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Self-assembly is a ubiquitous process that can generate complex
and functional structures via local interactions among a large set
of simpler components. The ability to program the self-assembly
pathway of component sets elucidates fundamental physics and
enables alternative competitive fabrication technologies. Reprog-
rammability offers further opportunities for tuning structural and
material properties but requires reversible selection from multi-
stable self-assembling patterns, which remains a challenge. Here,
we show statistical reprogramming of two-dimensional (2D), non-
compact self-assembled structures by the dynamic confinement of
orbitally shaken and magnetically repulsive millimeter-scale parti-
cles. Under a constant shaking regime, we control the rate of ra-
dius change of an assembly arena via moving hard boundaries and
select among a finite set of self-assembled patterns repeatably
and reversibly. By temporarily trapping particles in topologically
identified stable states, we also demonstrate 2D reprogrammable
stiffness and three-dimensional (3D) magnetic clutching of the
self-assembled structures. Our reprogrammable system has pro-
spective implications for the design of granular materials in a mul-
titude of physical scales where out-of-equilibrium self-assembly
can be realized with different numbers or types of particles. Our
dynamic boundary regulation may also enable robust bottom-up
control strategies for novel robotic assembly applications by design-
ing more complex spatiotemporal interactions using mobile robots.
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Local interactions among a large set of simple components can
generate complex (1), functional (2), and robust (3) struc-

tures through self-assembly processes in both living and non-
living systems (4). Given appropriate mobility, the components
can explore a continuous energy landscape (5) and arrange into
spatial and temporal configurations (6) that define the properties
of the self-assembled structures in a multitude of length scales
(4). The ability to program the self-assembly process (7, 8) via
tuning of the interactions among the constituents (9–11) ad-
dresses fundamental physics (12–15) and has important impli-
cations for innovative fabrication technologies (2, 3, 16, 17).
Similarly, the detailed specification of crystallization and
annealing procedures can regulate the self-assembly process and
define the physical properties of materials (18). The products of
such material preparation have been appreciated in metallurgy
for centuries (19) and have been the focus of more recent studies
on polymers (20), granular materials (13, 21), and colloids (22,
23). The effects of boundaries on self-assembly have also been
widely investigated in colloidal (12, 17, 24–27) and granular (13,
28–30) systems; however, only a few of these studies evidenced
the correlation between dynamically controlled boundaries and
resulting self-assemblies (17).
Restructuring materials through reversible and repeatable

preparation methods allows the same constituents to be repur-
posed for wholly different functionalities. This remains chal-
lenging at the molecular scale due to the specificity of the
assembly interactions between the constituents (31). Conversely,

confined granular and colloidal systems are particularly appeal-
ing media for studying reprogrammable self-assembly processes
owing to the broad space of interaction design and the direct
visualization of the constituents (8). Unlike self-assembled states
formed in equilibrium (14, 22), driven nonequilibrium granular
matter shows reversible characteristics and thus presents an ad-
ditional route toward innovative technological applications (30).
Reversible and repeatable control of constituents’ positions and
motion pathways is also essential for distributed robotic systems
(32, 33), whereby investigations of the effect of boundaries (34,
35) and programming of magnetic interaction potentials (36–38)
have recently attracted significant attention.
In this paper, we demonstrate statistical reprogrammability

with dynamic boundary confinement that allows selective and
reversible access to multiple stable states and tunable properties
in an externally driven two-dimensional (2D) millimeter-scale
granular system. Our work complements prior programmable
self-assembly studies by providing the correlation between the rate
of change of the dynamic boundary and the resulting self-assembled
structures. We introduce macroscale control and fabrication
methods inspired by the physics of self-assembly in nonequilibrium
colloidal scale systems and anticipate prospective routes to prom-
ising applications, especially in robotics (32, 33, 36, 37, 39).
Our experiments were performed within a camera aperture-

inspired dynamic confinement mechanism that consisted of tightly
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arranged and reversibly sliding leaves (i.e., hard walls). The po-
sition of the leaves generated a dodecagonal arena, whose apo-
them defined the arena radius R (Fig. 1A). We placed N   =   25
magnetically repelling, disk-shaped particles with diameter
ρ  =   5mm (Particle Design) in the arena and confined their
motion within the arena to 2D with a transparent lid. We dy-
namically controlled the radius of the arena and its linear rate of
change over time dR=dt =   _R (i.e., confinement rate) through a
geared confinement mechanism and thus regulated the free
space available to the particles (Fig. 1 B and C and Movie S1).
The confinement mechanism was mounted on a programmable
orbital shaker, which generated the same inertial force on every
point of its surface following a circular trajectory with given
shaking frequency fr (40) (Fig. 1A, Orbital Shaking, and SI Ap-
pendix, section S1). The shaker transferred kinetic energy to the
particles through sliding friction and inelastic collisions with the
arena walls. Combined with particle–particle interactions, the
driven particle trajectories covered the arena with increasing
homogeneity as fr was increased (SI Appendix, section S2). A
high-speed camera mounted on top of the arena allowed us to
track the motion of the particles (Fig. 1C, Particle Tracking, and
SI Appendix, section S1).
Our system was characterized by the influence of the orbital

