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Abstract

Background

Sulfadoxine-pyrimethamine (SP) is recommended in Africa in several antimalarial preven-

tive regimens including Intermittent Preventive Treatment in pregnant women (IPTp), Inter-

mittent Preventive Treatment in infants (IPTi) and Seasonal Malaria Chemoprevention

(SMC). The effectiveness of SP-based preventive treatments are threatened in areas where

Plasmodium falciparum resistance to SP is high. The prevalence of mutations in the dihy-

dropteroate synthase gene (pfdhps) can be used to monitor SP effectiveness. IPTi-SP is

recommended only in areas where the prevalence of the pfdhps540E mutation is below

50%. It has also been suggested that IPTp-SP does not have a protective effect in areas

where the pfdhps581G mutation, exceeds 10%. However, pfdhps mutation prevalence data

in Africa are extremely heterogenous and scattered, with data completely missing from

many areas.

Methods and findings

The WWARN SP Molecular Surveyor database was designed to summarize dihydrofolate

reductase (pfdhfr) and pfdhps gene mutation prevalence data. In this paper, pfdhps muta-

tion prevalence data was used to generate continuous spatiotemporal surface maps of the
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estimated prevalence of the SP resistance markers pfdhps437G, pfdhps540E, and

pfdhps581G in Africa from 1990 to 2020 using a geostatistical model, with a Bayesian infer-

ence framework to estimate uncertainty. The maps of estimated prevalence show an expan-

sion of the pfdhps437G mutations across the entire continent over the last three decades.

The pfdhps540E mutation emerged from limited foci in East Africa to currently exceeding

50% estimated prevalence in most of East and South East Africa. pfdhps540E distribution is

expanding at low or moderate prevalence in central Africa and a predicted focus in West

Africa. Although the pfdhps581G mutation spread from one focus in East Africa in 2000, to

exceeding 10% estimated prevalence in several foci in 2010, the predicted distribution of

the marker did not expand in 2020, however our analysis indicated high uncertainty in areas

where pfdhps581G is present. Uncertainty was higher in spatial regions where the preva-

lence of a marker is intermediate or where prevalence is changing over time.

Conclusions

The WWARN SP Molecular Surveyor database and a set of continuous spatiotemporal sur-

face maps were built to provide users with standardized, current information on resistance

marker distribution and prevalence estimates. According to the maps, the high prevalence

of pfdhps540E mutation was to date restricted to East and South East Africa, which is reas-

suring for continued use of IPTi and SMC in West Africa, but continuous monitoring is

needed as the pfdhps540E distribution is expanding. Several foci where pfdhps581G preva-

lence exceeded 10% were identified. More data on the pfdhps581G distribution in these

areas needs to be collected to guide IPTp-SP recommendations. Prevalence and uncer-

tainty maps can be utilized together to strategically identify sites where increased surveil-

lance can be most informative. This study combines a molecular marker database and

predictive modelling to highlight areas of concern, which can be used to support decisions in

public health, highlight knowledge gaps in certain regions, and guide future research.

Author summary

Despite great success in reducing death and illness from malaria over the last 20 years, the

disease is still one of the main leading causes of death in low-income countries with esti-

mated 229 million cases and 409,000 deaths annually. One of the main obstacles in

malaria control is the development and spread of drug resistance. Several intermittent

preventive treatments depend on the efficacy of the antimalarial drug sulfadoxine-pyri-

methamine (SP); Intermittent Preventive Treatment in pregnant women (IPTp), Inter-

mittent Preventive Treatment in infants (IPTi) and Seasonal Malaria Chemoprevention

(SMC). Mutations in the dihydropteroate synthase gene (pfdhps) can cause resistance to

SP treatment. In this paper, we use pfdhps mutation prevalence data to generate continu-

ous spatiotemporal surface maps of the estimated prevalence of the SP resistance markers

in Africa from 1990 to 2020 using a Bayesian geostatistical model. These predictive maps

provide much needed insight about where SP can be used as part of preventive treatments.

Spatial information on the spread of antimalarial resistance is critical for health organiza-

tions to prioritize surveillance measures, and plan control and elimination efforts.
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Introduction

Antimalarial drugs are essential tools for the control and elimination of malaria. Resistance to

all currently available antimalarials, including the pivotal artemisinin derivatives, has been

confirmed in the Greater Mekong Sub-region, with worrying signals of spread to or emergence

in India [1–3], and recently, presence of de novo mutations in portions of the Plasmodium fal-
ciparum gene encoding kelch (K13)–propeller domains in Rwanda, Uganda, Eritrea and

Ghana which can mediate artemisinin resistance [4–6].This situation is unfortunately reminis-

cent of the emergence and spread of parasites resistant to chloroquine and later sulfadoxine–

pyrimethamine (SP) that resulted in dramatic increases in malaria-related morbidity and mor-

tality across sub-Saharan Africa [7].

SP was used as a first-line treatment, alone or in combination with amodiaquine or chloro-

quine, for uncomplicated falciparum malaria in many sub-Saharan countries from the mid to

late 1990s. Due to the rapid spread of SP-resistant parasites, SP was discontinued as recom-

mended treatment in the early 2000s when artemisinin-based combinations became available

and were progressively recommended as first-line treatment [8]. SP is currently recommended

in Africa in several antimalarial preventive regimens including Intermittent Preventive Treat-

ment in pregnant women (IPTp), Intermittent Preventive Treatment in infants (IPTi) and Sea-

sonal Malaria Chemoprevention (SMC).

Point mutations in the dihydrofolate reductase gene (pfdhfr) at codons N51, C59, S108, and

I164 confer resistance to pyrimethamine while point mutations in the dihydropteroate

synthase gene (pfdhps) in codons S436, A437, K540, A581, and A613 are associated with resis-

tance to sulfadoxine in the P. falciparum parasite. Molecular studies have shown that the triple

mutant haplotype in pfdhfr (S108N, C59R, N51I) in combination with a double mutant haplo-

type of pfdhps (A437G, K540E), known as the quintuple mutant haplotype, is strongly associ-

ated with an increased risk of SP treatment failure in Africa [9, 10]. High prevalence of two

single nucleotide polymorphisms, pfdhfr59R and pfdhps540E, could act as simpler surrogate

markers for the quintuple mutant genotype and predict risk of SP treatment failure [9, 11]. In

sub-Saharan Africa pfdhfr59R prevalence is higher than 75% in 73 out of 87 sites (filter: data

collection 2010–2020, sample size > 49) [12]. As the prevalence of the triple mutant pfdhfr
haplotype is very high across Africa, the prevalence of pfdhps540E alone could be used as a sur-

rogate marker for the quintuple haplotype and which is highly resistant to SP. The additional

mutation pfdhpsA581G increases SP resistance modestly in vitro [13] and is associated with

increased risk of SP treatment failure [14].

