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Background: Carbapenem-resistant Enterobacterales (CRE) isolates have disseminated worldwide. CREs usually 
produce a carbapenemase; however, some isolates are negative for known carbapenemases. In this study, we 
evaluated the activity of meropenem/vaborbactam and comparators against CREs without a carbapenemase 
(nonCP CREs) collected from European hospitals from 2016 to 2019.

Materials and methods: 23 043 Enterobacterales clinical isolates were collected in 41 hospitals located in 
20 countries. Susceptibility (S) testing was performed using the broth microdilution method. CLSI/EUCAST 
(2021) interpretive criteria were used. 978 CREs were identified with MICs >2 mg/L to meropenem or imipenem. 
Whole-genome sequencing was performed on each CRE isolate. 125 isolates were negative for carbapenemase 
genes, including blaKPC, blaNDM, blaIMP, blaVIM and blaOXA-48-like. NonCP CRE isolates were analysed for the pres-
ence of other β-lactamases, multilocus sequence types (ST) and mutations in outer membrane protein (OMP) 
sequences.

Results: Most nonCP CRE were Klebsiella pneumoniae (KPN; n = 97/125). 84.0% of nonCP CRE (n = 105) were from 
Poland, including 88 KPN. The most common β-lactamase was blaCTX-M-15 in 92/125 isolates. OMP disruptions or 
alterations were noted among 76 KPN. Among KPN isolates that had MLST typing, 30 belonged to ST11, 18 to 
ST152 and 17 to ST147, while 13 other STs were observed. Susceptibility to meropenem/vaborbactam was 
96.0/97.6% (CLSI/EUCAST) while meropenem was 2.4/8.0%S.

Conclusions: Meropenem/vaborbactam had potent in vitro activity against CRE isolates that lacked known car-
bapenemases. Resistance mechanisms observed among nonCP CREs included acquired β-lactamases and OMP 
alterations. These results indicate that meropenem/vaborbactam may be a useful treatment for infections 
caused by nonCP CREs.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https:// 
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided 
the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Introduction
Infections caused by antimicrobial-resistant bacterial pathogens 
were globally associated with 4.95 million deaths in 2019, and 
resistance to first-line therapies is continuing to increase.1

Carbapenems have been a common first-line therapy for serious 
Gram-negative infections; as a result, carbapenem-resistant 
Enterobacterales (CRE) isolates are a growing global concern.2,3

Among the carbapenemases detected in Enterobacterales spe-
cies, Klebsiella pneumoniae serine carbapenemases (KPCs) have 
disseminated worldwide and are now endemic in many hospitals 
across a wide range of countries.4,5 Metallo-β-lactamases have 

also spread globally, with New Dehli metallo-β-lactamase 
(NDM) the most common metallo-β-lactamase.6 Isolates produ-
cing Class D OXA-48 carbapenemases are also increasingly com-
mon in Europe.6 Some CRE isolates do not produce a known 
carbapenemase and are referred to as non-carbapenemase- 
producingCRE (nonCP CRE).7,8 These isolates usually produce 
multiple acquired β-lactamases, may have increased expression 
of chromosomal cephalosporinases and/or possess outer mem-
brane protein (OMP) dysfunction.9

In response to increasing numbers of CREs, β-lactam/β- 
lactamase inhibitor combinations with activity against serine carba-
penemases, meropenem/vaborbactam, ceftazidime/avibactam 
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and imipenem/relebactam were developed and approved for use in 
the USA and Europe.10–12 Vaborbactam is a cyclic boronic acid 
β-lactamase inhibitor that was developed to inhibit Ambler class A 
serine carbapenemases, including KPCs and class C β-lactamases. 
When combined with meropenem, vaborbactam restored the ac-
tivity of this carbapenem against KPC-producing isolates in compari-
son to meropenem alone. Vaborbactam, like other currently 
approved β-lactamase inhibitors, has no activity against class B 
metallo-β-lactamases.13–15 Meropenem/vaborbactam has been 
approved in Europe for the treatment of the following infections in 
adults: complicated urinary tract infection (cUTI), including acute 
pyelonephritis; complicated intra-abdominal infection (cIAI); 
hospital-acquired bacterial pneumonia and ventilator-associated 
pneumonia; as well as bacteraemia (BSI) occurring in association 
with or suspected to be associated with any of the infections listed 
before.11 Meropenem/vaborbactam is also approved by the 
European Medicines Agency for the treatment of infections due to 
aerobic Gram-negative organisms in adults with limited treatment 
options. The US FDA has approved meropenem/vaborbactam for 
treatment of cUTI, including pyelonephritis.12

