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Abstract: Millions of people worldwide are affected by neurodegenerative diseases (NDs). NDs
are characterized by progressive damage and death of nerve cells accompanied by high levels of
inflammatory biomarkers and oxidative stress conditions. Punicic acid, the main bioactive component
of pomegranate (Punica granatum) seed oil, is an omega-5 isomer of conjugated α-linoleic acid that
has shown strong anti-oxidative and anti-inflammatory effects that contributes towards its positive
effect against a wide arrange of diseases. Punicic acid decreases oxidative damage and inflammation
by increasing the expression of peroxisome proliferator-activated receptors. In addition, it can reduce
beta-amyloid deposits formation and tau hyperphosphorylation by increasing the expression of
GLUT4 protein and the inhibition of calpain hyperactivation. Microencapsulated pomegranate, with
high levels of punicic acid, increases antioxidant PON1 activity in HDL. Likewise, encapsulated
pomegranate formulations with high levels of punicic acid have shown an increase in the antioxidant
PON1 activity in HDL. Because of the limited brain permeability of punicic acid, diverse delivery
formulations have been developed to enhance the biological activity of punicic acid in the brain,
diminishing neurological disorders symptoms. Punicic acid is an important nutraceutical compound
in the prevention and treatment of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and
Huntington’s disease.

Keywords: antioxidant; conjugated linoleic acid; blood–brain barrier; Alzheimer’s disease; Parkin-
son’s disease; Huntington’s disease; neurodegeneration

1. Introduction

Some of the most prevalent diseases that can cause loss of independence in older
populations are neurodegenerative diseases (NDs), which are becoming more frequent.
The neurodegenerative process is the progressive loss of function or death of central nervous
system cells, causing an increase in motor and cognitive impairments with time [1]. Among
the most prevalent NDs are Alzheimer’s Disease (AD) and frontotemporal dementia,
Parkinson’s Disease (PD), Huntington’s Disease (HD), Amyotrophic Lateral Sclerosis (ALS),
and multiple spinocerebellar ataxias. AD incidence in the population aged 85 and over
is about 30%, while PD is around 2% in people above 65 years old, and ALS reported
1–2 cases per 100,000 people yearly, and the incidence is expected to soar as the population
ages [2]. Therefore, there is a need for the implementation of new preventive measures and
the development of novel treatments for the early stages of neurodegeneration. The World
Health Organization estimates that the global social cost of dementia is USD 818 billion,
equivalent to 1.1% of the world’s gross domestic product. The prevalence of AD in Latin
America is as high as 8.5%. Moreover, it is expected that by 2030 about 65.7 million will
live with dementia and around 115.4 million by 2050 [3]. The mortality and people’s
disability caused by these neurological disorders has increased, hence, considering them
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as a global public health challenge. As the incidence is expected to soar as the population
ages, finding new solutions and strategies for the treatment of neurodegenerative diseases
is a goal of increasing urgency. Because oxidative damage and inflammation are key
pathways in the development of neurodegeneration, phytochemicals with elevated anti-
oxidative and anti-inflammatory properties are being investigated to aid in the prevention
of neurodegeneration and halt disease progression.

Pomegranate (Punica granatum) is an ancient and adaptable fruit original from Western
Asia that belongs to the Punicaceae family. It is cultivated throughout the world, including
Middle Eastern, Asian, European, and American countries, mainly in subtropical and tropi-
cal areas under variable climatic conditions [4,5]. Approximately 50% of the total weight
of the fruit corresponds to the peel, which is an important source of phenolic compounds,
minerals, and complex polysaccharides. Meanwhile, the edible part of the pomegranate
fruit consists of arils (40%) rich in water, sugars, pectin, and seeds (10%) [6]. Pomegranate
seeds contain many components such as polyphenols and fatty acids that contribute to their
beneficial effects. Pomegranate Seed Oil (PSO) represents around 12% and 20% of the total
seed weight [7]. PSO contains 14 fatty acids, the most abundant of which is punicic acid
50–80% [7–9], followed by linoleic acid (13–20%), palmitic acid (6–9%), stearic acid (2–3%),
oleic acid (8–9%), linolenic acid (0.06–0.08%), and arachidic acid (0.68–0.90%) [9]. Puni-
cic acid, PSO’s main bioactive component, was shown to achieve a potent anti-oxidative
effect that contributes towards its positive effect against a wide arrange of diseases such
as osteoporosis, has anti-obesity properties, increases the expression of antioxidant and
lipid metabolism-related genes, and modifies the composition and function of high-density
lipoprotein (HDL) [10–13].