Currently SP is mainly used for IPTp to reduce maternal malaria episodes, maternal anae-

mia, low birth weight, and neonatal mortality. IPTp-SP is recommended by WHO for all preg-

nant women living in areas of moderate-to-high malaria transmission in Africa [15, 16]. In

addition, SP is recommended by WHO for IPTi, where a full course of SP is administered to

infants, independently of presence of parasitemia, to reduce the malaria burden [17]. It is rec-

ommended that IPTi-SP is not implemented in areas where pfdhps540E exceeds 50%. Moni-

toring of prevalence of other molecular markers for SP resistance is also recommended, in

particular pfdhpsA581G, however they are not yet used to guide IPTi policy [18].

The effectiveness of IPTp in sub-Saharan Africa is threatened in areas where P. falciparum
is highly resistant to SP. The sextuple mutant haplotype (pfdhfr S108N, C59R, N51I in combi-

nation with pfdhps A437G, K540E, A581G), was associated with increased risk of P. falciparum
infection, and higher parasitaemia in pregnant women receiving IPTp-SP and a more intense

placental inflammation in Malawi and Tanzania [19, 20]. An initial meta-analysis based on

five studies, concluded that IPTp-SP did not reduce the risk of low birth weight in infants in

studies in East Africa where pfdhps540E exceeded 50% [21]. In a recent, comprehensive
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analysis, it was demonstrated that IPTp-SP mediated reductions in the risk of low birthweight

decline with increasing pfdhps540E prevalence. However, even in areas where pfdhps540E

prevalence exceeds 90%, modest reductions in risk of low birth weight remain, if pfdhps581G

prevalence is below 10%. The point mutation pfdhps581G can serve as a proxy for the sextuple

mutant haplotype. Concerningly, in regions where prevalance of the sextuple mutant exceeded

10%, IPTp-SP no longer protected newborns against low birth weight. The estimated pooled

pfdhps581G prevalence was 37% in the aggregated analyses of studies in these regions [22].

SP+AQ is currently recommended for SMC in countries in the Sahel sub-region of Africa

with intense seasonal malaria, but not in East and Southern Africa due to spread of the highly

SP-resistant quintuple mutant parasite [23], which can be monitored by assessing the preva-

lence of pfdhps540E [24]. The introduction of SP+AQ SMC has been accompanied by a local

increase in SP resistance marker prevalence. In Southern Mali, the prevalence of pfdhps540E,

and the quintuple mutant haplotype significantly increased in children after receiving SP+AQ

SMC, however the chemoprevention was still effective [25]. In a large study conducted in

seven countries in West and Central Africa, the prevalence of pfdhps540E increased in P. fal-
ciparum infected children who did not receive SMC but lived in areas where SP+AQ SMC was

deployed [26].

Understanding the spatio-temporal distribution and prevalence of pfdhps gene mutations

across Africa is essential to inform effective targeting of SP for IPTp, IPTi and SMC. Spatio-

temporal models can support the monitoring of drug resistance and appropriate targeting of

the preventive strategies IPTp, IPTi and SMC. The aims of this study were first to update the

previously published database with more recent data on the prevalence of markers of SP resis-

tance and second, to build a spatiotemporal model to provide an up-to-date picture on the dis-

tribution of pfdhps437G, pfdhps540E, and pfdhps581G mutations, the markers relevant for

monitoring the effectiveness of SP-IPTp, IPTi and potentially SMC.

Methods

Data summary

In this study the drug-resistance marker prevalence was analysed. This variable refers the pro-

portion of individual patient blood samples that test positive for a given mutation or combina-

tion of mutations out of the tested malaria infected individuals. Data on the prevalence of the

pfdhps437G, pfdhps540E and pfdhps581G mutations were extracted from articles published

between January 1997 and April 2020. These studies covered information on marker preva-

lence from samples collected from 1978 to 2018. The data were extracted from the following

sources; 1) the Drug Resistance Maps database (publications 1997–2011), 2) the WorldWide

Antimalarial Resistance Network (WWARN) SP Molecular Surveyor database (publications

2011–2020) and 3) data shared with the WWARN repository. From these sources, data on

pfdhps437G, pfdhps540E and pfdhps581G mutation prevalence, year of sample collection, loca-

tion of collection and publication details were extracted. Some tested isolates contain parasites

with both wildtype and mutant alleles. To account for this, the prevalence of a mutation was

defined as the number of samples containing the mutant allele, either pure, or mixed with the

wild-type allele, divided by the total number of samples tested. This information was used to

inform the final model, further described below, where prevalence was estimated by marker

each year from 1990 to 2020.

Drug resistance maps database

Data from the Drug Resistance Maps database was used as described previously [27, 28].

Briefly, a literature search was conducted to identify articles published from 1997 to 2011 with
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data on prevalence of pfdhfr and pfdhps mutations in Africa. Study site, study year and the pro-

portion of isolates with a particular mutation were recorded in a database [27, 28]. All data on

prevalence of pfdhps437G, pfdhps540E and pfdhps581G mutations, study site and year were

extracted from the database, for the model outputs.

WWARN SP molecular surveyor database

The WWARN SP Molecular Surveyor database and visualization tool was created to summa-

rize data on SP resistance markers in the pfdhfr and pfdhps genes, derived from publications

and studies shared with the WWARN. To identify appropriate publications, a literature search

was conducted in PubMed with the search terms ‘malaria AND (dhfr OR dhps OR pfdhfr OR

pfdhps OR “molecular marker” OR “molecular markers”)’. Inclusion criteria were; 1) at least

one P. falciparum pfdhfr or pfdhps genotype or haplotype, 2) primary data source, 3) baseline/

pre-treatment isolates, and 4) meta-data on collection of samples including the year and loca-

tion (at least on country level) of sample collection. Inclusion and exclusion criteria and the

standardized data extraction process are described in detail in S1 Text. Details of the extraction

process can be found in the S2 Text. Publications from 2011–2020 were included in the

WWARN SP Molecular Surveyor database.

