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ABSTRACT

Deep learning has revolutionized data science
in many fields by greatly improving prediction
performances in comparison to conventional ap-
proaches. Recently, explainable artificial intelligence
has emerged as an area of research that goes beyond
pure prediction improvement by extracting knowl-
edge from deep learning methodologies through the
interpretation of their results. We investigate such
explanations to explore the genetic architectures of
phenotypes in genome-wide association studies. In-
stead of testing each position in the genome indi-
vidually, the novel three-step algorithm, called Deep-
COMBI, first trains a neural network for the classifi-
cation of subjects into their respective phenotypes.
Second, it explains the classifiers’ decisions by ap-
plying layer-wise relevance propagation as one ex-
ample from the pool of explanation techniques. The
resulting importance scores are eventually used to
determine a subset of the most relevant locations
for multiple hypothesis testing in the third step. The
performance of DeepCOMBI in terms of power and
precision is investigated on generated datasets and
a 2007 study. Verification of the latter is achieved by
validating all findings with independent studies pub-
lished up until 2020. DeepCOMBI is shown to out-
perform ordinary raw P-value thresholding and other
baseline methods. Two novel disease associations
(rs10889923 for hypertension, rs4769283 for type 1
diabetes) were identified.

INTRODUCTION

Genome-wide association studies (GWAS) investigate the
phenotypic effects of small genetic variations called single-
nucleotide polymorphism (SNPs). While some methods for
the analysis of GWAS focus on phenotypic risk prediction
based on the given genetic information (1–5), others try to
explain these risk effects by highlighting which SNPs are
having an effect on a given trait (6–10). This work aims
at a combination of both of these goals and uses a deep
learning-based prediction method in combination with sta-
tistical testing to identify SNPs associated with the pheno-
type under investigation.

Following developments in biotechnology, the first
GWAS was published in 2002 (11–13). Several years later, a
landmark study––the largest GWAS ever conducted at the
time of its publication in 2007––was presented by the Well-
come Trust Case Control Consortium (WTCCC) (14) in-
cluding 14 000 cases of seven common diseases and 3000
shared controls. Ever since then, sample sizes, rates of dis-
covery and numbers of traits studied have been rising con-
tinuously (15). According to the GWAS catalog accessed on
15 September 2020, >4700 studies have investigated >3,500
phenotypes and identified >200,000 SNP phenotype associ-
ations with P-values below 1 × 10–5. Especially for common
human diseases such as diabetes, autoimmune disorders or
psychiatric illnesses, GWAS have provided valuable insight
into the corresponding genetic inheritance processes (16). A
few studies have included over 1 million subjects enabling
the identification of SNPs with lower risks and frequencies
(17,18).

However, the vast amount of available data on SNP phe-
notype associations still only accounts for a small frac-
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tion of heritability. The genetic architectures and variances
of most traits and diseases remain largely unexplained.
This effect, often referred to as ‘the missing heritability’,
is assumed to––at least partially––be caused by the way
GWAS datasets are traditionally analyzed (19,20). The clas-
sic approach––which we refer to as raw P-value threshold-
ing (RPVT)––consists of carrying out a statistical associ-
ation test to assign a P-value to each SNP under investi-
gation and subsequently assessing its statistical significance
via comparison to a predefined threshold t∗ (16). This stan-
dard approach to analyzing GWAS is therefore based on
testing SNPs individually and in parallel, which intrinsically
ignores any potential interactions (20,21) between or corre-
lation structures among the set of SNPs under investigation
(22,23). Studies fail to identify multi-locus effects by using
the traditional RPVT approaches and a large amount of po-
tentially available information is lost (24). Only very few dis-
eases rely on single genetic defects with large effects. Most
complex diseases are caused by epistatic interactions of mul-
tiple genetic factors with small effect sizes, which are fur-
ther influenced by correlation structures due to both pop-
ulation genetics and biological relations (15). Brute force
multivariate approaches to identify such dependencies are
oftentimes computationally too expensive for large GWAS
datasets and are limited by low statistical power due to ex-
cessive multiple testing. A few attempts have been made to
identify genetic interactions, but most of them were not able
to find strong, statistically significant associations (21,25–
27).