In this study, we evaluated the activity of meropenem/vabor-
bactam and comparators against nonCP CREs collected from 
European hospitals from 2016 to 2019. We determined other pos-
sible mechanisms of carbapenem resistance, including presence 
of acquired β-lactamases and/or disruptions or alterations of OMPs.9

Materials and methods
A total of 23 043 Enterobacterales clinical isolates were consecutively col-
lected from 41 European hospitals in 20 countries over the 4-year period 
(2016–2019). Participating laboratories were asked to submit one isolate 
per patient per infection episode.16 Each isolate was considered the prob-
able cause of the infection by the submitting site. No medical chart re-
views were performed. The number of sites per country ranged from 1 
to 6.17

Susceptibility testing was performed using the broth microdilution 
method.18 Clinical Laboratory and Standards Institute (CLSI, 2022) and 
European Committee for Antimicrobial Susceptibility Testing (EUCAST, 
2022) interpretive criteria were used.19,20 CLSI and EUCAST quality 
control organisms were tested as appropriate for the tested agents and 
all MIC results were within these specified ranges. The meropenem/ 
vaborbactam EUCAST breakpoints are: susceptible ≤8 mg/L; no 
intermediate; and resistant, >8 mg/L, which reflects the higher dose of 
the meropenem component and the maximal inhibitory effect of the va-
borbactam component. The CLSI breakpoints are: susceptible, ≤4 mg/L; 
intermediate, 8 mg/L; resistant, ≥16 mg/L.

There were 978 CREs identified using the criteria of an MIC >2 mg/L to 
doripenem, imipenem and/or meropenem as defined by CLSI.19

Imipenem MIC values were not used to categorize Proteus, Providencia 
or Morganella spp.

Whole-genome sequencing was performed on each CRE isolate as 
previously described.9,21,22 A total of 125 CRE isolates were identified 
that did not have known carbapenemase genes, including blaKPC, 
blaNDM, blaIMP, blaVIM and blaOXA-48-like. NonCP CRE isolates were analysed 
for the presence of other β-lactamases and mutations in the protein-cod-
ing regions of OMP, as previously described.9,21 An OMP gene was consid-
ered disrupted when a premature stop codon was identified within the 
protein coding sequence, while other insertions or deletions were consid-
ered alterations.13 Ninety-two of 97 nonCP CRE K. pneumoniae isolates 
were also analysed for their multilocus sequence type (ST) as previously 
described.23

Results
The most common infections from which nonCP CRE were iso-
lated were pneumonia in hospitalized patients (n = 37), urinary 
tract infection (UTI; n = 26), intra-abdominal infection (IAI; n =  
23) and bloodstream infection (BSI; n = 22). Of the 978 CRE iden-
tified, 12.8% (n = 125) of these isolates lacked a known carbape-
nemase gene. The nonCP CREs were Klebsiella pneumoniae (n =  
97, 77.6%), Enterobacter cloacae complex (n = 11, 8.8%), 10 K. 
aerogenes, three Escherichia coli, two Hafnia alvei, one K. oxytoca 
and one Serratia marcescens (Table 1). 84.0% of nonCP CRE (n =  
105) were from Poland, including 90.7% of K. pneumoniae (n = 88; 
Table 1).

Among the 92 K. pneumoniae isolates with an ST identified, 30 
belonged to ST11, 18 to ST152 and 17 to ST147, but at least 13 
other STs were observed (Table 2). Twenty-nine of 30 ST11 iso-
lates were from Poland; other STs from Poland were ST152 (n =  
18) and ST147 (n = 17). The distribution of STs by year did not 

Table 1. Country and species distributions of nonCP CREs in Europe 
(2016–2019)

Year

Country/organism 2016 2017 2018 2019 Grand total

Belarus 1 1
Enterobacter cloacae 
species complex

1 1

France 1 1
Klebsiella aerogenes 1 1

Germany 1 1
Klebsiella aerogenes 1 1

Ireland 1 2 3
Klebsiella aerogenes 1 1
Klebsiella pneumoniae 1 1
Serratia marcescens 1 1