The current maps include data from samples collected during therapeutic efficacy studies

and routine surveillance of antimalarial efficacy in Mpumalanga, South Africa, 2016–2018

using malaria-positive RDTs collected from various primary healthcare facilities within the

malaria-endemic districts [29, 30]. Differences in study design are not explicitly accounted for

in the modelling.

For the final model outputs, data on location, year and mutation prevalence were extracted

from the SP Molecular Surveyor database. Studies of prevalence of pfdhps437G, pfdhps540E

and pfdhps581G mutations from the African continent published from 1 January 2011 to 21

April 2020 were included in the analysis. To avoid duplication, studies already entered in the

Drug Resistance Maps database, described above, were excluded from the selection.

Geostatistical modelling of molecular markers

In this paper, we used a geostatistical model to generate a continuous spatio-temporal surface

to estimate the prevalence of pfdhps437G, pfdhps540E and pfdhps581G markers associated

with SP resistance. The pfdhps data, which were only available at discrete study locations and

times were used to predict the prevalence of these three markers across Africa from 1990–

2020. In this way, the model output provided insight into the spatiotemporal spread of resis-

tance in a way that the discrete data points alone cannot provide. A study site, in this context,

refers to samples collected in a specific location and year within a study. The geostatistical

model included as a covariate the P. falciparum transmission intensity available from 2010–

2017, as estimated by the spatiotemporal models developed by the Malaria Atlas Project

(MAP) [31]. For years before 2010, we use the 2010 transmission intensity and for years after

2017, we use the 2017 transmission intensity. Full details of the geostatistical model are pro-

vided in S2 Text and a conditional dependency schematic for the geostatistical model in S1

Fig.

The statistical methodology follows two stages to allow for spatiotemporal prediction of the

molecular marker prevalences, which are outlined here briefly (see S2 Text for details). Firstly,

based on the observed data, the posterior distribution of model parameters was estimated

using a Bayesian inference framework. Secondly, given the model parameters from the first

stage, marker prevalence was predicted on a 5 x 5 km grid within the P. falciparum spatial lim-

its of Africa (defined by MAP) for each year from 1990 to 2020. For each location, a
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distribution of prevalences was drawn from the posterior predictive distribution and summa-

rized using the median statistic to create a single continuous surface. The standard deviation

surface of the posterior predictive distribution was presented alongside the median maps as a

summary of the associated uncertainty in the predictions at each location/time. This process

was repeated separately for each of the three molecular markers. That is, we present the poste-
rior predictive median as an estimate of marker prevalence and the posterior predictive standard
deviation as a measure of uncertainty of the prevalence in each 5 x 5 km pixel within the P. fal-
ciparum spatial limits of Africa (defined by MAP) for each year from 1990 to 2020.

Model validity was assessed to ensure sound interpretation of the model output. For each

marker, the corresponding dataset was divided into ten subsets selected at random. Each of the

ten subsets of data was treated as a validation set to test the model’s predictive ability by run-

ning the model with the subset withheld. The ability of the model to predict marker preva-

lences at the locations/times in that subset was tested against the actual withheld prevalence

data. The predictive results for each of the ten subsets of data were pooled, so that each data-

point had an associated predictive validation distribution from which model validity was

assessed (see S2 Text).

Visualization of observed data

Data visulizations of the observed prevalence of the pfdhps581G mutation in sites exceeding

10% prevalence in the results was performed using Tableau (Tableau Software, Seattle, WA).

Results

Data summary

Data on the prevalence of pfdhps437G, pfdhps540E and pfdhps581G mutations from 201 stud-

ies published between 1 January 1997 and 21 April 2020 were included in the analysis. These

studies covered data from samples collected from 1978 to 2018. In total, 1404 data points were

analysed for the three mutations Table 1. Each data point refers to one study location per year

per study. The full list of included studies can be found in S1 Data.

The global prevalence of the studied pfdhps markers can be visualized online with the

WWARN SP Molecular Surveyor, along with pfdhfr markers. The WWARN SP Molecular

Surveyor [12] is regularly updated with data from recent publications and data shared with

WWARN.

A summary of the location of the study sites, study sample size, prevalence and study sites

per year of the data used in the mathematical modelling for pfdhps437G, pfdhps540E and

pfdhps581G is shown in Table 2 and Fig 1. A substantial increase in median prevalence of the

three markers was observed over the decades.

S1, S2 and S3 Videos show the time course of data collection for pfdhps437G, pfdhps540sE

and pfdhps581G, respectively, over the period of 1990 to 2020. In the videos, the data visualized

in each year show studies conducted before or during the year associated with the map.

Table 1. Number of data points by data source and gene locus.

Locus Drug Resistance Maps Molecular Surveyor WWARN repository

pfdhps437 229 247 39

pfdhps540 237 255 43

pfdhps581 121 195 38

https://doi.org/10.1371/journal.pcbi.1010317.t001
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Geostatistical model

Continuous predictive maps for each of the three molecular markers were generated over the

time period of 1990 to 2020 within the P. falciparum spatial limits of Africa, using the data

shown in Fig 1. The construction of a statistical model provides two key advantages over the

raw data: (1) there are many locations in space and time without data available where predic-

tions are informative (in Fig 1, all data across any time point overlaid on the same spatial map)

and (2) our model allows quantification of uncertainty in estimates which the raw data alone

do not allow (consider two studies at the same space-time location).

First the predicted prevalence of the pfdhps437G marker was examined (Fig 2). The model

enables us to make predictions in regions in space and time where there are no data, by draw-

ing on the existing data that are available. However, generally speaking, using limited data

and/or studies with smaller sample sizes will lead to higher levels of uncertainty. In 1990

pfdhps437G predicted prevalence was low throughout the continent, except for a few isolated

locations in East and West Africa. By 2005, the prevalence of the pfdhps437G mutation was

predicted to be significantly higher in locations in East and West Africa, and by 2020, the pre-

dicted pfdhps437G marker levels were high over the majority of the continent. The associated

uncertainty maps showed moderate uncertainty about the predictions over most of the conti-

nent but was lower in regions of East and South Africa with higher pfdhps437G prevalence.