Punicic acid is an omega-5 isomer of conjugated α-linolenic acid (CLnA) and exhibits
structural similarities to conjugated linoleic acid (CLA) [12]. By itself, punicic acid possesses
a wide spectrum of biological effects such as anti-inflammatory, anti-diabetic, anti-obesity,
anti-proliferative, and anti-carcinogenic properties [14,15]. The main biological mecha-
nism described for punicic acid involves the modulation of the differential expression
of peroxisome proliferator-activated receptors (PPARs), which control the expression of
genes involved in cell differentiation and proliferation, regulate enzymes involved in lipids
metabolism, and glucose homeostasis. In addition, PPARs are closely related to the ac-
tivation and production of pro-inflammatory biomarkers [16–19]. While the antioxidant
and anti-inflammatory properties of punicic acid may provide beneficial effects on the
treatment of NDs, the way it interacts in different pathways related to the progression of
NDs may give it advantages over other anti-oxidative nutraceuticals. This review aimed to
present an overview of the current knowledge about the potential benefits of punicic acid
in neurological disorders and the molecular mechanism involved in its effects.

2. Main Pathways Involved in Neurological Disease

Even though all ND have different pathology and symptomatology, their pathways
share some common traits. A conceptual model classifying the different pathways in-
volved in neurodegeneration was developed considering four major models of action [20]
(Figure 1). In general, pathways that contribute to neuron survival and degeneration
include: (1) intracellular mechanisms such as apoptosis [21], autophagy [22], mitochon-
drial function, oxidative damage and repair [23], ubiquitin/proteasome [24], (2) local
tissue environment such as cell adhesion [25], endocytosis, neurotransmission [26], prions/
transmissible factor [27], (3) systemic environment such as inflammation/immune re-
sponse [28], lipid/endocrine metabolism [29], brain vasculature [30], (4) and mechanisms
related to aging [31], for instance epigenetics [32], neurotrophic factors [33], and telom-
eres [34]. All these components are highly related and interact with each other to modulate
the neurodegenerative process (Figure 2).
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p53 and the Bax (apoptotic regulator) translocation that allows the release of cytochrome C (Cyt C) 

Figure 1. Classification of the pathways involved in neurodegenerative diseases (NDs).

2.1. Intracellular Mechanism

Among intracellular mechanisms related to neuron survival and degeneration, DNA
damage and defective repair are the most common hallmarks that many ND’s with features
of progressive movement disorders share. A high concentration of reactive oxygen species
(ROS) can cause accumulation of oxidative DNA damage in its sequence and epigenetic
modifications [24]. Altered gene expression could cause loss of normal neural function
and progressively trigger programmed cell death and neuronal loss [22]. Mitochondria is
the major source of cellular ROS production, and it was found that oxidative damage can
promote α-synuclein aggregation and affect amyloid-β (Aβ) and other proteins related to
aging and ND [22,35].

In long-living, non-mitotic cells such as neurons, ROS abundance causes oxidative
stress and impairment of antioxidant defenses, resulting in dysfunction of the mitochon-
dria and initiation of cell death cascade [36]. Multiple studies relate the effects of nitric
oxide and ROS with NDs, including nitration of Lewis bodies in Lewis body demen-
tia and Alzheimer’s Disease (AD), nitration of α-synucleins in patients with multiple
system atrophy, widespread nitrates tau proteins in AD, and frontotemporal dementia
with Parkinsonism. Decreased levels of nitric oxide contribute to the upregulation of
Aβ in the cerebrovascular system, and nitric oxide inhibition delays the progression of
Parkinson’s Disease pathology [37]. Likewise, Tumor Necrosis Factor-alpha (TNF-α) is a
pro-inflammatory cytokine related to the pathogenesis of ND through systemic inflam-
mation [38]. Anti-TNF-α therapies were proposed by several studies to diminish AD
pathology, decreasing amyloid deposition and diminishing neuronal impairment [39].