Italy 1 2 3
Klebsiella pneumoniae 1 2 3

Poland 35 28 20 22 105
Enterobacter cloacae 
species complex

6 1 2 1 10

Escherichia coli 1 1
Hafnia alvei 1 1 2
Klebsiella aerogenes 3 3
Klebsiella oxytoca 1 1
Klebsiella pneumoniae 29 25 16 18 88

Russia 2 1 3
Klebsiella pneumoniae 2 1 3

Spain 2 2
Klebsiella aerogenes 2 2

Turkey 1 3 4
Escherichia coli 2 2
Klebsiella pneumoniae 1 1 2

UK 1 1 2
Klebsiella aerogenes 1 1 2

Grand Total 38 35 24 28 125

2



Activity of meropenem/vaborbactam versus European nonCP CRE                                                                  

indicate changes in prevalence of the most common STs. There 
was a slight decrease in the number of nonCP CREs through the 
study period from 28 in 2016 to 20 in 2019 (Table 2).

OMP disruptions or alterations, as determined by the presence 
of premature stop codons or insertions and/or deletions in the 
protein coding sequences, were noted mostly among K. pneumo-
niae. Seventy-six K. pneumoniae had OMP disruptions or altera-
tions: 24 isolates had disruptions of both OmpK35 and 
OmpK36, six had only OmpK35 disrupted, 44 had only OmpK36 
disrupted and two had only OmpK35 alterations. There were 
four E. cloacae complex, one H. alvei and one K. aerogenes with 
disrupted OmpC and/or OmpF.

The susceptibilities of the nonCP CRE are shown in Table 3. 
Meropenem/vaborbactam susceptibility was 96.0/97.6% (CLSI/ 
EUCAST) while susceptibility to meropenem was 2.4/8.0% (CLSI/ 
EUCAST; Table 3). Susceptibility to imipenem was higher than 
meropenem at 28.0/48.8% (CLSI/EUCAST; Table 3). Three isolates 
were resistant to meropenem/vaborbactam (MIC ≥16 mg/L); two 
of the three were K. pneumoniae and had alterations or disrup-
tions in both OmpK35 and 36 (Table 4). These K. pneumoniae iso-
lates, both ST-76 from Poland, also contained blaCTX-M-15, 
blaSHV-12, blaOXA-1, blaOXA-10 and blaTEM-57. The third merope-
nem/vaborbactam-resistant isolate, from the UK, was a K. aero-
genes with TEM-1, chromosomal AmpC and an OmpC 
disruption (Table 4).

Multiple acquired β-lactamases were detected in the nonCP 
CRE as shown in Table 4. Overall, 72.8% of these isolates carried 
blaCTX-M-15, including 86 of 97 K. pneumoniae isolates. Other 
β-lactamases commonly identified were blaSHV-1, SHV-11, SHV-12; 
blaOXA-1_OXA-30 and OXA-9; blaTEM-1 and TEM-57; and plasmid- 

Table 2. K. pneumoniae multilocus sequence type (MLST) distribution of 
nonCP CRE isolates by country and year

Year

Country/MLST 2016 2017 2018 2019 Grand total

Ireland 1 1
25 1 1

Italy 1 2 3
13 1 1
307 1 1
377 1 1

Poland 27 23 15 18 83
11 12 7 4 6 29
15 1 1
76 2 2
101 3 2 1 1 7
147 4 6 3 4 17
152 7 3 5 3 18
196 1 1
392 1 2 1 2 6
437 1 1 2

Russia 2 1 3
11 1 1
23 1 1
86 1 1

Turkey 1 1 2
25 1 1
1593 1 1

Grand total 28 25 19 20 92

Table 3. Activity of meropenem/vaborbactam and comparator antimicrobial agents tested against 125 CRE, nonCP European isolates (2016–2019)

Antimicrobial agent No. of isolates

mg/L CLSIa EUCASTa

MIC50 MIC90 MIC range %S %I %R %S %SIE %R

Meropenem/vaborbactam 125 1 4 0.03 to 16 96.0 1.6 2.4 97.6 2.4
Meropenem 125 8 16 0.12 to 32 2.4 5.6 92.0 8.0b 