Consistent with previous mathematical modelling [27] the median of the posterior predic-

tive distribution of pfdhps540E was near zero over the entire continent in 1990 with the excep-

tion of a few ‘hotspots’ in East Africa (Fig 3). The uncertainty map showed that there was high

confidence in these model results, but less so at the hotspots. From 1990 to 2005, there was sig-

nificant spread of the pfdhps540E mutation in East Africa (but not in the west) and similarly,

from 2005 to 2020 there was further spread of pfdhps540E mutations in the East and South

East. The associated uncertainty maps show that there is increasing uncertainty in the predic-

tions from 1990 to 2020, especially in regions of temporal change from low to high marker

prevalence.

In Fig 4 the model results for pfdhps581G mutation prevalence in 1990, 2005 and 2020 are

shown. The predicted prevalence for pfdhps581G is near zero every year and the uncertainty in

these predictions is consistently low (i.e., high confidence). There are some locations where

the predicted marker levels are slightly above zero with increasing prevalence over time in cen-

tral Africa in Rwanda and along Rwanda border in Uganda, Tanzania and DRC, Nigeria and

Horn of Africa, but these are associated with higher uncertainty. S4, S5 and S6 Videos show

Table 2. Summary of the pfdhps marker data used in the mathematical models, by sample collection: 1978–1998, 1999–2008 and 2009–2018.

Marker No. study sites Median prevalence (Q1, Q3) Year range sample collection� Median sample size (Q1, Q3)

pfdhps437G 50 0.22 (0.08. 0.41) 1978–1998 46 (32, 68)

286 0.67 (0.38, 0.90) 1999–2008 76 (40, 139)

178 0.87 (0.67 0.99) 2009–2018 75 (31, 117)

pfdhps540E 52 0.06 (0.01 0.32) 1978–1998 49 (33, 71)

289 0.16 (0.01 0.70) 1999–2008 75 (41, 135)

193 0.22 (0.01, 0.92) 2009–2018 81 (33, 129)

pfdhps581G 37 0.01 (0.01, 0.01) 1978–1998 76 (37, 129)

151 0.01 (0.01, 0.01) 1999–2008 82 (46 152)

165 0.02 (0.01, 0.10) 2009–2018 81 (37, 126)

The reported year refers to the year of sample collection (rather than year of publication). Q1 and Q3 are the first and third quantile, respectively. � Note that the articles

published 1997–2020 included data collected 1978–2018.

https://doi.org/10.1371/journal.pcbi.1010317.t002
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Fig 1. Spatial locations and pfdhps mutation prevalence from collected data. Summary of the spatial locations of the

collected data and the prevalence for pfdhps437G (a), pfdhps540E (c) and pfdhps581G (e) across the African continent

and the number of study sites per year during the time period 1980–2020 for pfdhps437G (b), pfdhps540E (d) and

pfdhps581G (f). In (a), (c) and (e), the size of the dots is proportional to the study sample size and the colour is

representative of the observed marker prevalence. National shapefiles were obtained from the Malaria Atlas Project

(MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-access-policy/) and no

changes were made.

https://doi.org/10.1371/journal.pcbi.1010317.g001
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the median of the posterior predictive distribution for pfdhps437G, pfdhps540E and

pfdhps581G mutation prevalence respectively over 1990 to 2020.

We further examined the temporal trends of the predicted proportion of Africa (within the

P.falciparum spatial limits) that contained infections with the studied mutations. An expansion

of the pfdhps437G mutation over the last three decades awas observed and in 2020 high preva-

lence of pfdhps437G (50% and higher) was predicted in almost all of Africa (Fig 5a–5d).

pfdhps540E distribution (in blue) at therapeutically relevant prevalence thresholds was

examined; 90% where IPTp is suggested to have only limited effect and 50% where IPTi is no

Fig 2. Posterior predictive median prevalence of pfdhps437G. Posterior predictive median prevalence of pfdhps437G

in 1990 (a), 2005 (c) and 2020 (e). Associated standard deviations (uncertainty) for pfdhps437G posterior predictions

in 1990 (b), 2005 (d) and 2020 (f). A low standard deviation (lighter colour) indicates low uncertainty and high

confidence in the model. National shapefiles were obtained from the Malaria Atlas Project (MAP; https://malariaatlas.

org/) under their open access policy (https://malariaatlas.org/open-access-policy/) and no changes were made.

https://doi.org/10.1371/journal.pcbi.1010317.g002
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Fig 3. Posterior predictive median prevalence of pfdhps540E. Posterior predictive median prevalence of pfdhps540E

in 1990 (a), 2005 (c) and 2020 (e). Associated standard deviations (uncertainty) for pfdhps540E posterior predictions in

1990 (b), 2005 (d) and 2020 (f). A low standard deviation (lighter colour) indicates low uncertainty and high

confidence in the model. National shapefiles were obtained from the Malaria Atlas Project (MAP; https://malariaatlas.

org/) under their open access policy (https://malariaatlas.org/open-access-policy/) and no changes were made.

https://doi.org/10.1371/journal.pcbi.1010317.g003
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longer recommended. The pfdhps540E mutation, the marker for the quintuple mutation,

emerged from limited foci in East Africa to currently exceeding 50% estimated prevalence in

most of East and South Africa and is present in low to moderate prevalence in Central Africa.

Interestingly, in West Africa pfdhps540E remains absent or rare (Fig 5e–5h).

Distribution of pfdhps581G (in green) was analyzed at relevant predicted prevalence thresh-

olds; 37% and 10%) when the IPTp has been suggested to lose its effect. The pfdhps581G distri-

bution expanded from one main focus in 2000 to four foci in 2010 in: 1) Rwanda/East DRC/

South West Uganda/North West Tanzania, 2) Nigeria and 3) North East Tanzania, and, 4)

Fig 4. Posterior predictive median prevalence of pfdhps581G. Posterior predictive median prevalence of pfdhps581G

in 1990 (a), 2005 (c) and 2020 (e). Associated standard deviations (uncertainty) for pfdhps581G posterior predictions

in 1990 (b), 2005 (d) and 2020 (f). A low standard deviation (lighter colour) indicates low uncertainty and high

confidence in the model. National shapefiles were obtained from the Malaria Atlas Project (MAP; https://malariaatlas.

org/) under their open access policy (https://malariaatlas.org/open-access-policy/) and no changes were made.

https://doi.org/10.1371/journal.pcbi.1010317.g004
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Sudan/Eritrea/Ethiopia, where pfdhps581G predicted prevalence exceeded 10%. pfdhps581G

predicted prevalence seems to decrease slightly predicted between 2010 and 2020 and high

uncertainty was notes in areas where pfdhps581G was present (Figs 4 and 5i–5l).