shaking frequency on the particle motion and of the dynamic
confinement on the reversibility and repeatability of the self-
assembly experiments. The orbital shaker platform allowed us
to sweep the range of frequencies from 0 to 8.3 Hz. We showed
that fr acted similarly to an effective temperature within a certain
range (SI Appendix, section S3). The induced particle mobility
permitted the formation of and statistical selection among sev-
eral self-assembled configurations. The range of R was dictated
by the geometry of the confinement mechanism and could be
changed from RMAX = 47.5 mm to RMIN = 20.5 mm. We re-
peatedly compressed and decompressed the arena within these
radius limits and showed the reversible transition of the particles
from high-mobility to arrested states. Quantified by means of the
particle-to-arena area fraction η, our experiments revealed the
repeatability and reversibility of the granular system allowing
reprogrammable self-assembly. Out of 1,200 experimental real-
izations of the process, we demonstrated the statistical reprog-
ramming of self-assembly by regulating the arena radius with
different _R and by establishing a correlation between _R and the
occurrence probability, P(c), of pattern classes c, that is, statistical
programmability. We observed 12 distinct classes, which were
identified by the topological relationship between the 25 particles
when the arena was fully compressed atR = RMIN and their mo-
tion consequently fully arrested. Four of these classes (Fig. 1D)
were observed in 95% of the realizations (Fig. 1E). Additional
experimental results revealed further correlations between the
dynamic boundary confinement and the programmable properties
of the self-assembled structures, namely their topological stability,
mechanical stiffness, and magnetic clutching.

Results
The shaking frequency fr played a critical role in defining the
dynamics of the particles within the assembly arena. Static fric-
tion of the arena surface was completely dominant and pre-
vented the particles from gaining any mobility for fr < 3.0 Hz.
Conversely, for fr > 7.0 Hz, the motion of the particles could not
be tracked smoothly due to the limit of the camera image ac-
quisition rate. In the frequency range between 3.0 and 5.3 Hz,
the interparticle magnetic repulsion force maintained a nearly
fixed spacing between the particles. This interaction prevented
the particles from gaining sufficient kinetic energy to cover the
arena area and enforced them to follow a circular trajectory
similar to that of the shaker. Only for fr > 5.3 Hz did hard in-
terparticle collisions become prevalent, and the particles over-
came the repulsive magnetic potential energy and explored the

arena more homogeneously (SI Appendix, section S2). We fur-
ther observed that fr acted similarly to an effective temperature
in linear relation with the velocity of the particles within the 5.3- to
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Fig. 1. Dynamically moving hard boundaries confine mobile magnetic
particles into reprogrammable 2D self-assembled patterns. (A) The con-
finement mechanism is mounted on a programmable orbital shaker gener-
ating a circular trajectory (shown with red arrows). The reversible rotation
(purple arrow) of the confinement wheel is controlled to drive the bi-
directional sliding of 12 leaves on the flat surface of the arena. The geom-
etry and tight arrangement of the leaves maintain a dodecagonal arena
shape for all values of its radius R (whose circumference is shown with green
dashed line). All particles in the arena have diameter ρ = 5mm and host the
same type of concentric, cylindrical permanent magnet. All particle magnets
are oriented normally to the arena surface. A transparent top lid (Inset) seals
the arena, forcing the magnetically repulsive particles to slide across the 2D
domain. (B) A sample confinement process shows the change of the arena
radius from RMAX = 47.5 mm to RMIN = 20.5 mm. The rotation of the wheel
mechanism (purple arrows) pushes the leaves toward the center of the
arena. This process is reversible as the leaves are pulled back from the center
when the wheel rotates in the opposite direction. (C) Snapshots of the arena
captured from the top-view camera show the change of R (white dashed
line) from RMAX to RMIN. (D) The four most frequently occurring classes of
patterns self-assembling out of 25 shaken particles. The classes are labeled
by the number of particles in their three-shell structure (red circles)
as <#outer, #middle, #inner>. (E) Cumulative distribution of the occurrence of
the 12 pattern classes observed in the experiments (shown in Fig. 2C). The
occurrence of the top four classes [1=12

P

_R

P4

i=1
P(ci), shown with stars] make up

95% of the total probability of all of the classes in 1,200 realizations of the
programmable self-assembly experiments.
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7.0-Hz range. The particle motion was characterized by a diffu-
sive regime taking place in between 0.1 and 0.5 s of their tra-
jectories (SI Appendix, sections S3 and S4). In the remainder of
our experiments, we chose fr = 6.0 Hz to maintain this particle
motion and corresponding arena coverage.
We then controlled R to demonstrate the influence of the

dynamic confinement on the repeatable and reversible particle
behavior. We regulated R to nine equally spaced values between
RMAX and RMIN and showed the reversible transition of the granular
system from high-mobility to arrested states (Reversible Confinement
Experiments). Fig. 2A shows the radial distribution function g(r) for
four conditions defined by the particle-to-arena area fraction