8.0c
80.0 92.0 

12.0
Imipenem 125 4 >8 0.5 to >8 28.0 20.8 51.2 48.8 24.0 27.2
Amikacin 125 8 32 0.5 to >32 82.4 8.0 9.6 65.6d 34.4
Aztreonam 125 >16 >16 2 to >16 3.2 1.6 95.2 0.0 3.2 96.8
Cefepime 125 >16 >16 0.5 to >16 3.2 10.4e 86.4 0.8 8.8 90.4
Ceftazidime 125 >32 >32 2 to >32 2.4 0.8 96.8 0.0 2.4 97.6
Colistin 123f 0.25 >8 ≤0.06 to >8 g 74.8 25.2 74.8 25.2
Gentamicin 125 2 >8 ≤0.12 to >8 56.8 0.8 42.4 56.0d 44.0
Levofloxacin 125 >4 >4 ≤0.03 to >4 11.2 5.6 83.2 11.2 5.6 83.2
Piperacillin-tazobactam 125 >64 >64 8 to >64 1.6 13.6 84.8 0.8 99.2

aCriteria as published by CLSI (2022) and EUCAST (2022). SIE, susceptible increased exposure. 
bUsing meningitis breakpoints (≤2 mg/L susceptible and >2 mg/L resistant). 
cUsing non-meningitis breakpoints (≤2 susceptible, 4–8 mg/L intermediate, >8 mg/L resistant). 
dFor infections originating from the urinary tract. For systemic infections, aminoglycosides must be used in combination with other active therapy. 
eIntermediate is interpreted as susceptible-dose dependent. 
f2 K. pneumoniae isolates did not have a colistin MIC and were not retested. 
gCLSI does not have a susceptible breakpoint for colistin. 
Organisms include Enterobacter cloacae species complex (11), Escherichia coli (3), Hafnia alvei (2), Klebsiella aerogenes (10), K. oxytoca (1), 
K. pneumoniae (97) and Serratia marcescens (1).
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Table 4. List of β-lactam resistance mechanisms correlated with meropenem/vaborbactam MIC values for all isolates

OMP disruptions
Meropenem/vaborbactam MIC (mg/L)

β-lactamases present 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16
Grand 
total

OMP K36 disrupted/K35 disrupted or altered 1 1 1 14 26 14 10 67
CMY-2 1 1
CMY-48-like, CTX-M-15, SHV-11, TEM-1 1 1
CTX-M-15, CTX-M-15-like, CTX-M-3-like, DHA-1, OXA-1_OXA-30, SHV-11, 
TEM-32

1 1

CMY-16, CTX-M-15, OXA-10, OXA-1_OXA-30, SHV-1, TEM-1 1 1
CTX-M-15, CTX-M-9, OXA-1_OXA-30, SHV-11, SHV-12, TEM-1 1 1
CTX-M-15, DHA-1, OXA-1_OXA-30, OXA-9, SHV-11, TEM-1 1 1 2
CTX-M-15, DHA-1, OXA-1_OXA-30, SHV-1 1 1
CTX-M-15, DHA-1, OXA-1_OXA-30, SHV-11 1 5 1 7
CTX-M-15, DHA-1, OXA-1_OXA-30, SHV-11, TEM-1 1 1 2
CTX-M-15, DHA-1, OXA-9, SHV-11, TEM-1 2 1 2 5
CTX-M-15, DHA-1, SHV-11 1 1 2
CTX-M-15, OXA-1_OXA-30-like, SHV-11, TEM-1 1 1
CTX-M-15, OXA-1_OXA-30, OXA-9, SHV-1, TEM-1 1 1
CTX-M-15, OXA-1_OXA-30, SHV-1 1 1 1 3
CTX-M-15, OXA-1_OXA-30, SHV-1, SHV-11, TEM-1 1 1
CTX-M-15, OXA-1_OXA-30, SHV-1, TEM-1 4 5 1 10
CTX-M-15, OXA-1_OXA-30, SHV-11 1 1
CTX-M-15, OXA-1_OXA-30, SHV-11, SHV-155-like, TEM-1 1 1
CTX-M-15, OXA-1_OXA-30, SHV-11, TEM-1 3 4 2 9
CTX-M-15, OXA-9, SHV-12, SHV-28, TEM-1 1 1
CTX-M-15, SHV-1 1 1
CTX-M-15, SHV-1, TEM-1 2 1 3
CTX-M-15, SHV-11 1 1 2
CTX-M-15, SHV-11, TEM-1 1 1 2
CTX-M-27, DHA-1, SHV-12 1 1
CTX-M-3, DHA-1, OXA-1_OXA-30, OXA-9, SHV-11, TEM-1 1 1
CTX-M-3, OXA-1_OXA-30, SHV-1 1 1
CTX-M-3, OXA-9, SHV-11, TEM-1 1 1
CTX-M-33, OXA-1_OXA-30, SHV-11 1 1
DHA-1, OXA-1_OXA-30, SHV-11 1 1
DHA-1, SHV-11 1 1
SHV-11, TEM-1 1 1