In addition, brain insulin resistance was described as a factor to induce cognitive
impairments and neurodegeneration. Insulin brain levels are reduced during aging and
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Alzheimer resulting in the inhibition of several phosphatases involved in Tau dephos-
phorylation resulting in the deposition and accumulation of extracellular amyloid-β (Aβ)
plaques [40,41].
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Figure 2. Schematic representation of shared physiopathological hallmarks in neurodegenerative
diseases (NDs): (1) Mitochondrial dysfunction due to oxidative stress, aging, or because of genetic
or environmental factors damage, resulting in the excessive production of ROS, which can activate
p53 and the Bax (apoptotic regulator) translocation that allows the release of cytochrome C (Cyt C)
leading the (Cas 9) and caspase 3 (Cas3) activation, resulting in DNA damage and cell death or
(2) Apoptosis. Likewise, excessive ROS production also leads to oxidative stress and (3) Lipid
Peroxidation, which can lead to protein aggregates such as α-synuclein as well as misfolded amyloid
β peptide, the latter becoming an amyloid β (Aβ) plaque affecting neuron signaling induced by
(4) Cholinergic Insufficiency. In turn, accumulation of Aβ plaque induces (5) Microglia Activation
with the concomitant release of (6) Inflammatory Cytokines and produces neuroinflammation. On
the other hand, (7) Dysregulation of Ca2+ because of neuronal membrane depolarization could
induce synaptic deficits and promote the accumulation of Aβ plaques, and (8) Neurofibrillary
Tangles through calpain activation. In addition, sustained calcium inflow results in over-activation of
neuronal nitric oxide synthase (nNOS), with the increase in nitric oxide synthesis leading to oxidative
stress/nitrosative stress and generalized brain inflammation. Moreover, ROS accumulation induces
(9) kinases activation (glycogen synthase kinase-3β, GSK-3β) and induces tau hyperphosphorylation,
promoting the accumulation of Aβ plaques. Accumulation of Aβ oligomers causes removal of insulin
receptors (IRS) from the cell surface, inducing a (10) Neuronal Insulin Resistance and inhibiting the
activation of glucose transporter type 4 (GLUT 4). Dysfunctional insulin signaling brings mammalian
target of rapamycin (mTOR) pathway down and results in (11) Autophagy failure to accumulate
Aβ plaques. Finally, the synthesized cholesterol binds apolipoprotein E (APOE) to form APOE–
cholesterol (APOE–CH) particles. APOE–CH particles are internalized into neurons, and the free
cholesterol is metabolized to 24-hydroxycholesterol (24-OHC), which subsequently passes through
the blood–brain barrier (BBB) and enters into plasma, while plasma (12) 27 hydroxylcholesterol
(27-OHC) flows into the brain, increasing the level of α-synuclein and eventually forms Lewy bodies
(LBs). Back lines indicate stimulation, while red lines indicate inhibition.
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2.2. Local Tissue Environment

The progressive aggregation of misfolded proteins that severely affect the local tissue
environment, creating damage, is a pathological feature that characterizes neurodegenera-
tive diseases [42]. These misfolded proteins are subjected to protein degradation, such as
proteasome-mediated. Inhibition of protein degradation pathways leads to the formation
of protease-resistant, thus, decreasing the propagation of aggregated proteins that promote
the misfolding of cell proteins [43]. Likewise, autophagy is the main mechanism responsi-
ble for removing protein aggregates, dysfunctional cellular organelles, and pathogens to
maintain cellular homeostasis. Accumulation of immature autophagic vacuoles (AVs) as a
consequence of a disrupted autophagy process is a common characteristic observed in the
brain of Alzheimer’s patients. It was shown that mammalian target of rapamycin (mTOR)
signaling is inhibited in the cortex and hippocampus of adult AD model mice. Brain
insulin resistance induces alterations in the insulin/insulin-like growth factor (IGF-1)-PI3K
(phosphoinositide 3-kinase class I)-Akt pathway, resulting in the aberrant activation of
mTOR signaling, which negatively regulates autophagy induction [44–46].

2.3. Systemic Environment

Changes in the systemic environment such as inflammation are common in neurode-
generative diseases such as AD and Parkinson’s Disease (PD) and can cause, along with
oxidative stress, perturbances in the proteome composition of High-Density Lipoprotein
(HDL) [47]. Circulating HDL provides resilience to cerebrovascular dysfunction in AD,
which plays an important role in brain metabolism and homeostasis, dampening the clear-
ance of Aβ and tau and thus leading to the formation of neuritic plaques and neurofibrillary
tangles [48].

2.4. Aging Mechanism

The composition of fatty acids and fluidity of brain membranes change with age.
Polyunsaturated Fatty Acids (PUFAs) such as docosahexaenoic acid (DHA, 22:6 n-3) and
arachidonic acid (AA, 20:4 n-6) are the most abundant and important PUFAs in the brain
and play a critical role in aging and neurodegeneration. In the elderly, DHA and AA
decrease in membranes of the orbitofrontal cortex. Specific DHA deficiency might be
caused by an age-related reduction in enzyme activity involved in the regulation of DHA
synthesis, uptake, and assembly into brain phospholipids (Zhang et al., 2018). Meanwhile,
high dietary consumption of omega-3 and omega-6 PUFAs is favorable for the memory of
healthy older human adults. This process is mediated by the integrity and preservation of
the white matter microstructure of the fornix in the brain (Zamroziewicz et al., 2017).

Several PUFAs such as DHA and AA are being studied for the development of new
treatments against NDs and neurodegeneration [49,50]. Punicic acid (18:3, ∆9cis, 11trans,
13cis, n-5) is a promising candidate whose mechanism of action is yet to be completely
understood. The following section will refer to the characteristics and mechanisms of interest
of punicic acid and their potential relation with the prevention of NDs.