η = (Nπ(ρ=2)2)=(12  tan(π=6)R2). For R = RMAX (ηMIN = 0.069),
the system showed a fluid-like behavior whereby particles had high
mobility and lacked a persistent spatiotemporal structure. Sec-
ondary peaks emerged for smaller R(η = 0.108) and became more
pronounced for larger η, evidencing the formation of persistent
structures maintained by the dominant magnetic potential energy
and the shaking action. For R = RMIN(ηMAX = 0.369), the particle
motion was completely arrested, and g(r) indicated the assembly
of a solid-like structure with regular interparticle spacing. In the
same experiments, the magnetic potential energy EU, calculated
through the magnetic dipole model (Energy Models and SI Ap-
pendix, section S2), increased with η upon arena compression
(Fig. 2B). At the same time, the total particle kinetic energy EK
(Energy Models) progressively dropped to zero while EU domi-
nated the particle interactions as the confinement advanced and R
approached RMIN. Even though the system was being shaken with
fr = 6.0 Hz throughout the compression, the particles became
trapped in stiffer magnetic potential wells and their motion was
arrested as the available space gradually reduced. At the smallest
R values, the combined friction and mutual magnetic repulsion
within hard boundaries completely jammed the particles into
various stable, porous, solid-like structures. When the compres-
sion was reversed and the arena decompressed, the particles
reverted to a highly mobile state by accessing a larger space due
to the influence of magnetic repulsion and the constant kinetic
energy supply from the orbital shaker (Fig. 2 A and B). This re-
versible particle behavior constitutes the basis of our reprogram-
mable self-assembly experiments and is independent of the
number of particles in the arena provided the following require-
ments are met: Compression and decompression are achieved
without particles jamming and arresting the motion of the con-
finement mechanism, the particles are magnetically repulsive and
preserve the 2D confinement during the process, and fr provides
particles sufficient mobility.
It is important to note that the particles could still relocate in

the absence of shaking (i.e., for fr = 0 Hz), utilizing the kinetic
energy transferred by the moving boundaries during compres-
sion, but they could not explore configurations different from the
initial. In this particular case, the final self-assembly patterns
depended on the initial configuration of the particles before the
compression started. Upon decompression from a fully com-
pressed state, the particle system relaxed to a looser configura-
tion within the larger accessible volume but observably retained
the prior self-assembled pattern (Movie S2). This “athermal”
behavior with memory prevented the sequential reconfiguration
of the self-assembled patterns. These results were consistent with
the observation that orbital shaking in our non-Brownian particle
system produced effects similar to an effective temperature. This
analogy was further reflected in the way mechanical shaking
thermalized the system by obliterating the memory of initial
conditions and, more generally, of prior particle configurations
in all nonjammed states, as well as in the way shaking perturbed
the system away from magnetic potential energy minima.
To achieve statistical programming of self-assembled parti-

cle patterns, we experimented with 12 constant _R values while
keeping particle count and shaking frequency fixed at 25 and 6
Hz, respectively (Statistical Programming). Out of 100 realiza-
tions of the process for each _R value (1,200 realizations in total),
we topologically classified 12 different self-assembled pattern
classes at R = RMIN, that is, at the end of the compression
(Fig. 2C and Movies S3 and S4) using a combination of Delaunay
triangulation and a shell-based heuristic template. The Delaunay
triangulation identified unique connectivity between the particles
while still allowing moderate flexibility in their absolute positions
in the compressed arena area. A similar argument held for the
heuristic template: The particles were classified based on their
relative distance from the positions of the three virtual shells

0.1 0.2 0.3
0

0.5

1

1.5

E
ne

rg
y 

(m
J)