Could the slightly decreased pfdhps581G prevalence observed in the model output be

explained by the absence of data from study sites with high pfdhps581G prevalence or by an

actual decrease in pfdhps581G prevalence? This question was further investigated in the

observed data set in Fig 6. The dynamics of pfdhps581G prevalence over time from 2006–2018

was examined in study sites where pfdhps581G prevalence was > 10% in at least one year.

Prevalence of pfdhps581G was observed to be higher than 37% in at least one site and year,

between 2010 and 2017 in studies conducted in Nigeria, Democratic Republic of Congo,

Uganda, Tanzania, Sudan, and Somalia, and in 2006 in Rwanda. For many of these sites, data

was only available from one year, hindering trend analysis. To determine how pfdhps581G

prevalence was changing over time, sites that had data from at least three years were further

examined in Fig 7. A statistically significant increase in pfdhps581G prevalence was observed

Fig 5. Predicted proportion of Africa that exceeds specific prevalence thresholds. The proportion of the continent within the Pf spatial

limits of Africa with pfdhps437G (a), pfdhps540E (e) and pfdhps581G (i) prevalence exceeding relevant thresholds over the time period of

1990 to 2020. The median estimates are shown in the solid-colored lines and the associated uncertainty (50% credible intervals) in the

shaded regions. The predicted area with prevalence exceeding relevant thresholds shown in three shades, based on median predictions, for

pfdhps437G (red), pfdhps540E (blue) and pfdhps581G (green) in 2000 ((b), (f), (j)), in 2010 ((c), (g), (k)), and 2020 ((d), (h), (l)). The

predictive proportions displayed for pfdhps437G (red) and pfdhps540E (blue) are 90%, 50% and 5%. For pfdhps581G (green), present in

lower prevalence, the proportions displayed are 37%, 10% and 5%. National shapefiles were obtained from the Malaria Atlas Project (MAP;

https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-access-policy/) and no changes were made.

https://doi.org/10.1371/journal.pcbi.1010317.g005
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in Jinja, Uganda and a decrease was observed in Muheza and Kagera in Tanzania and Tororo

Uganda, while Kanunga, Uganda showed a continuously high prevalence and Begoro, Ghana

showed a continuously low prevalence (Fig 7, S2 Data). A decrease in pfdhps581G prevalence

was observed in several sites, and could partly explain the pfdhps581G decrease in the model

output in some areas, but not all. Another main determinant was likely an absence of data for

sites where high prevalence was previously observed (e.g., all sites in Rwanda and Nigeria, Fig

6), which is reflected in the high level of uncertainty which accompanies the presence of

pfdhps581G (Fig 4).

To further understand the lag time between data collection and publication, the time

between the collection of the most recent data in the publication and the publication year was

evaluated. The mean time to publication after data collection with a 95% confidence level was

3.66 ± 0.42 years and the median time was 3 years (range 0–39 years).

Fig 6. Locations where pfdhps581G prevalence has exceeded 10%. Observed prevalence of pfdhps581G is displayed for all years in sites where

pfdhps581G prevalence was>10% at least one year, from 2005 to 2018.

https://doi.org/10.1371/journal.pcbi.1010317.g006
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Model validation

By rerunning the mathematical model 10 times, each time with a different 10% of the data

withheld, the model validity was assessed. Table 3 shows the correlation coefficient, mean

error and mean absolute error between the observed and median predicted marker prevalence

at each study site (e.g., space-time location) for each of the three molecular markers. Overall,

Fig 7. Locations where pfdhps581G prevalence has exceeded 10% and data from three years are available.

Observed prevalence of pfdhps581G is displayed for all years in sites where pfdhps581G prevalence was>10% at least

one year and data from at least three years were available, between 2010 to 2018. A statistically significant change in

pfdhps581G prevalence in comparison to the first assessed year using Fisher’s exact test is displayed as � (P� 0.05), ��

(P� 0.01) or ��� (P� 0.001).

https://doi.org/10.1371/journal.pcbi.1010317.g007
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there is good agreement between the observed and predicted prevalences, with the mean error

(measure of bias) lowest for pfdhps540E and the mean absolute error (measure of average dis-

crepancy) lowest for pfdhps581G. Since the observed values of pfdhps581G are overall lower

than the other markers it follows that the mean absolute error is small. S2 Fig shows validation

results for the pfdhps540E mutation. The scatterplot of the predicted median prevalence from

the validation models and observed prevalence (S2a Fig) provided further evidence of strong

agreement between the observed and predicted pfdhps540E prevalences. S2b Fig shows a prob-

ability-probability plot of the fraction of pfdhps540E observations that fell within a predictive

credible interval of a given size and indicates that the reliability of the credible intervals was

strong, even for narrower credible intervals. S3 Fig and S4 Fig show the validation results for

pfdhps437G and pfdhps581G, respectively, and indicate agreement between the observed and

predicted prevalences (although not as strong as for pfdhps540E) as well as strong reliability of

the credible intervals.

Summary of the correlation coefficient, mean error and mean absolute error between the

observed marker prevalence and the predicted (median) prevalence at the space-time locations

of the studies for each of the three molecular markers.

Discussion

Continuous spatiotemporal surface maps of the estimated prevalence of the SP resistance

markers pfdhps437G, pfdhps540E, and pfdhps581G in Africa between 1990 and 2020 were gen-

erated using a geostatistical model, with a Bayesian inference framework to estimate uncer-

tainty. The newly generated maps show an expansion of the pfdhps437G mutations across the

entire continent over the last three decades, with the pfdhps540E mutation emerging in differ-

ent places in East Africa and spreading from the Horn of Africa to South Africa but remaining

highly prevalent only in the East and South East African regions to date. Although the

pfdhps581G mutation has emerged in various places across the continent, its prevalence

remains, to date, relatively low. The information in the geostatistical model and spatiotemporal

maps can be used to inform public health decision making and guide smarter selection of sites

for data collection to further refine the available data sets.