No Omp disruptions or alterations 1 2 10 18 6 4 41
CMY-2, TEM-1 1 1
CTX-M-15, DHA-1, OXA-1_OXA-30, OXA-9, SHV-11, TEM-1 1 1 1 3
CTX-M-15, OXA-1_OXA-30-like, SHV-11, TEM-1 1 1
CTX-M-15, OXA-1_OXA-30, OXA-9, SHV-1 1 1
CTX-M-15, OXA-1_OXA-30, OXA-9, SHV-11, TEM-1 1 1
CTX-M-15, OXA-1_OXA-30, SHV-1 1 1
CTX-M-15, OXA-1_OXA-30, SHV-1, TEM-1 2 2
CTX-M-15, OXA-1_OXA-30, SHV-11 1 1
CTX-M-15, OXA-1_OXA-30, SHV-11, TEM-1 3 1 4
CTX-M-15, OXA-1_OXA-30, SHV-110, TEM-1 1 1
CTX-M-15, OXA-1_OXA-30, SHV-28 1 1
CTX-M-15, OXA-1_OXA-30, TEM-1 1 2 3
CTX-M-15, SHV-11 2 1 3
CTX-M-15, SHV-11, TEM-1 1 1
CTX-M-3, TEM-1, TEM-1-like 1 1

Continued 
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mediated AmpC blaDHA-1. 96.8% of the nonCP CRE isolates had 
two or more acquired β-lactamases. Of the 10 nonCP CRE K. aero-
genes, only one had an acquired β-lactamase, blaTEM-1 (Table 4). 
The other nine K. aerogenes without acquired β-lactamases de-
tected had imipenem MIC values of 4–8 mg/L, meropenem MIC 
values of 2–4 mg/L and did not have OMP disruption. Three E. clo-
acae complex and two H. alvei also were negative for acquired 
β-lactamases.

The imipenem, meropenem and meropenem/vaborbactam 
MIC distributions of all isolates, and those with or without OMP 
disruptions or alterations, are shown in Table 5. All isolates with 
OMP dysfunction also produced one or more β-lactamase en-
zymes (Table 4). The inhibition of these β-lactamases by vabor-
bactam is demonstrated by the lower MIC50/90 of meropenem/ 
vaborbactam (MIC50 and 90 values of 1 and 4 mg/L) compared 
to meropenem alone (MIC50 and 90 values of 8 and 16 mg/L; 
Table 5). A correlation of meropenem and meropenem/vaborbac-
tam MIC values is shown in Supplemental Figure S1 (available as 
Supplementary data at JAC Online). This correlation also 
demonstrates higher MIC values for meropenem for 120/125 iso-
lates due to the presence of β-lactamases that are inhibited by 
vaborbactam. Isolates without OMP changes had lower MIC50 
and 90 values, with MIC50/90 values of 1/2 mg/L to meropenem/ 
vaborbactam and MIC50/90 values of 4/8 mg/L to meropenem 
alone. The MIC50/90 values suggest a contribution of OMP muta-
tions to meropenem resistance in the presence of multiple 
β-lactamases.

The isolates in this study were mostly resistant to the other 
agents tested, including the β-lactams and piperacillin/tazobac-
tam, with <5.0% susceptibility for each of these agents 
(Table 3). Susceptibility to levofloxacin was 11.2%. The most ac-
tive comparators were colistin (74.8% susceptible, EUCAST) and 
amikacin (82.4/65.6%, CLSI/EUCAST).