A B

C
0 2 4 6 8

0

0.5

1

1.5

2

2.5

3

r/ρ

)r(g

η = 0.069
η = 0.108
η = 0.211
η = 0.369

Class 2

<16,8,1>

Class 3

<18,6,1>

Class 4

<16,7,2>

Class 5

<15,8,2>

Class 6

<17,6,2>

Class 7

<19,5,1>

Class 8

<18,7,0>

Class 1

<17,7,1>
P(c1)=0.422 P(c2)=0.336 P(c3)=0.127 P(c4)=0.058

P(c5)=0.016 P(c6)=0.012 P(c7)=0.011 P(c8)=0.007
Class 9

<19,6,0>

Class 10

<17,8,0>

Class 11

<16,9,0>

Class 12

<20,5,0>
P(c9)=0.007 P(c10)=0.007 P(c11)=0.001 P(c12)=0.001

η

EU+

EK+
EK-

EU-

Fig. 2. Reversible state transitions and programmable self-assembled par-
ticle patterns by dynamic boundary confinement. (A) Confinement sampled
at relevant values of the area fraction η and described by the radial distri-
bution function g(r) (the parameter r=ρ is the interparticle distance nor-
malized with particle-diameter). Solid and dashed lines correspond to
compression and decompression of the arena, respectively. Their overlap
demonstrates the reversibility of the system. (B) Total magnetic potential
energy EU and kinetic energy EK of 25 particles during confinement. Over-
lapping solid (+) and dashed lines (−), respectively, for compression and
decompression of the arena reflect the reversibility of the granular confined
system. (C) The complete set of pattern classes assembled out of 1,200 ex-
periments with different confinement rates _R. The classes are listed in order
of descending occurrence probability P(c). The particles are connected by
Delaunay triangles, their color highlighting the shells (outer, blue; middle,
green; inner, yellow) in the patterns.
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(Fig. 1D). The combination of these two methods offered gen-
eralizability by allowing multiple pattern configurations to be
classified into a single class (Topological Pattern Classification
and SI Appendix, section S6). The statistical programming was
shown to be reversible upon arena decompression, which further
enabled pattern reprogramming (Movie S5).
The statistical programming results reported in Fig. 3A show

the correlation between _R and P(ci) (i.e., the programmability of
class i at the end of the compression for 100 realizations of the
chosen _R). For the slowest _R = 0.079 mm=s, only classes 1 and 2
appeared, with P(c2) = 0.93 dominating P(c1). P(c1) was greater
than P(c2) for faster confinement rates and reached its peak
P(c1) = 0.63 for _R = 5.685 mm=s. While class 4 occurred in-
frequently throughout the _R range (P(c4) ∼ 0.08), class 3
appeared for _R≥ 0.175 mm=s and peaked at P(c3) ∼ 0.25. These
four classes (Fig. 1D) occurred across the entirety of the _R range
and their cumulative probability ∑

_R

P(ci=1−4) averaged over the

1,200 experiments made up 95% of the total (Fig. 1E). The
majority (five out of eight) of the least frequent classes appeared
almost exclusively at the fastest confinement rates _R> 10mm=s
(SI Appendix, section S7).
A comparison between the heuristic template- and the Delaunay

triangulation-based classification hinted at the dynamic origin and
possible metastability of patterns with high EU. Since both classi-
fication methods allowed for moderate flexibility in absolute par-
ticle positions, seemingly different particle configurations could still
be classified into the same classes (SI Appendix, section S6), which

generated a variance in EU of each class. In other words, EU of a
single class showed variability as particles could have different rel-
ative distances to each other while maintaining the same topolog-
ical class. The relative distance between particles, and accordingly
EU of each class, were influenced by the confinement rates. We
observed that higher confinement rates were able to trap particles
in higher energy configurations, as the particles were given less time
to relax to configurations that minimized their EU, that is, maxi-
mized their relative distances from each other. Fig. 3B shows the
increase in average EUof the top four classes corresponding to in-
creasing _R. In extreme cases, particles were immobilized while
switching from one shell to another. These transition states could
be detected by the mismatch between the classifications, as the
centroid distances to the shells remained the same while the tri-
angulation connectivity changed (SI Appendix, section S6). The
error bars in Fig. 3A represent such mismatches (i.e., the transition
states), whose numbers increased with higher _R. These patterns also
had higher EU compared to the average of the class they belonged
(the shaded regions in Fig. 3B). This is further evidenced by com-
paring the EUof all the classes; the class average energy increased
when the mismatched patterns were included (SI Appendix, section
S7). In our system, the confinement selected lower energy patterns
for lower _R, that is, when the compression was slower compared to
the time scale of the diffusive regime (0.1 to 0.5 s). Class 2, in
particular, occurred most often in the slowest compression and was
associated with the lowest energy among all patterns. Classes 6 to
12 had the highest energies (Fig. 2C) and occurred more frequently
for faster compression (SI Appendix, section S7). In other words,

A B

C D

Fig. 3. Programming and structural stability of the self-assembled particle patterns. (A) Programming [i.e., occurrence probability P(c)within 100 realizations
for each confinement rate ( _R) spanning from 0.079 to 39 mm/s] of the four topmost-occurring classes shown in a semilog plot. Error bars represent the number
of transition states (i.e., classification mismatches) for each class. (B) Average magnetic potential energies (EU) of the top four classes versus _R shown in a
semilog plot. The error bars represent the variance of energies among different patterns in the same class for every value of _R. Shaded regions show the
average EU of the transition states. (C) Average particle count on the three shells (i.e., outer, middle, and inner) during arena decompression from R = RMIN for
each of the top four classes. Horizontal flat lines represent constant particle count. The color-coded vertical dashed lines indicate the earliest change in
particle count on any shell, that is, change in the class definition. The farthest vertical line on the x axis represents the most stable class. (D) The occurrence
probability of the classes during the decompression of the top four classes (subplots from top to bottom show classes from 1 to 4). Each vertical line on a
subplot denotes the detection of a new class during decompression. The ratio of detected classes is represented by horizontal lines within each block using the
same color code for classes. White regions, indicated by “na,” represent patterns that do not belong to the set of 12 stable classes, detected only at R = RMIN.
The black stars represent the earliest detected instability (i.e., they correspond to the dashed vertical lines in C). The _R = 0.28 mm/s decompression rate is
indicated in A, B, and D with a black triangle.
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particles were frozen into lower energy states given sufficient time
to exchange neighbors and reduce EU (41).
We further investigated the topological stability of the four