Why does SP resistance increase

Notwithstanding the limitations of the underlying data/model discussed below, the maps

clearly indicate the broad trends of changes in marker prevalence over time and space. The

spatiotemporal surface maps present the changing distribution of the pfdhps437G and

pfdhps540E markers, associated with SP treatment failure [9], over the study period.

Although SP was discontinued as a first line antimalarial for uncomplicated P. falciparum
malaria in the majority of African countries between 2001 and 2007 [8], the predicted

pfdhps437G and pfdhps540E marker prevalence has continued to increase and the estimated

area where dhps540E was present increased in East Africa (Figs 2, 3 and 5). Multiple factors

may contribute to the continued high prevalence of pfdhps437G and pfdhps540E. First, these

mutations may not affect parasite fitness. It has been suggested that the quintuple mutant

Table 3. Correlation coefficient, mean error and mean absolute error by molecular marker.

Marker Correlation coefficient Mean error Mean absolute error

pfdhps437 0.837 1.902 11.868

pfdhps540 0.950 0.031 7.818

pfdhps581 0.824 -1.810 2.897

https://doi.org/10.1371/journal.pcbi.1010317.t003
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haplotype incurs little or no fitness cost, as a high frequency of the mutation remained in

Malawi despite apparent absence of strong SP drug pressure [32]. Second, SP is still being used

throughout Africa, in IPTp, IPTi and SMC, and possibly as an informal treatment of uncom-

plicated malaria. IPTp-SP was recommended by WHO in 2004 [16], however implementation

was slow. In 2014–2016, the proportion of women who took IPTp-SP in their most recent

pregnancy in eight African countries was estimated to be 30% [33]. As observed in a study in

Western Kenya, the increase in prevalence of the quintuple mutant genotype coincided with

increased use of IPTp-SP [34]. IPTi-SP is recommended in countries with pfdhps540E preva-

lence below 50%, and after IPTi administration an increase in pfdhps mutation prevalence was

observed in one study in Sierra Leone [35], but not in studies in Mali and Tanzania [36, 37].

SP continues to be used in combination with amodiaquine for SMC in children in the Sahel

region in Africa, where the quintuple mutant genotype prevalence increased in children

receiving SMC [38] and pfdhps540E has increased in areas where SMC has been deployed [26].

A recent meta-analysis across Africa showed that in 2015 only 19.7% of children with malaria

received an ACT treatment [39], indicating that other treatment options, like SP, are likely to

be still in use particularly by those who procure malaria treatments from informal drug ven-

dors. Last, a similar drug to SP, cotrimoxazole (sulfamethoxazole/trimethoprim) is taken by

many HIV positive individuals, maintaining at least some drug pressure on the parasite popu-

lations [8]. A limitation of this study is that it did not provide information on pfdhps haplo-

types, but was restricted to the prevalence of pfdhps single genotypes due to limited number of

studies that collected data on pfdhps haplotypes. Due to the particular distribution of the

pfdhps mutations in Africa, single mutations can act as surrogate markers for haplotypes.

Pfdhps mutations emergence across Africa on an already established background of mutant

pfdhfr coincided with the first clinical treatment failure with SP in Africa in the 1990s [40]. In

East Africa, the double mutant pfdhps437G and pfdhps540E together with pfdhps436S (SGE)

emerged. In west Africa, the pfdhps437G substitution was found alone or together with

pfdhps436S, and the SGE allele was rare or absent [40]. Clinical resistance to SP were closely

associated with the quintuple haplotype (pfdhfr S108N, C59R, N51I in combination with

pfdhps A437G, K540E) [9]. Therefore pfdhps540E can be used as a proxy for the quintuple hap-

lotype. pfdhps581G mutation was observed to have emerged locally on pfdhps437G+

pfdhps540E backgrounds in several locations in Africa [41]. While single pfdhps540E or

pfdhps581G mutations do occur independently, these strains are rare.pfdhps 581G, of interest

for decreased effect of IPTp-SP, and pfdhps540E can be used as a proxy for the sextuple haplo-

type (pfdhfr S108N, C59R, N51I in combination with pfdhps A437G, K540E, A581G).

Implications for SMC

In 2012 SP+AQ SMC was recommended to be used only in the Sahel region, due to high resis-

tance to SP in East and Southern Africa, marked by high prevalence of pfdhps540E [24]. Our

spatiotemporal maps demonstrate an increase of predicted prevalence of pfdhps540E in East

and Southern Africa over time (Figs 1 and 3), particularly apparent in the display of the

expanding areas of pfdhps540E prevalence (Fig 5). The predicted prevalence of pfdhps540E was

consistently low (<5%) in West and Central Africa, however there were scattered sites such as

Equatorial Guinea [42] and Nigeria [43] with higher observed prevalence of pfdhps540E (Fig

1). While general reasons for the increase of SP resistance were previously discussed, SP+AQ

SMC use may also promote resistance. It has been demonstrated that SP+AQ SMC can select

for pfdhfr and pfdhps SNPs in individuals that receive the chemoprophylaxis and that individu-

als that live in areas where SMC is used are more likely to be infected with a pfdhps540E-carry-

ing parasite [26, 38]. In these studies, pfdhps540E prevalence was still low, and the increase did
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not seem to impact the SMC effectiveness. In the ACCESS-SMC study, it was estimated that

25.1 million doses of SMC were distributed monthly [26]. With the massive use of SMC,

pfdhps540E prevalence must be carefully monitored in the Sahel region. The pfdhps540E level

that could impact SMC effectiveness requires further investigation, for which the spatiotempo-

ral maps developed in this study can be leveraged.

Implications for IPTp-SP

WHO recommend IPTp-SP for all pregnant women living in areas of moderate-to-high

malaria transmission in Africa, including areas with high-level SP resistance, determined by

the prevalence of the quintuple mutant haplotype [15]. A recent comprehensive meta-analysis

demonstrated that the protective effect of IPTp-SP against low birthweight was compromised

in areas where pfdhps581G prevalence exceeded 10% (pooled mean prevalence of 37%) [22].