3. Punicic Acid

In nature, the most abundant source of punicic acid (PuA) is pomegranate (Punica
granatum), with the final amount depending on the fruit genotype. However, other sources
include Momordica balsamina, Ecballium elaterium, Fevillea trilobata, and some species from
the Trichosanthes genus, such as T. kirilowii, T. anguina, T. bracteata, T. nervifolia [14,19,51].
Punicic acid, also known as octadecatrienoic acid or trichosanic acid (C18H30O2), possesses
a molecular weight of 278.43 g/moL, a melting point of 44–45 ◦C, and an octanol–water
partition coefficient (X LogP) of 6.4. Moreover, it was reported that punicic acid has a
molar refractivity and polarizability value of 89.64 m3/moL and 35.91 Å3, respectively [52].
PA exhibits a pKa value of 4.99 (strongest acidic), as it is able to act as a donator of one
hydrogen [53,54]. It is a conjugated linolenic acid isomer with structural similarities to
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α-linolenic and linoleic acids [54] (Figure 3). Among the main described characteristics of
punicic acid is its ability to scavenge hydroxyls, metal chelation, and reduce properties [15].
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Figure 3. Structure of punicic acid and related isomers α-linolenic acid and linoleic acid. Chemical
structures drawn in ChemDraw.

Biosynthesis of punicic acid begins with the de novo synthesis of fatty acids inside the
plant’s plastid, mostly palmitic (16:0), stearic (18:0), and oleic acids (18:1∆9cis) (Figure 4).
Fatty acids are conjugated on phosphatidylcholine (PC) to undergo desaturations and
conjugations in the position sn2 of PC. Oleic acid-PC (OA 18:1∆9cis) is processed into
linoleic acid-PC (LA 18:2∆9cis,12cis), which in turn is transformed into Punicic Acid-PC
by fatty acid desaturase (FAD) 2 and fatty acid desaturases group X (FADXs), respectively.
Newly synthetized fatty acids are then converted into acyl-Coenzyme A by the action of
Acyl-CoA synthetase to act as acyl donors in triacylglycerol (TAG) biosynthesis inside the
endoplasmic reticulum (ER) before being stored in cytoplasmic lipid droplets [19,51,54].
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Figure 4. Punicic acid (PuA) biosynthesis and storage in triacylglycerol (TAG). Phosphatidylcholine
(PC), Oleic acid (OA), Linoleic acid (LA), position sn2 Punicic Acid (PuA), Punicic Acid Phos-
phatidylcholine (Sn2-PuA PC), Fatty Acid Desaturase (FAD) 2 and FADXs, acyl-Coenzyme A (CoA),
Acyl-CoA synthetase (ACS), Triacylglycerol (TAG) Phospholipid:diacylglycerol Acyltransferase
(PDAT), Lysophosphatidylcholine Acyltransferase (LPCAT), n-glycerol-3-phosphate acyltransferase
(GPAT), diacylglycerol acyltransferase (DGAT), sn-glycerol-3-phosphate (G3P), sn1,2-diacylglycerol
(DAG), CDP-choline:1,2-diacyl-sn-glycerol cholinephosphotransferase (CPT), phosphatidylcholine:
diacylglycerol cholinephosphotransferase (PDCT), phospholipase C (PLC).
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The main challenges of using PSO or punicic acid for health applications are chemical
instability and limited water solubility [55]. Since fatty acids such as punicic acid are
molecules highly unsaturated, they are susceptible to degradation due to oxidation, light,
or thermal treatments. Likewise, because punicic acid is poorly soluble in water and only a
small fraction can be slowly absorbed by the body, the bioavailability of this molecule is
very low and exhibits a rapid metabolism to conjugated linoleic acid (CLA), limiting its
use in commercial or therapeutic [56]. In order to overcome these challenges, researchers
have explored different strategies such as the synthesis of precursor molecules and the
design of specific delivery systems to protect the active drug. Modifications on the chemical
structure can protect the molecule’s active sites from biological degradation and therefore
improve its stability. Esterification of punicic acid showed an improvement by 30% in the
oxidative stability of monodispersed punicic acid compared to its free form. Likewise,
this chemical modification of punicic acid significantly improved its water solubility and
bioaccessibility [55]. On the other hand, encapsulation is the most used technique to
protect drugs from environmental and chemical degradation. In this sense, spray-drying
microencapsulation of pomegranate seed oil using succinylated taro starch demonstrated
61% of encapsulation efficiency with an improvement in the oxidation stability and a
significant delivery of PSO in the small intestine [57]. Likewise, PSO nanoemulsions have
shown improved stability under stress conditions such as osmotic stress and extreme
pH values [58]. Mizrahi et al. [59] reported that nanoemulsions of pomegranate seed oil
exhibited strong neuroprotective effects by reducing lipid oxidation and neuronal loss.

Recent technological advances allowed the development of novel delivery systems,
which not only protect the drug but also exhibit an efficient release in the target site,
improving the bioavailability and biological activity of this by the modification of the
pharmacokinetics parameters [60,61]. Improved physical and peroxidation stability of PSO
at different temperatures (4 ◦C and 25 ◦C) was achieved by the incorporation of beeswax
and propolis wax during the fabrication of PSO nanostructured lipid carriers. After 40 days
of storage time, PSO nanostructured lipid carriers at 4 ◦C showed peroxidation levels
significantly lower than at 25 ◦C. Likewise, the antioxidant activity of these systems,
measured by DPPH free radical-scavenging activity, showed to be stable throughout the
storage period regardless of temperature conditions [62]. Moreover, the combination of PSO
with other therapeutic drugs or nutraceuticals was shown to improve the pharmacokinetic
parameters and biodistribution profile of the latter [63,64]. The biological benefits of PSO
and punicic acid also attracted the food industry’s interest to design and offer consumers
more healthy products through the enrichment in polyunsaturated acids of the different
food matrices [65–68].

