimately, it is the target users who need to decide 
whether a given validation standard and resultant perfor-
mance confidence are sufficient to apply a tool to answer 
a given clinical question. With guidance from support 
system developers, as well as transparent and thorough 
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reporting of the processing steps and validation proce-
dures, the users may consider a given tool trustworthy. 
Trustworthiness has been reported as a crucial factor in 
developing a clinically usable support tool.474 The present 
scoping review does not show what properties and features 
clinicians need to develop trust in a tool. Still, this is an 
important question that we will seek to address in future 
work.

We conducted an exploratory study to begin to address 
the issue.475 The aim was to learn how considering radiolo-
gists’ competent input can improve the design and valida-
tion procedures of automatic brain lesion segmentation 
methods with a view to increasing trust and trustworthi-
ness. Our findings corroborate previous findings.474 We 
found that two crucial characteristics that influence clini-
cians’ trust in a tool are the provision of an error margin 
with any quantitative measure, and consideration of the 
varying need for accuracy, depending on the diagnostic 
task.

Relevance for research and clinical practice
Noteworthy trends also emerged from the data regarding 
the prevalence of methods developed for segmentation of 
a particular lesion type, as well as the advent of segmenta-
tion challenges focussing on corresponding lesion types. 
We observed that the majority of the methods described in 
our sample have been developed for the purpose of brain 
tumour segmentation. We also note consistent growth 
of the number of images in the database underlying the 
BraTS challenge, which has been organised annually 
since 2012. Stroke lesion segmentation methods have not 
proliferated to the same extent, despite similar compe-
titions having been organised (yearly ISLES challenges 
from 2015 to 2018). A distinct increase in the number of 
publications proposing white- matter lesion segmentation 
algorithms was observed when segmentation challenges 
of this type of lesion were organised.

Some compelling questions follow this observation, for 
example, whether some tasks are more difficult to solve 
algorithmically, or whether these trends reflect on clin-
ical usefulness of developing segmentation algorithms 
for a particular lesion type. Even though the questions 
cannot be directly answered by our findings, they point 
to important issues that need to be explored to better 
understand the relevance of different lesion segmenta-
tion algorithms and implications of the trends for clinical 
practice.

Another finding that potentially contributes to the gap 
between research and clinical practice is the widespread 
use of deep- learning algorithms for the lesion segmenta-
tion task in the research setting. The practical efficiency 
of the algorithms depends on the availability of graph-
ical processing units. Implementing a deep- learning 
based algorithm in a clinical setting requires dedicating 
resources for purchasing suitable hardware and inte-
grating it with radiological workflow, information and 
storage systems.

A key factor in developing a clinical tool is obtaining 
regulatory approval for diagnostic use. None of the arti-
cles in our sample mentioned this requirement, possibly 
because authors do not consider it relevant at the stage of 
development when publication occurs.

It appears that despite claims of clinical relevance made 
by many authors, development of brain lesion segmen-
tation methods happens predominantly in an academic 
space, where technological challenges matter most and 
implementation hurdles are not explicitly considered. 
To increase the relevance and societal benefit of method 
development in the field, it will be necessary for devel-
opers to widen their perspective to include the critical 
path towards clinical implementation, on which users’ 
demands and regulatory requirements have to be met.

Challenges and limitations of the study
The biggest challenges we had to address in this study 
were designing data charting categories, extracting the 
relevant information regarding both inclusion and exclu-
sion criteria, and the actual charting of the data. Arksey 
and O’Malley17 recommend deciding the inclusion 
criteria after becoming familiar with the identified rele-
vant studies. For us, this was impossible due to the large 
size of the raw sample of original search results, along 
with the variability of both the type and the level of detail 
of reported information.

Our inclusion and exclusion criteria were defined 
based on a pilot analysis of articles selected randomly 
from the raw sample. These criteria were then applied 
to the full raw sample in hierarchical fashion. A major 
impediment at this stage was the inconsistent way the 
information is organised and presented in the articles. In 
the case of conference papers, the authors typically have 
to adhere to page limits, so certain compromises are inev-
itable. When it comes to journal publications, the meth-
odology of a study should be thoroughly reported for the 
sake of reproducibility, but also to enable data extraction 
for systematic reviews.