topmost-occurring classes, which also possessed the lowest
magnetic potential energy in the most compressed state. We
considered the permanence (i.e., the structural stability) of a
class lost when its original particle distribution on the three-shell
structure changed (e.g., from <18,6,1> to <17,7,1>). Fig. 3C
shows the average number of particles on the three-shell struc-
ture while the classes were being decompressed from their frozen
state at R = RMIN with _R = 0.28 mm=s at fr = 6 Hz (Pattern
Stability Analysis). The vertical dashed bars show the smallest
radius for which a class first lost its stability. The permanence of
the classes followed the same order as their total observation
probabilities across all of the experiments (e.g., class 1 had the
longest permanence; Fig. 1D). Fig. 3C also shows that particles
first switched between inner and middle shells, as outer-shell
particles were mostly arrested by the hard boundary walls and
the magnetic repulsion from the center of the arena. For
R>RMIN + 1.5  ρ, the particle system returned to a high-mobility
state and the topological definition of the classes based on the
three-shell structure was lost. The subplots in Fig. 3D show the
dynamic history of the top four classes and their tendency to
change into different classes during the decompression. Classes 1
and 2 remained stable in a wider radius range, and they domi-
nated the other classes [i.e., P(c)> 0.5], whereas classes 3 and 4
had the tendency to switch to classes 1 and 2, respectively
(i.e., class 3 <18,6,1> to class 1 <17,7,1>, and class 4 <16,7,2> to
class 2 <16,8,1>). These results support the reversibility of our

self-assembly system and hint to the existence of critical radii
capable of programming certain classes with higher selection
probabilities.
Notably, since the particles were magnetic and each particle

pattern class had a different topology, programming the self-
assembled particle patterns corresponded to programming the
mechanical and magnetic properties of the compressed system,
as demonstrated by the two different experiments sketched in
Fig. 4A. Our system behaved as a 2D multistable elastic granular
material with programmable stiffness (Fig. 4B). The differing
slopes of ΔEU as a function of radial compression, ΔR, revealed
the distinct stiffness of each pattern, with classes 2 and 3 having
the lowest and highest stiffness, respectively (Quantification of
Particle Pattern Stiffness and SI Appendix, section S8). Addition-
ally, the magnetic field above and around the arrested particle
patterns described a three-dimensional (3D) magnetic energy
landscape suitable as a clutch mechanism for transduction. By
scanning the plane over the self-assembled patterns with an
auxiliary magnetic arm along the angular coordinate Θ (Quan-
tification of the Magnetic Clutch Torque), we measured unique
torque profiles for each particle pattern (Fig. 4 C and D). Fig. 4C
shows such profiles measured at a distance h = 1 mm above the
particles with arms that had magnets placed at different dis-
tances d from the center of the patterns. These torque readings
correspond to a planar cross-section of the programmable 3D
magnetic field over the self-assembled patterns. For d = 10 mm,
torque readings showed eight equally distributed peaks for class
2 and seven peaks for class 4. A similar argument can be made
for d = 5 mm, as the two particles at the inner shell of class 4
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Fig. 4. Reprogrammable mechanical properties of the self-assembled patterns and transduction via their 3D magnetic profiles. (A) Sketch of the two
methods used to transduce the self-assembled magnetic patterns into mechanical properties. Particle patterns behave like torsional springs against per-
turbations of arena radius ΔRwith programmable stiffness within the plane of the arena (Left). Particles generate programmable clutching, that is, magnetic
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dependent difference of the self-assembled granular solids. (C) The torque generated on the magnet with different distances d to the origin of the rotating
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generated a fluctuating torque, unlike the single particle at the
center of class 2. The magnetic clutch changed characteristics
with increasing distance from the self-assembled patterns as well.
Fig. 4D shows the sum of the torques measured by the rotating
arm over class 2 and 4 patterns when hwas increasing from 1 mm
to 5 mm. In both cases, the torque was decreasing but class 2
maintained its periodic torque profile, unlike class 4’s unique
region in between 2π=3<Θ< π. Unique magnetic clutch profiles
for other classes are reported in SI Appendix, section S9.