These approaches can be really useful in the development of food products with
an enhanced nutritional quality or even for the development of food supplements that
contribute to preserving human health [69].

3.1. Punicic Acid Metabolism

Lipids are abundant in the brain, and they perform a variety of structural functions
such as neurogenesis, signal transduction, neural communication, membrane compart-
mentalization, synaptic transmission, and regulation of gene expression [70]. Punicic
acid (PuA) is metabolized into circulating conjugated linoleic acid CLA via a saturation
reaction [71–74].

CLA is mostly processed in the liver into neutral lipids and phospholipids, respec-
tively. CLA isomers c9,t11 and t10,c12 are metabolized via desaturation and elongation
reactions while maintaining their conjugated diene structure [75]. Both isomers are pro-
cessed differently; t10,c12 CLA is readily beta oxidized to Conjugated Diane (CD) 16:2 and
delta 6 desaturated to CD 18:3, while c9,t11 CLA appears to be metabolized into CD 20:3
(Figure 5). CD 18:3, 20:3, and 20:4 are mainly incorporated into phospholipids CLA. At
the same time, CD 18:3 and CD 20:3 are distributed into neutral lipids [76]. In humans,
it was observed that punicic acid is transformed into c9,t11 and incorporated into tissues
such as plasma, red blood cell mass, and be partially beta-oxidation in peroxisomes to
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produce CD 16:2 [72,75]. In rats, CLA was measured mainly in the liver, kidney, adipose
tissue, mammary tissue, plasma, heart, and brain, with only small traces of punicic acid
being found in liver and heart tissue [71,76]. A study measured the concentration of CLA
in human plasma after daily intake of 0.8 g, 1.6 g, or 3.2 g of c9,t11 CLA in capsules and
found that the metabolites CD 18:3 and 16:2 were promptly incorporated in a linear fashion,
while 20:3 reached a plateau at 1.6 g/d [75].
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acid (CLA cis-9, trans-11) and then either β-oxidized into Conjugated Diane (CD) 16:2 or metabolized
by ∆6-desaturase to become CD 18:3 to be further processed into CD 20:3 and CD 20:4. Chemical
structures drawn in ChemDraw.
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A study in rats demonstrated that after 40 days of rich in punicic acid supplementation
with PSO rich in punicic acid at concentrations of 1%, 2%, and 4% CLA was found in
serum, liver, heart, and kidney, respectively, and some traces of PuA were found in the
liver and heart. In the brain, PSO consumption was shown to decrease thiobarbituric acid
reactive substances (TBARS) levels, which are used to determine lipid peroxidation, but
neither PuA nor CLA was detected in this tissue [71]. However, other studies confirmed
the presence and metabolism of CLA in the brain of both rats and humans [76–78]. CLA
metabolites may be able to reach the brain through incorporation into very-low-density
lipoprotein (VLDL) [76], produced by the intestine and liver, and be absorbed into the brain
by the very-low-density lipoprotein receptor (VLDLR) [79]. However, it is also likely that
low-density lipoprotein (LDL) and the low-density lipoprotein receptor (LDLR), as well as
the fatty acid translocase (FAT/CD36), are involved in the transport of CLA through the
blood–brain barrier (BBB), as it is the case with most PUFAs [80,81].

Astrocytes and endothelial cells, two major components of the BBB, are the major
contributors to the transportation of PUFAs from the circulation to the brain [82]. Astro-
cytes participate in the synthesis of eicosanoids [76] and play an important role in CLA
metabolism [79]. CLA isomers c9,t11 and t10,c12 are effectively incorporated and metabo-
lized in rat brain and human astrocyte cell culture. However, because beta-oxidation of
CLA is more efficient in the brain than in other tissues, CLA concentrations in the brain
are low. Therefore, it is believed that the incorporation of CLAs is tissue-specific [76]. Low
CLA concentrations in the brain could be the result of the preference of the cerebral tissue
for other fatty acids, against the selection of fatty acids with trans double bonds, or the
presence of the blood–brain barrier, poor incorporation of phospholipids, and low supply.
Additionally, the incorporation of CLA in the brain is lower than in other tissues [71,76].