Another challenge we faced and a limitation of the study 
comes from the mentioned incoherent way of reporting 
studies and a challenge to derive strict definitions of the 
inclusion and exclusion criteria. Often, the criteria we 
sought in the articles are not presented clearly, or the 
information is scarce. Keeping in mind the broad nature 
of a scoping review and the aim of mapping the field, the 
author conducting the scoping study (EG) chose to err 
on the side of inclusion if the information in an article 
did not allow a decisive application of the criteria. While 
this strategy, combined with a single- rater approach, intro-
duces a certain amount of selection bias, this bias was at 
least consistent between articles. We believe the approach 
provides a reasonable tradeoff between transparency and 
reproducibility of the study, and fulfilling the objectives 
of conducting a scoping review.

Other sources of bias were excluded by design. In partic-
ular, we conducted the consultation interviews after the 
literature sampling step, eliminating potential selection 
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bias arising from the interview results. While the strong 
dominance of articles treating tumour segmentation (cf. 
figure 2) may seem surprising, we believe that it is an 
accurate reflection of the research community’s interest.

This review does not consider modalities such as 
projection radiography, CT, nuclear imaging or ultra-
sonography. It focuses instead on MR, which is used to 
address a larger variety of brain lesions, provides more 
detailed information and stands out among radiological 
techniques regarding the number of related publications.

We acknowledge self- critically that, due to the extensive 
nature of the task, the time taken, and the lessons learnt 
during the work, some epistemic drift occurred, taking 
our focus away from the first two RQs and towards the 
question of clinical applicability that appears to be under-
served by the current literature. Thanks to our early deci-
sion to hold ourselves to account by writing a detailed 
protocol,22 this drift stayed within reasonable boundaries 
and is well- documented, as we accounted for protocol 
modifications in the present work.

Recommendations for future work
RQ4 (b) What issues should be addressed in future studies to 
develop a tool that is suitable for clinical use?
To address the shortcomings revealed by our analysis, we 
propose a set of recommendations for future studies as 
well as avenues researchers might follow that promise, in 
our estimation, to advance the field in the direction of 
enabling clinical decision support.

The most important recommendation arises from 
the variability encountered in many aspects of the field. 
We propose a checklist (table 3) of items that should 
be reported in investigations of automatic brain lesion 
segmentation methods. We split the items into three 
levels of validation that we see as a potential path towards 
developing a clinical tool. Technical validation studies 
focus on developing the algorithm and evaluating its 
performance according to common criteria in the field. 
The preclinical validation focuses on the performance 
of an algorithm in a setting resembling clinical environ-
ment and a realistic use case. The final level, clinical vali-
dation, requires the tool to be compatible with hospital 
and radiology information systems and to be ready for the 
process of obtaining regulatory approval for clinical use 
if such approval has not been yet obtained. This check-
list, especially the technical validation level, will facilitate 
replication as well as comparisons between methods and 
studies, both informal and in meta- analyses. If authors 
were to follow the checklist in future studies, this would 
be a step towards standardisation of reporting in the 
interest of advancing knowledge and promoting imple-
mentation as clinical tools.

With similar priority, we ask researchers who have devel-
oped or are working on automatic brain lesion segmen-
tation algorithms to publish software implementations. 
The benefits and challenges with fully automated versus 
interactive preprocessing should be assessed in terms of 

segmentation accuracy and reproducibility for a given, 
clinically relevant task.

Few articles in our sample evaluated their algorithm on 
an independent data set on top of the challenge one. We 
encourage authors to endeavour to test their method on 
images from other sites and sources. We also encourage 
collaboration between the authors and independent 
researchers who may have access to annotated test 
images. A preprocessing and segmentation method that 
has an acceptable and consistent performance on images 
acquired from various sources should finally be tested in 
clinical conditions. Therefore we strongly advocate close 
collaboration between researchers and authors of well- 
performing methods with clinicians. In such a scenario, 
the acceptability of the method’s performance to clini-
cians can be assessed in conjunction with its relevance 
for a given task. Moreover, an open dialogue between 
researchers and clinicians will help build an ABS system 
that meets the requirements for a clinically useful and 
usable tool.

Finally, efforts to define steps on the path towards 
designing and validating a clinically applicable ABS system 
should be made. We recommend consultation with stake-
holders as a key element to verify the actual clinical needs 
and how to assess to what extent these needs are met by 
available research.

CONCLUSIONS
This scoping study of automatic brain lesion segmenta-
tion on MR images shows a field growing at a rapid pace, 
an imbalance between proposed methods of which there 
are many and methods implemented for clinical applica-
tion of which there are few, and a room for improvement 
of reporting practice with a view to enabling replication, 
method comparison and implementation. To promote 
this improvement, we propose a list of recommendations 
for future studies in the field. We identify knowledge gaps 
and potentially fruitful avenues for future research.
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