Discussion
In this collection of European nonCP CRE, K. pneumoniae was the 
most common species, accounting for 77.6% overall. Most iso-
lates, including most of the K. pneumoniae, were from Poland. 
The nonCP CR K. pneumoniae from Poland were received through-
out the 4-year period and contained nine different ST types, sug-
gesting that this overall pattern was not an outbreak caused by a 
single strain. This is consistent with the EuSCAPE multinational 
surveillance on carbapenemase-producing E. coli and K. pneumo-
niae conducted from 2013 to 2014, where 88.2% of CR K. pneumo-
niae from Poland were negative for carbapenemases.24 The most 
common clone in the current study was ST-11, which is considered 
an international high-risk clone. ST-11 was associated with an 
NDM-1 outbreak in Poland from 2012 to 2018.25–27 The other 
two most frequent STs in Poland were ST-147 and ST-152. 
ST-147 has also been called an international high-risk clone with 
broad dissemination, particularly in the Mediterranean, and has 
been associated with NDM-1.28 ST-152 was described initially in 
Saudi Arabia and more recently in Poland.29–31

Table 4. Continued  

OMP disruptions
Meropenem/vaborbactam MIC (mg/L)

β-lactamases present 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16
Grand 
total

CTX-M-33, DHA-1, SHV-11 1 1
OXA-1_OXA-30 2 2 4
SRT-like 1 1

(no acquired β-lactamases detected) 1 6 1 2 10
Only Omp K35 disrupted 1 2 2 1 1 7

CTX-M-15, DHA-1, OXA-1_OXA-30, OXA-9, SHV-1, TEM-1 1 1
CTX-M-15, DHA-1, OXA-9, SHV-1 1 1
CTX-M-15, OXA-1_OXA-30, OXA-9, SHV-1 1 1
CTX-M-15, OXA-1_OXA-30, OXA-9, SHV-1, TEM-1 1 1
CTX-M-15, OXA-1_OXA-30, SHV-1 1 1
CTX-M-15, OXA-10, OXA-1_OXA-30, SHV-1, SHV-12, TEM-57 1 1
CTX-M-2, OXA-2, TEM-1 1 1

Only Omp K35 alterations 1 1 1 3
CTX-M-15, OXA-10, OXA-1_OXA-30, SHV-12, TEM-57 1 1
DHA-1, OXA-1_OXA-30, SHV-11 1 1

(no β-lactamases detected) 1 1
OmpC/F disrupted 2 1 1 1 5

CTX-M-15, OXA-1_OXA-30 1 1
TEM-1 1 1

(no acquired β-lactamases detected) 1 1 1 3
OmpC/F alterations 1 1

CTX-M-15, OXA-1_OXA-30, TEM-1 1 1
Grand total 1 2 5 26 44 26 16 2 3 125
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Resistance mechanisms observed among the nonCP CRE iso-
lates in this study included multiple acquired β-lactamases and 
disruption of OmpC/F in K. aerogenes and E. cloacae or OmpK35/ 
K36 in K. pneumoniae. Most isolates produced CTX-M-15. To deter-
mine whether this gene had a role in carbapenem resistance, in a 
previous study Castanheira et al. cloned and expressed CTX-M-15 
in E. coli.9 This experiment suggested that CTX-M-15 production 
alone was not sufficient to cause carbapenem resistance as mero-
penem MICs increased only 2-fold with wild-type CTX-M-15 ex-
pressed on a plasmid.9 Other studies have looked at the 
contribution of OMP mutations to carbapanem resistance and 
found that disruption of both OmpK35 and OmpK36 were asso-
ciated with an increase in meropenem MIC, although neither were 
sufficient to cause meropenem resistance.32,33 Our data support the 
conclusion by Castanheira et al. that a combination of extended-spec-
trum β-lactamases with or without the presence of OMP disruption are 
capable of causing carbapenem resistance in the absence of a specific 
carbapenemase. The K. aerogenes that lacked an acquired 
β-lactamase or OMP changes suggest that the CRE phenotype in this 
species may be due to increased expression of chromosomal AmpC.34

In this study, we found that the susceptibility rate of imipenem 
was higher (28.0/48.8%, CLSI/EUCAST) than that of meropenem 
(2.4/8.0%, CLSI/EUCAST). The isolates that were imipenem suscep-
tible and meropenem resistant had meropenem MIC values of 