3.2. Punicic Acid Effects on Neurodegenerative Disease

Punicic acid could be related to neurodegeneration prevention through several differ-
ent pathways, including (1) intracellular mechanisms related to oxidative damage through
peroxisome proliferator-activated receptor (PPAR)s and high-density lipoprotein (HDL)
associated paraoxonase 1 (PON1); (2) local tissue environment such as synaptic function
via calpains, and (3) systemic environment such as inflammation and lipid metabolism via
PPARs and glucose metabolism with glucose transporter type 4 (GLUT4) (Table 1). Punicic
acid can act as an agonist of PPARγ, increasing mRNA expression of PPAR-α, PPAR-β,
PPAR-γ, and PPAR- γ, and bind to both PPAR- γ and PPAR-α [83,84]. It increases GLUT4
protein expression [85] and increases the anti-oxidative properties of HDL and PON1 activ-
ity [86,87]. Finally, punicic acid can act as an inhibitor of calpain, which plays a key role
in the ROS generation, and calpain may play a role in mitochondrial ROS generation and
HDL degradation [88].

3.2.1. Punicic Acid Increases Expression of Peroxisome Proliferators Activated Receptors
(PPARs)

There is a relationship between the role of PPARs such as PPAR-α, PPAR-β/δ, and
PPAR-γ and neurodegenerative disease, particularly Alzheimer. Inside the brain, activities
attributed to PPAR-α include the reduction in oxidative stress, neuroinflammation, tau
hyperphosphorylation, less Aβ formation and aggregation, glucose metabolism, autophagy,
neurotransmission, and aspects of lipid metabolism such as fatty acyl-CoA β-oxidation and
PUFA biosynthesis. Similarly, PPAR-β/δ regulates the central nervous system myelination
process, while PPAR-γ is involved in neuron biogenesis, neuroinflammation, and neurode-
generation [89,90]. In patients with neurological diseases, PPARs are down-regulated [91].
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Table 1. Effects of punicic acid over different molecules related to neurodegenerative diseases (NDs).

Molecules Related NDs Formulation Effects Mechanism Biological Model References

PPARγ/α and
TNF-α

Alzheimer, Parkinson and
Huntington, CNS

Hypoxia/Ischemia

Nanoemulsified PSO
supplementation

Anti-inflammation
Increased fatty acid

oxidation

Gene expression
upregulation of

PPARγ/α/β among others

Liver of high-fat
diet-fed mice. [12]

PuA
Improved glucose

homeostasis and suppressed
inflammation

Suppressed NF-κB
activation and TNF-α

expression via PuA Agonist
effect of PPARγ

3T3-L1 pre-adipocytes
and obese/high-fat

diet mice
[83,84]

Calpain

Alzheimer, Parkinson and
Huntington’s diseases,

Machado–Joseph disease, genetic
Creutzfeldt–Jakob disease

PSO-nanoformulation
(GranaGard)

Detention of the disease for
60–80 days and slower

disease progression after.
Decreased Aβ and p25

formation.

µ-calpain inhibition and
nanoformulation
antioxidant effect.

Mice [43,88]

GLUT4 Neurodegeneration PSO Decreased fasting blood
sugar levels. GLUT4 increased expression Diabetic type II patients [85]

HDL and PON1 Alzheimer, Multiple Sclerosis,
Parkinson, Huntington.

Microencapsulated
pomegranate

Reduction in non-HDL
sphingomyelin

Increase in HDL-cholesterol
and HDL-phospholipids

Increment in PON1 activity

Reduction in triglyceride
content in HDL Rabbits [86]

Microencapsulated
pomegranate

Decreased triglycerides
Increased PON1 activity

Higher synthesis of
PON1 protein.

Woman with Acute
Coronary Syndrome [87]

PuA: Punicic acid; PSO: Punicic seed oil; PPAR: Peroxisome Proliferator-Activated Receptor α/β/γ, TNF-α: Tumor Necrosis Factor α, GLUT4: Glucose Transporter Type 4, PON1:
Paraoxonase 1, NF-κB: Nuclear Factor Kappa Beta, Aβ: amyloid-β, HDL: High-Density Lipoprotein.
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The effects of punicic acid over PPARs have been studied over time. The evidence
shows that punicic acid decreases inflammation induced by pro-inflammatory cytokines
Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) on 3T3-L1 pre-adipocytes.
Likewise, punicic acid-enhanced protein expression of PPAR-γ abates transcriptional activ-
ity of Nuclear Factor Kappa B (NFκB) p65 subunit, reduced mRNA expression of suppressor
of cytokine signaling 3 (SOCS3), and attenuates protein tyrosine phosphatase 1B (PTP1B)
induced by TNF-α [83,84]. A more recent study in mice liver fed a high-fat diet supple-
mented with PSO nanoemulsions found that punicic acid increased the expression of lipid
metabolism-related genes PPAR-α, PPAR-β and PPAR-γ, fatty acid synthase (Fasn), and
sterol regulatory element-binding transcription factor (Srbp1), along with antioxidant genes
(aldehyde oxidase 1 (Aox1), glutathione S-transferase A4 (Gst4), NAD(P)H quinone dehy-
drogenase 1 (Nqo1), Nrf2, and peroxiredoxin 1 (Prdx1), and decreased levels of IL-6 and
TNF-α [12]. The Punicic acid effect over PPARs is also related to HDL metabolism. Rabbits
supplemented with microencapsulated pomegranate showed modified lipid composition
of HDL particles. PPARα and PPARγ are able to remodel HDL structure through the
regulation of the expression of genes related to HDL metabolism [86].