Our results suggest that the areas exceeding 50% pfdhps540E prevalence has expanded from a

few isolated foci in 2000 to encompass most of East and South East Africa in 2020 (Fig 5),

which may be due to an increased use of IPTp-SP [34]. This could constitute a growing ground

for the sexutple mutation. The spatiotemporal map predictions indicate that pfdhps581G prev-

alence increased from less than 5% in most of Africa in 2000 to three main foci exceeding 37%

in 2010: 1) Rwanda/East DRC/South West Uganda/North West Tanzania, 2) Nigeria and 3)

North East Tanzania. In addition pfdhps581G prevalence exceeding 10% was observed in the

region of Sudan/Eritrea/Ethiopia (Fig 5k). The spatioteporal maps indicate that pfdhps581G

prevalence did not increase in the most recent predictions for 2020 (Fig 5j), which was sup-

ported by the analysis of the observed data where most sites, but not all, showed a significant

decrease or no significant change between 2010 and 2020 (Figs 6 and 7). To be noted, recent

and longitudinal pfdhps581G prevalence data were missing in many regions and especially the

areas of higher prevalence which have higher uncertainty (Figs 4 and 7). These are cautiously

optimistic findings for IPTp-SP, especially as IPTp-SP use has increased during this period.

However, to confirm these predictions, more data are needed, specifically from the four foci

with pfdhps581G prevalence exceeding 10% and high uncertainty (Figs 4f and 5k-5l). More-

over, effective and safe IPTp alternatives need to be identified and made available, starting in

the parts of Africa where the prevalence of pfdhps581G exceeds 10% (Fig 5k–5i).

Implications for IPTi-SP

While IPTp-SP has been shown to be effective even in some areas where pfdhps540E preva-

lence exceeds 90% [22], IPTi is recommended only in countries where pfdhps540E prevalence

is lower than 50%. This recommendation came from the observation that IPTi-SP remained

effective in areas with high prevalence of pfdhfr triple mutation and pfdhps437G, but the pro-

tection declined with an increased prevalence of the quintuple mutation and pfdhps540E. In

Tanzania where the prevalence of quintuple mutations exceeded 90%, IPTi did not have a pro-

tective effect [37]. Another consideration is that infants are non-immune to malaria while

pregnant women are semi-immune and could be able to clear residual parasites that are resis-

tant to the IPT treatment. Thus a stricter threshold is needed for IPTi than IPTp, to ensure

effectiveness. The spatiotemoral analyses demonstrated that the predicted pfdhps540E preva-

lence exceeding 50% was limited to a few foci in East and South East Africa in 2000, and has

now, in 2020, spread to most of East and South East Africa (Fig 5). Regions with low-moderate

prevalence of pfdhps540E (5–50%) expanded to include most of Central Africa, and low preva-

lence or complete absence of pfdhps540E mutations was restricted to the Sahel region in 2020.

This development prevents effective IPTi-SP treatment in most East and South East Africa

regions. Sierra Leone is so far the only country that has implememented IPTi at a large scale.
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IPTi-SP was included in the National Malaria Strategic Plan and implemented in all districts

in 2018 with a 67.4% and 36.4% coverage of the first and third IPTi-SP dose, respectively [35].

The spatiotemoral analysis in 2020 reveal one focus of low pfdhps540E prevalence (exceeding

5%) in West Africa, specifically in Sierra Leone and Liberia (Fig 5). This observation highlights

the need to monitor pfdhps540E prevalence in districts that have implemented IPTi-SP to

ensure continued effectiveness.

Foci of resistance in East Africa

IPTp, IPTi and SMC are considered additional malaria control measures, complementing the

core malaria control measures which are vector control with indoors residual spraying and/or

insecticide treated nets, and diagnosis and treatment of confirmed cases with an ACT. In

Africa, there was a recent emergence of K13 mutations associated with delayed parasite clear-

ance, which could mediate artemisinin resistance (4–6). The emergence of K13 mutations spa-

tially coincide with two of the predicted foci of pfdhps581G mutations in Rwanda/Uganda/

DRC/Tanzania and Sudan/Eritrea/Somalia (Fig 5). Having parasites in the same area resistant

to two cornerstones in malaria control, ACT and IPTp-SP, is of great concern. Studies need to

be undertaken to further monitor the distribution of these mutations and to address if K13

mutations and pfdhps581G are carried by the same parasites.

Near real-time data availability

When analyzing the time between sample collection and publication, we found that there was

a 3-year median lag time. A reduction in this lag, could help to reduce uncertainty and increase

the utility of the molecular data for informing drug policy decisions. In the WWARN SP

Molecular Surveyor tool described here, prevalence data on pfdhps and pfdhfr markers were

entered in a database and visualized [12]. The Surveyor credits all data sources and should

encourage rapid sharing of information, perhaps even before full data are published. Similarly,

other Surveyor tools display mutants in the propeller region of the K13 gene associated with

slow parasite clearance after artemisinin treatment [44] and markers associated with resistance

to ACT partner drugs [45]. These maps are regularly updated.

These kinds of initiatives can contribute to sharing and preparation of regional reports by

researchers and national/regional surveillance programmes. Recently, journal editors and

funders have specifically encouraged and even required sharing and use of data of public

health importance pre-publication whilst maintaining credit and recognition for those who

collect the data,. Using pre-prints or open review publishing platform could also help in this

process. These initiatives have been propelled by urgent data needs in the COVID-19 pan-

demic [46–49].

Data and uncertainty

Here we present marker prevalence data from 201 studies, conducted over 31 years, from het-

erogeneous data sources. To minimize heterogeneity, the data for the WWARN SP Molecular

Surveyor were collated from the literature in a standardized approach with regards to the sys-

tematic literature search, inclusion of studies, data extraction, and presentation. Although data

are collected extensively and regularly in some geographical sites, a main limitation of this

study is the sparsity of data for most areas of the African continent. Previous work has been

undertaken within the limitations of the data sparsity to analyse spatiotemporal trends in the

pfdhps marker data [50], but did not attempt to make predictions where there was no data.

The spatiotemporal model presented in this paper can predict the marker prevalence for loca-

tions that do not have data, using a method of approximation based on neighboring data
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points in time and/or space. However, the strength of the approximation decreases in regions

that are increasingly further from sampling sites. An advantage of our model is that it was

developed using a Bayesian framework which gives a natural measure for the uncertainty of

the approximations. Uncertainty is higher in spatial regions where the prevalence of a marker

is intermediate and not close to fixation (Figs 2c–2f and 3c–3g) and where prevalence is chang-

ing over time (Fig 5). The most recent maps also have higher uncertainty, unless the level of

resistance is very high and has remained constant over time (i.e., fixed).