Discussion
The geometry and symmetry of the self-assembled particle pat-
terns reflected those of the boundaries of the arena (42). Al-
ternative boundary geometries to the one we adopted are
expected to induce different patterns from those we observed.
This would imply that the geometrical selection of particle pat-
terns is not just alternative but also complementary to the dy-
namic selection mechanism we presented. Combinations of the
two mechanisms can further expand the set of reachable particle
patterns that can be reprogrammed for a fixed particle count.
Note that the 12 classes of particle patterns reported here did
not necessarily exhaust the reachable set of all possible classes in
our system; rather, they merely corresponded to the (sub)set we
were able to observe when the system was fully compressed at
R = RMIN by using 25 particles. The nonclassified patterns shown
in Fig. 3D hint that there indeed appeared additional transient
classes at different arena radii.
The geometry of the confinement mechanism defined the

lower and upper bounds for the particle count in the experiments
as moving hard walls had a finite range of motion. When N < 25,
the particles still had sufficient kinetic energy to relocate within
the arena at R = RMIN, which prevented the identification of
topologically stable pattern classes (SI Appendix, section S5). In
our experiments, we chose N = 25 as it was the minimum particle
number that generated topologically stable states at the end of
the compression. On the other hand, N > 53 was beyond the
maximum close packing of particles within the arena at
R = RMIN. We expect the upper boundary on N to be in practice
even lower for high confinement rates, as this upper bound was
calculated in a simulated optimization environment assuming
static positions of particles (43), whereas during dynamic con-
finement particles might be jammed in configurations that
physically arrest the moving wall mechanisms before RMIN is
achieved. Larger particle sets than we used (i.e., 25<N < 53)
might show more numerous and more complex states in the
current experimental platform. For example, we would expect to
witness topologies with more than three virtual rings or different
transition states among the pattern classes. However, larger sets
of particles within this range would expectedly require many
more realizations of the process to quantify the statistical
reprogrammability of longer lists of identified classes, with an
increased experimental and computational effort in tracking and
analysis currently outside of our capabilities. Nevertheless, since
the repeatability, reversibility, and statistical (re)programmabil-
ity of our system originates from the repulsive interactions be-
tween the mobile particles and the dynamic hard boundaries, and
not only from our choice of N, we expect that experiments with
25<N < 53 would not change the claims of our work but rather
only strengthen them. Moreover, an enlarged version of our
platform could conceivably host much larger sets of particles to
physically validate studies on defect and crystallization pro-
gramming, which to date have mostly been studied in simulated
environments (44, 45). Experiments of long duration or involving
complex interaction potentials among nonhomogeneous or
nonisotropic sets of particles, whose computational imple-
mentation would otherwise be heavy, could be physically realized
using our confinement mechanism. Our mechanism can host
particles with more complex interaction potentials that can be

achieved either by fabricating particles with complex geometries
using the 3D printer or embedding multiple magnets inside each
particle, also with various orientations. These extensions suggest
that our mechanism may be a test bed to reveal physical obser-
vations that may be otherwise missed during simulations of self-
assembly processes.
We reported reprogrammability using a linear and unsuper-

vised radial confinement profile; however, we expect that the
determinism of pattern selection will increase by adding a visual
closed-loop control system (8) that tracks the dynamic evolution
of the patterns, or a nonlinear control of the arena radius. Re-
sults in Fig. 3 C and D also suggest that critical radii exist where
certain classes can be programmed with higher determinism,
therefore hinting toward more complex, time- and radius-asymmetric
confinement profiles. Also, a closed-loop mechanism may allow
for the application of machine learning methods for exploring self-
assembling pathways and energy landscapes (46, 47) in a physical
platform using a manageable set of particles. Besides mechanical
properties that depend on the magnetic field, our approach could
in principle be extended also to the tuning of optical and elec-
tromagnetic properties of functional materials that depend on the
spatial configuration of their components (48).
Finally, our confinement and reprogrammable self-assembly

mechanisms have potential uses also for larger-scale systems.
The confinement system can be used as a transducer to convert
the programmable magnetic properties of the granular assembly
into variable stiffness and clutching mechanisms. These mecha-
nisms may offer a large set of continuous and reprogrammable
mechanical profiles generated by the selection of discrete gran-
ular states and may complement existing robotic actuator
methods (49). Multiagent distributed robotic systems could also
benefit from the dynamic boundary control scheme we presented
for assembly formation once our passive particles are replaced by
mobile robots (32, 34). Through the programmable boundary
control, new robotic functions such as distributed sensing (33)
and bioinspired collective locomotion could be generated (35).

Materials and Methods
Particle Design. Each particle shell (diameter ρ = 5 mm, height hp = 3 mm)
was 3D-printed (Stratasys Objet 260 Connex) with stiff plastic material
(Veroclear RGD810). The 3-mm (diameter) × 2-mm (height) cylindrical core at
the center of each particle hosted a permanent NdFeB magnet disk of 3-mm
(diameter) × 1-mm (height) size (Supermagnete, N48 grade). We placed all
particles within the arena with the same vertical magnetic orientation
(i.e., magnetic poles normal to the arena surface) to generate isotropic lateral
magnetic repulsion force between the particles. We printed a T-shaped marker
on the top surface of the particles (Fig. 1 A, Inset) to track their position and
orientation with a high-speed camera (Basler Ace acA800-510uc). The marker
did not induce anisotropic particle orientation in the plane of the arena.