3.2.2. Punicic Acid Participation in Calpain Hyperactivation Inhibition

Calpains are calcium-dependent cysteine proteases that have been implicated in sev-
eral neurodegenerative diseases such as Alzheimer’s and Huntington’s Disease. Calpains
are important for synaptic function and neuroplasticity, as they exert a neuroprotective ef-
fect at base expression, while overactivation leads to neurotoxicity. Calpain-1 and calpain-2
are abundant in the brain, and their hyperactivation is implicated in late stages of neurode-
generative diseases [92].

Calpain-1 is overexpressed in the late stages of Alzheimer’s, generating toxic fragments
of tau in response to Aβ aggregate treatment. Calpain-2, on the other hand, was found to
show increased early activity in the pathogenesis of Alzheimer’s in a mouse model and
was correlated with decreased cognitive function and increased Aβ in neocortical tissue
samples from Alzheimer’s patients [92,93]. Mice with induced Machado–Joseph Disease
(MJD) phenology presented an overactivated calpain system baseline and led to increased
cell death in the cerebellum. Elimination of calpain-2 in mice with induced MJD phenology
resulted in reduced neurotoxicity and increased survival of the mice [94]. Calpain inhibitors
are known to have neuroprotective effects; therefore, pharmaceutical companies developed
calpain inhibitors as potential therapeutic drugs for Alzheimer’s, among other NDs [95].

Calpain inhibition effects contributed to the neuroprotective effects exhibited by the
PSO-nanoformulation commercialized as the product GranaGard®. The formulation con-
tains high levels of punicic acid and resulted in the detention of Creutzfeldt–Jakob disease
(CJD) for 60–80 days, followed by slower disease progression [88]. This same formulation
was found to reduce Aβ formation, cyclin-dependent kinase 5 (cdk5) accumulation, and
the key mitochondrial enzyme Cytochrome c oxidase in transgenic mice [43]. Additionally,
ducking studies confirmed that punicic acid’s metabolite, CLA, inhibits the active site of
µ-calpain, exerting neuroprotective effects against H2O2 and induced Aβ degradation in
human neuroblastoma cell lines [96].

3.2.3. Punicic Acid Induced a Higher Expression of GLUT4

Another common occurrence for several neurodegenerative diseases is a disturbance in
glucose metabolism and the function and expression of glucose transporters. For example,
hypometabolism of glucose due to a decrease in expression of glucose transporters in
the brain occurs in Alzheimer’s disease [97]. Similarly, energy and glucose metabolism
disturbances are suggested to play a role in the development of Huntington’s disease
pathology [98]. The human brain expresses ten different sodium-independent glucose
transporters (GLUTs), which in conjunction with sodium-dependent glucose cotransporters
(SGLTs) and uniporter SWEET protein, are responsible for glucose uptake. GLUT4 is an
insulin-sensitive glucose transporter expressed in the hypothalamus, sensorimotor cortex,
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cerebellum, hippocampus, and pituitary. Its physiological role is unknown, but some of
its suggested functions are its involvement in glucose sensing, the insulin modulation
of glucose transport in distinct brain areas, and the transport of glucose, in case of high
demand, to the motor neurons [97,98].

In Alzheimer’s, along with decreased glucose uptake in highly active areas of the
brain such as the cortex, hippocampus, and cerebral microvessels, glucose transporters
(GLUT) decrease [98,99]. Impaired expression of GLUT-4 in the hippocampal neurons
could be related to short-term memory loss and disorientation in Alzheimer patients [100].
Supplementation with three daily capsules of PSO in 52 obese patients with type 2 diabetes
showed an increase in the expression of the GLUT-4 gene and a decrease in fasting blood
sugar [85]. Likewise, an increase in mRNA and protein expression of GLUT4 was observed
in 3T3-L1 adipocytes treated with punicic acid [83].

3.2.4. Effect of Punicic Acid over HDL and PON1

Another mechanism related to oxidative stress-related diseases is the alteration of
paraoxonase 1 (PON1) in circulatory plasma. The paraoxonase (PON) family of enzymes
is a group of polymorphic lactonases with broad substrate specificity that have potent
antioxidant, anti-inflammatory, and anti-apoptotic properties. They are highly found in
HDLs, and PON1 associated with HDL helps prevent LDL oxidation [101,102]. Low levels
of PON1 and HDL cholesterol are associated with a high vulnerability to oxidative damage
of lipids, proteins, and DNA and elevated immune-inflammatory response. Decreased
PON1 content is also related to the neurotoxic effects of the immune-inflammatory and
nitro-oxidative pathways in people suffering from neuroprogressive disorders such as
major depressive disorder, bipolar disorder, and schizophrenia [103]. In NDs, alterations to
circulatory plasma PON1 were reported [101]. Additionally, reduction in PON1 levels is
common in PD patients compared to healthy people [104].