Modelling to support surveillance

The current study demonstrates that the uncertainty of the median estimates of prevalence

was higher when the marker prevalence was at an intermediate level. This is precisely the time

when resistant parasites may be spreading and the need of malaria programmes and policy

makers for accurate, current information is highest. Under these circumstances, a number of

factors can reduce uncertainty and maximize the utility of spatiotemporal models. In particu-

lar, larger sample sets and higher geographic density of data points can lower the uncertainty

of the estimations. In the current work, the relatively low number of samples that tested the

prevalence of isolates that carried pfdhps581G is one source of uncertainty. Since resources in

many malaria-endemic countries are limited, only focusing on filling data gaps may not be a

useful approach. The level of uncertainty can be used for guiding surveillance to determine the

locations for subsequent sample collection, referred to by Grist and colleagues as “smart sur-

veillance” [51]. Thus, the map for a particular area can be strategically improved over time by

utilizing both prevalence and uncertainty to identify sites where increased surveillance can be

most informative: namely in the areas where uncertainty is high and where prevalence is inter-

mediate or changing.

As big data algorithms and modelling predictions will play an increasingly important role

in informing public health decision making, there is an urgent need to address how far extrap-

olation between sites is acceptable in terms of geographical distances and time. While preva-

lence of resistance markers can differ substantially in specific sites that are spatially and

temporally close [52], public health decisions must usually be made at a national level. Further

co-variates need to be explored and combined to fully understand the complex dynamics of

the spread of resistance, for example human movement and behavior, density of human popu-

lations, drug pressure, environmental variables, and asymptomatic infections.

This study underlines the utility of sharing and combining molecular markers data and

employing predictive modelling to highlight areas of concern that extend beyond national bor-

ders. We have built the WWARN SP Molecular Surveyor database to provide users with a stan-

dardized, current source of information on resistance marker distribution, a model that can be

expanded to all validated markers associated with antimalarial resistance. With a possible

emergence of artemisinin resistance in Rwanda, Uganda, Eritrea and Ghana, this approach

could be easily expanded to better understand the evolution of this new threat.

Whenever appropriate data sets are available, a similar set of continuous spatiotemporal

surface maps can be developed using this methodology. Application to other diseases could

facilitate decisions in public health and guide future research in a particular region, country or

Subregion. Timely sharing of molecular data is one key element in the utility of the approach.

Supporting information

S1 Text. SP Molecular Surveyor Data extraction and entry SOP.
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S2 Text. Supplementary methodology.

(DOCX)

S1 Data. Publications from Drug Resistance Maps database and SP Molecular Surveyor

database.

(XLSX)

S2 Data. pfdhps581G prevalence Fisher’s exact test comparison between years in Fig 7.

(XLSX)

S1 Fig. Conditional dependency schematic for the geostatistical model applied to each of

the three markers. Here, solid arrows represent conditional dependencies, the dashed arrow

represents a deterministic relationship, the squares represent data and the circles/ellipses rep-

resent random variables.

(TIF)

S2 Fig. Validation results for pfdhps540, showing (a) scatterplot of the predicted median prev-

alence from the validation models and observed prevalence and (b) probability-probability

plot of the fraction of observations that fell within a predictive credible interval of a given size.

The dashed red lines show a 1:1 reference line. In (a), the size of the dot is proportional to the

sample size of the study.

(TIF)

S3 Fig. Validation results for pfdhps437, showing (a) scatterplot of the predicted median prev-

alence from the validation models and observed prevalence and (b) probability-probability

plot of the fraction of observations that fell within a predictive credible interval of a given size.

The dashed red lines show a 1:1 reference line. In (a), the size of the dot is proportional to the

sample size of the study.

(TIF)

S4 Fig. Validation results for pfdhps581, showing (a) scatterplot of the predicted median prev-

alence from the validation models and observed prevalence and (b) probability-probability

plot of the fraction of observations that fell within a predictive credible interval of a given size.

The dashed red lines show a 1:1 reference line. In (a), the size of the dot is proportional to the

sample size of the study.

(TIF)

S1 Video. pfdhps437G data collection over time. The video shows the time course of data col-

lection for pfdhps437G over the period of 1990 to 2020. Data visualized in each year shows

studies conducted before or during the year associated with the map. National shapefiles were

obtained from the Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open

access policy (https://malariaatlas.org/open-access-policy/) and no changes were made.

(MP4)

S2 Video. pfdhps540E data collection over time. The video shows the time course of data col-

lection for pfdhps540E over the period of 1990 to 2020. Data visualized in each year shows

studies conducted before or during the year associated with the map. National shapefiles were

obtained from the Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open

access policy (https://malariaatlas.org/open-access-policy/) and no changes were made.

(MP4)

S3 Video. pfdhps581G data collection over time. The video shows the time course of data col-

lection for pfdhps581G over the period of 1990 to 2020. Data visualized in each year shows
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studies conducted before or during the year associated with the map. National shapefiles were

obtained from the Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open

access policy (https://malariaatlas.org/open-access-policy/) and no changes were made.

(MP4)

S4 Video. Spatiotemporal modelling of pfdhps437G mutation prevalence. The video shows

the median of the posterior predictive distribution for pfdhps437G mutation prevalence over

1990 to 2020. Data visualized in each year shows studies conducted before or during the year

associated with the map, the size of the dots is proportional to the study sample size and the

colour is representative of the observed marker prevalence. National shapefiles were obtained

from the Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open access policy

(https://malariaatlas.org/open-access-policy/) and no changes were made.

(MP4)

S5 Video. Spatiotemporal modelling of pfdhps540E mutation prevalence. The video shows

the median of the posterior predictive distribution for pfdhps540E mutation prevalence over

1990 to 2020. Data visualized in each year shows studies conducted before or during the year

associated with the map, the size of the dots is proportional to the study sample size and the

colour is representative of the observed marker prevalence. National shapefiles were obtained

from the Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open access policy

(https://malariaatlas.org/open-access-policy/) and no changes were made.

(MP4)

S6 Video. Spatiotemporal modelling of pfdhps581G mutation prevalence. The video shows

the median of the posterior predictive distribution for pfdhps581G mutation prevalence over

1990 to 2020. Data visualized in each year show studies conducted before or during the year

associated with the map, the size of the dots is proportional to the study sample size and the

colour is representative of the observed marker prevalence. National shapefiles were obtained

from the Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open access policy

(https://malariaatlas.org/open-access-policy/) and no changes were made.

(MP4)
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