Orbital Shaking. The complete mechanism was mounted on top of the hor-
izontal platform of a frequency-programmable orbital shaker (New Bruns-
wick Innova 2300) with fixed orbital radius L = 12.6 mm. The orbital
trajectory of every platform point (x, y) is described by x(t) = Lcos(ωt),
y(t) = Lsin(ωt) where ω = 2πfr (orbital radius L, shaker frequency fr). Ac-
cordingly, the shaker applied a shearing force to all particles equally and
synchronously, which scales with their mass m ≅ 0.093 g and relates to
x
::(t) = −Lω2cos(ωt) and y

::(t) = −Lω2sin(ωt).

Particle Tracking. To track the particles during our experiments, we mounted
the high-speed camera over the arena and normal to its surface and at-
tached it to the same, noninertial frame of the programmable orbital
shaker. We provided the necessary lighting conditions for the experimental
setup to record 360 grayscale images per second (360 frames per second
[fps]) with 600-μs shutter speed and 800 × 600 pixel2 resolution. For every
image, we used MATLAB’s built-in image processing functions to find the
position and orientation of the particles via the high-contrast T-shaped
markers. We used each particle’s position and velocity vector information
to associate consecutive images to each other and track the particles con-
tinuously throughout the experiments. Additional information about par-
ticle tracking is available in SI Appendix, section S1.
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Reversible Confinement Experiments.Weperformed 54 experiments, resulting
from three repetitions of both compression and decompression for the nine
equidistant R values. These values correspond to the particle-to-arena area
fraction η∈ [0.069, 0.078, 0.090, 0.108, 0.132, 0.164, 0.211, 0.281, 0.369]. In
all experiments, we waited for the orbital shaking to stabilize at fr = 6  Hz
before proceeding. For a single compression experiment, we started
with R = RMAX (η = 0.069) and swept toward R = RMIN(η = 0.369) with
_R = 11.5 mm=s. After reaching each target R-value, we stopped the com-
pression and video recorded the motion of the particles for 5 s at a rate of
360 fps. Conversely, for a single decompression experiment, we started with

R = RMIN and swept toward R  =   RMAX with the same
⃒⃒
_R
⃒⃒
(i.e., _R = −11.5 mm=s)

and repeated the recording procedure. Note that in Fig. 2A we only reported
g(r) for four main η values, while Fig. 2B shows the energy results for the
complete list of η. The g(r) for η = 0.369 in Fig. 2A corresponded to the particle
configuration of a class 2 pattern and the parameter r=ρ is the interparticle
distance normalized with particle diameter.

Energy Models. In our experiments, we used the magnetic potential energy
and the kinetic energy of the particle system as quantitative metrics while the
system was being compressed and decompressed. High-speed particle
tracking allowed us to measure the particle positions, orientations, and ve-
locities (both translational and rotational). We approximated the magnetic

potential energy EU = −mi
̅→ ·~B(~r), with the magnetic field ~B(~r)measured at a

distance~r from a single magnetic dipole with the moment mi
̅→:

~B(~r) = μ0

4π
⃒⃒
~r
⃒⃒3 3(~r=

⃒⃒
~r
⃒⃒
)((~r=

⃒⃒
~r
⃒⃒
) · mi

̅→) − mi
̅→. [1]

In our experiments, each particle had the same magnetic moment

mi
̅→ = [ 0 0 BrV=μ0 ], where Br is the flux density (Br = 1.32  T, 3-mm di-
ameter, 1-mm height, N48 grade, Supermagnete; SI Appendix, Fig. S1C), V
the volume of the cylindrical magnet (V ≅ 7.07 × 10−9  m3), and μ0 the per-
meability of the vacuum (μ0 = 4π × 10−7  H=m). As the particles were con-
fined in a 2D domain in our experiments, we assumed ~r = [ rx ry 0 ]. We
calculated the total magnetic potential energy of the particle system by
summing up the magnetic field in Eq. 1 for all of the 25 particles (SI Ap-
pendix, section S2).

We approximated the kinetic energy EK of the particle system by summing
the translational and rotational kinetic energy of each particle Ep as

Ep = 1
2
m  v2p + 1

2
Iw2

p , [2]

where m was the particle mass (m ≅ 0.093  g), vp the translational velocity in
meters per second, I the particle moment of inertia (I ≅ 2.17 × 10−10   kg m2),
and wp the rotational velocity in radians per second. We calculated the total
kinetic energy of the particle system by summing up the particle energy in
Eq. 2 for all of the 25 particles.

Statistical Programming. We performed 100 repetitions for each of the 12
types of experiments. The experiment types differed by the constant value of
_R∈ [0.079, 0.175, 0.283, 0.581, 1.172, 2.904, 5.685, 11.180, 20.810, 27.811,
37.832, 39.001] mm/s, while particle count and shaking frequency were fixed
respectively at 25 and 6 Hz for all realizations. The time to change R from

RMAX to RMIN accordingly varied from 340 s for the lowest _R to about 0.6 s for
the highest (see Movies S3 and S4 for instances of two different experiment
types). In the experiments, we waited for the stabilization of the shaking
frequency and let the particles move for 3 s at R = RMAX before beginning
the compression at the chosen rate. We further waited for 3 s at R = RMIN to
register the self-assembled patterns (Fig. 2C). We did not record the com-
plete compression sequence; instead, we recorded the image of the final
emergent pattern at R = RMIN after waiting for 3 s.