Pomegranate induces modifications of high-density lipoproteins (HDL) lipid composi-
tion and functionality. Rabbits were supplemented during 30 days with microencapsulated
pomegranate, which induced an increase in HDL cholesterol and HDL phospholipids,
decreased non−HDL sphingomyelin levels, and lowered the content of the triglycerides-to-
phospholipids ratio. There was an increase in HDL functionality and improved oxidation
resistance, most likely as a result of reduced triglyceride levels of the HDL and an in-
crease in PON1 activity [86]. In a similar study, women with acute coronary syndrome
were supplemented with microencapsulated pomegranate for 30 days, which shifted the
distribution from large HDL to intermediate and small-sized particles, and a decrease in
triglyceride values and an increase in PON1 activity was observed. HDL remodeling did
not change the affinity of lipoprotein for PON1 since PON1 activity remained constant be-
fore or after supplementation. This means that the higher PON1 activity after pomegranate
supplementation is due to its higher synthesis [87]. Additionally, CLA isomers, particularly
c9,t11, help protect PON1 from oxidative oxidation and stabilization in a concentration-
dependent manner by binding to a specific binding site on a PON1 molecule [102]. Because
microencapsulated pomegranate is composed of many beneficial nutraceutical components,
including punicic acid, new studies need to be conducted to explore the direct effect of
punicic acid over PON1 and HDL.

In summary, punicic acid (PuA) can act as (1) an agonist of PPARs, which reduces
neuroinflammation and tau hyperphosphorylation and conducts less Aβ formation and ag-
gregation. Punicic acid reduces the Aβ formation by (2) inhibiting activation of calpain and
cyclin-dependent kinase 5 (cdk5), limiting the hyperphosphorylation of tau protein. Like-
wise, (3) PuA increases GLUT4 protein expression regulating the glucose brain metabolism,
reducing insulin resistance, and reducing the hyperphosphorylation of tau proteins. As
a part of its strong antioxidant effects, (4) PuA increased the anti-oxidative properties of
HDL and PON1 activity, reducing ROS generation and lipids peroxidation (Figure 6).
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Figure 6. Schematic representation of biological effects of punicic acid (PuA) in neurological diseases
(NDs). Punicic acid (PuA) acts as (1) an agonist of PPARs inhibiting the activation of nuclear factor
kappa B (NF-κB) and the release of inflammatory cytokines such as TNF-alpha, and therefore,
reducing neuroinflammation and tau hyperphosphorylation and conducting less Aβ formation and
aggregation. (2) PuA inhibits activation of calpain and cyclin-dependent kinase 5 (cdk5), limiting
the hyperphosphorylation of tau protein and conducting to less Aβ formation and aggregation.
(3) PuA increases GLUT4 protein expression regulating the glucose brain metabolism, reducing
insulin resistance, and reducing the hyperphosphorylation of tau proteins. (4) PuA increased the
anti-oxidative properties of the PON1 complex reducing ROS generation limiting mitochondrial
dysfunction and neuronal apoptosis. Lipids peroxidation. Moreover, PuA induces changes in high-
density lipoproteins (HDL) lipid composition and functionality reducing the formation of oxysterols
such as 27-hydroxycholesterol (27-OHC) and increasing oxidative resistance with less Aβ plaque
formation. ROS: reactive oxygen species; PON1: paraoxonase 1; PPARs: peroxisome proliferator-
activated receptors; HDL: high-density lipoprotein; GLUT4: insulin-sensitive glucose transporter;
CH: cholesterol; BBB: blood–brain barrier; ApoE: apolipoprotein E; Glu: glucose, PuA: punicic acid.
Green lines indicate stimulation, while red lines indicate inhibition.

4. Concluding Remarks and Future Perspectives

Punicic acid is an important nutraceutical compound in the prevention and treatment
of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s disease.
Punicic acid can decrease oxidative damage and inflammation by increasing the expression
of peroxisome proliferator-activated receptors. In addition, it can reduce beta-amyloid
deposits formation and tau hyperphosphorylation by increasing the expression of GLUT4
protein and the inhibition of calpain hyperactivation. Microencapsulated pomegranate,
with high levels of punicic acid, increases PON1 antioxidant activity in HDL. Likewise,
encapsulated pomegranate formulations with high levels of punicic acid have shown an
increase in PON1 antioxidant activity in HDL. However, punicic acid shows very low
permeability across the blood–brain barrier, resulting in very limited effects on neurological
disorders. In order to overcome this challenge, brain-targeted formulations that bypass
the BBB have better results at diminishing ND’s symptoms, such as decreased amyloid
precursor protein gene expression, oxidative stress, and neuroinflammation. Future studies
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that focus on the effect of punicic acid on neurodegeneration need to be mindful of the
effect of the BBB on the brain bioavailability of the bioactive molecule and attempt to
develop specific delivery mechanisms that allow exerting localized effects.
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