4–8 mg/L. The mechanism(s) for the differences in activities of imi-
penem and meropenem for these isolates is unknown. It is possible 
that meropenem was more susceptible to hydrolysis by the mul-
tiple β-lactamase enzymes produced by the isolates in this study. 
The three meropenem/vaborbactam resistant isolates in this study 
had either multiple β-lactamases and disrupted OmpK35-K36 (K. 
pneumoniae) or disrupted OmpC, TEM-1 and chromosomal AmpC 
(K. aerogenes), suggesting that both porin disruption and the pro-
duction of multiple β-lactamases are needed for nonCP CRE to de-
velop resistance to meropenem/vaborbactam.9,33

Our study has several limitations that should be noted. First, 
we cannot draw any conclusions regarding the prevalence of 
nonCP CRE in any one country or across Europe as a whole due 
to the small number of sites in each country from which the de-
scribed isolates were submitted. Second, due to the lack of med-
ical chart review, we do not know patient antimicrobial treatment 
or treatment outcomes. Third, we cannot rule out the possibility 
of outbreaks at any of these sites during the study period. Fourth, 
absence of known carbapenemase genes does not necessarily 
rule out the presence of unknown carbapenemases. Fifth, the 
identification of OMP disruptions/alterations were based on mu-
tations in the protein-coding sequences only.

These results demonstrate meropenem/vaborbactam was 
the most active drug tested in this study against CRE isolates 

Table 5. MIC distributions and cumulative % at MIC, of meropenem/vaborbactam, meropenem and imipenem tested against all nonCP CRE isolates, 
isolates with, and without OMP alterations or disruptions

Organism/antimicrobial 
agent

MIC (mg/L)

MIC50 MIC900.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 >a

All nonCP CRE (n = 125)
Meropenem/ 
vaborbactam

0 1 0 2 5 26 44 26 16 2 3 1 4
0.0% 0.8% 0.8% 2.4% 6.4% 27.2% 62.4% 83.2% 96.0% 97.6% 100.0%

Meropenem 0 1 0 0 2 7 51 49 13 2 8 16
0.0% 0.8% 0.8% 0.8% 2.4% 8.0% 48.8% 88.0% 98.4% 100.0%

Imipenem 0 9 26 26 30 17 17 4 >8
0.0% 7.2% 28.0% 48.8% 72.8% 86.4% 100.0%

Isolates with OMP 
alterations or 
disruptions (n = 84)
Meropenem/ 
vaborbactam

0 1 0 1 3 16 26 20 12 2 3 1 4
0.0% 1.2% 1.2% 2.4% 6.0% 25.0% 56.0% 79.8% 94.0% 96.4% 100.0%

Meropenem 0 2 3 29 37 11 2 8 16
0.0% 2.4% 6.0% 40.5% 84.5% 97.6% 100.0%

Imipenem 0 8 15 17 16 14 14 4 >8
0.0% 9.5% 27.4% 47.6% 66.7% 83.3% 100.0%

Isolates without OMP alterations 
or disruptions (n = 41)
Meropenem/ 
vaborbactam

0 1 2 10 18 6 4 1 2
0.0% 2.4% 7.3% 31.7% 75.6% 90.2% 100.0%

Meropenem 0 1 0 0 0 4 22 12 2 4 8
0.0% 2.4% 2.4% 2.4% 2.4% 12.2% 65.9% 95.1% 100.0%

Imipenem 0 1 11 9 14 3 3 2 8
0.0% 2.4% 29.3% 51.2% 85.4% 92.7% 100.0%

a>, greater than highest dilution tested. 
EUCAST susceptible breakpoints are indicated in bold font.
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that lack known carbapenemases, as 96.0/97.6% (CLSI/EUCAST) 
of these isolates were susceptible to meropenem/vaborbactam 
while only 2.4/8.0% were susceptible to meropenem alone. 
The activity of meropenem/vaborbactam against these isolates 
demonstrates that inhibition of the non-carbapenemase 
β-lactamases by vaborbactam restored the activity of merope-
nem. These in vitro results indicate that meropenem/vaborbac-
tam may be a useful treatment for infections caused by CREs 
that lack a known carbapenemase.
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