Topological Pattern Classification. We defined classes of self-assembled pat-
terns based on the topology of the particles resulting from the complete
arresting of their motion at R = RMIN. We used the Delaunay triangulation
method, which generates a triangular network (i.e., a topology) by con-
necting a set of points on a 2D plane such that no points in that set remain
inside the circumcircle of any triangle. The resulting triangulation is dual to
the Voronoi tessellation, wherein the vertices of the Voronoi diagram are
the circumcenters of the triangles. This method afforded the representation
of particle centroid positions, which existed in a continuous space, using
discrete vertex edges, which we referred to as pattern classes. In this

method, the relative positions of the particles to each other (i.e., the
neighborhood connectivity) were more important than their absolute po-
sitions and orientations in 2D space. As long as the connectivity was pre-
served, particles could be relocated, reoriented, or swapped, or the whole
particle assembly could be shrunk, expanded, or rotated. Thus, this
topology-based classification allowed for the generalization of the patterns.
With this approach, we identified 12 distinct pattern classes among the
1,200 examples of patterns observed in the experiments. In every pattern,
the particles organized in a virtual three-shell structure (Figs. 1D and 2C). We
described the radius of a virtual shell as the radius of the largest circle that
fit the centroids of the particles residing on that shell. We referred to the
radii of the three shells making up the self-assembled pattern with the
minimal magnetic potential energy in the experiments as the heuristic
template. Unlike the Delaunay triangulation, the heuristic template con-
sidered the absolute centroid positions of the particles concerning the three
shells in Fig. 1D. We used the heuristic template in addition to the Delaunay
triangulation to complete the definition of a pattern class and identify
metastable patterns. Additional information about classification is available
in SI Appendix, section S6.

Pattern Stability Analysis. We selected the four topmost-occurring classes

using the value of _R that yielded the highest programmability for each class

with fr = 6 Hz (i.e., _R = 5.685 mm=s for class 1, 0.079 mm/s for class 2,
39.001 mm/s for class 3, and 0.175 mm/s for class 4). After the selection, we
decompressed the arena by changing R from RMIN to RMAX with
_R = −0.28 mm=s (i.e., the _R for which all of the top four classes were se-
lectable, shown with the black triangle in Fig. 3C). We tracked the pro-
gression of the patterns with the triangulation and the heuristic templates
while the arena was expanding. We updated the three-shell radii along with
the increasing R of the arena. We repeated the experiments three times for
each class and reported the average of the particle counts on each ring lo-
cation during the decompression until ΔR=ρ = 2 (i.e., R = 30.5 mm).

Quantification of Particle Pattern Stiffness. We performed 20 experiments
with 25 particles, resulting from five repetitions for each of the four
most frequently occurring classes. For each class, we first selected the

pattern at RS = RMIN + Δd, with Δd = 2.6 mm, using the _R that yielded the
highest P(c). For R = RS the pattern of the top classes was not com-
pletely solidified and it did also not evolve into any other pattern, as the
particles did not have enough space to relocate. After pattern selection,
we stopped the shaking and continued the arena compression across Δd
using _R = 0.079 mm=s for ∼27 s. We stopped the compression at
R = RMIN + 0.5mm. We waited for 3 s both before the compression started
and after it ended. We recorded the particle positions for 33 s at a frame
rate of 60 fps. Additional information about the pattern stiffnesses is
available in SI Appendix, section S8.

Quantification of the Magnetic Clutch Torque. We embedded the magnets
inside 21-mm-radius, 5-mm-thick circular acrylic plates (Plexiglas; Evonik) at
the particle positions corresponding to the self-assembled class patterns
reported in Fig. 2C. We fabricated three distinct rotating arms, each housing
a magnet at a distance d = 5 mm, 10 mm, and 15 mm from the axis of ro-
tation of the arm (Fig. 4A). The rotation axis of the arm was aligned with the
center of the arena. We placed the pattern disks and the rotating scanner
arm in a rheometer setup (DHR-3; TA Instruments) and recorded the torque
measurements. We varied the vertical gap between the pattern disk and the
rotating arm from h = 1 mm to 3 mm and 5 mm. We rotated each arm three
times (i.e., three complete rotations from Θ = 0 − 2π) over the pattern disks
for each h and reported the average torque measurements. Each line in
Fig. 4D shows the sum of torques for each arm at the specific vertical gap h.
All magnets used in the pattern disks and the rotating arms were identical to
the NdFeB permanent magnets embedded inside the particles. Additional
information about torques for different classes is available in the SI Ap-
pendix, section S9.

Data Availability.All data, materials, and associatedmethods that support the
findings of this study are shown in Materials and Methods and SI Appendix.
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