To overcome these limitations of traditional approaches
and following the rise of machine learning in data science
and an increasing amount of available large-scale GWAS
datasets, a number of methods have been proposed to in-
troduce machine learning tools for the analysis of such stud-
ies. Linear approaches such as multivariate logistic regres-
sion and sparse penalized methods including Lasso have
been applied to GWAS datasets. In general, penalized mod-
els achieve better performances than nonpenalized methods
(4,28–30). Some of the top-performing models combine sta-
tistical testing and machine learning for the identification
of SNP disease associations (6,7,31). While most of these
methods do not provide validation on real data compar-
ing to the GWAS database, very few provide a full evalu-
ation of identified genetic variants in terms of comparison
to previously published GWAS. Other proposed nonlinear
models, such as random forests, gradient boosted trees and
Bayesian models (4,28,32,33), investigate interactions and
correlations in the genetic architecture of traits but were
mostly found to be outperformed by linear penalized meth-
ods (4,25,28,33).

To harness even more sophisticated nonlinear machine
learning methods for the analysis of GWAS, attention has
recently been drawn to deep neural networks (DNN). This
powerful tool for learning nonlinear relationships between
an input and an output variable by transferring informa-
tion through ‘a’ computing system made up of a number of
simple, highly interconnected processing elements’ (34) has
seen an unprecedented rise in data science (35) and created
enormous progress in numerous fields, e.g. image classifica-
tion (36,37), natural language processing (38), speech recog-
nition (39) and quantum chemistry (40). DNN have been

applied to the analysis of GWAS datasets (41,42), but most
of the corresponding publications focus on risk prediction
(28,43–45) and only very few methods have been proposed
for the identification of SNP disease associations (28,46).

Romagnoni et al. (28) present a thorough compari-
son of conventional statistical approaches, traditional ma-
chine learning-based techniques and state-of-the-art deep
learning-based methods in terms of both prediction rates
and the identification of SNP associations on a Crohn’s dis-
ease immunochip dataset. Classification performances of
numerous methods (Lasso as a reference, penalized logis-
tic regression, gradient boosted trees, DNNs) were com-
pared and found to be similar for most methods (linear
and nonlinear) implicating potentially ‘limited epistatic ef-
fects in the genetic architecture’ (28). However, when in-
vestigating the associated genetic regions identified by the
different methods, machine learning and deep learning-
based methods were indeed found to provide new insights
into the genetic architecture of the trait. Romagnoni et al.
(28) achieved this by applying the concept of explainable
AI, which is an emerging field of AI that has been gain-
ing importance recently (47). It refers to techniques, which
open the so-called ‘black box’ of machine learning meth-
ods and reveal the processes underlying their decisions so
that the results can be better understood. The explanation
method used by Romagnoni et al. (28)––permutation fea-
ture importance (PFI)––is a generalized, model-agnostic
approach and more sophisticated methods specifically tai-
lored to DNN are available. To the best of our knowledge,
deep Taylor-based explanation techniques (48) have not yet
been applied in the field of GWAS and we propose to adopt
layer-wise relevance propagation (LRP) (49,50) for the anal-
ysis of such data. LRP is a direct way to compute feature
importance scores and has been applied very successfully
in numerous data science problems to explain decisions of
DNNs (51,52). Instead of basing the importance score of a
SNP on the data of that SNP alone, correlation structures
and possible interactions are automatically taken into ac-
count.

To make LRP applicable as an explanation method for
GWAS data, we use a very promising, well-performing
machine learning-based method, called COMBI (31), as
a starting point for our deep learning-based approach.
COMBI is a two-step method, which first calculates a rele-
vance score for each SNP by training a support vector ma-
chine (SVM) (53) for the classification of subjects based
on their genetic profile. Using the learned SVM weights
as an indicator of importance, COMBI selects the high-
est scoring SNPs as a subset to put into multiple hypoth-
esis testing. This approach was shown to outperform other
combinatorial approaches and a number of purely statis-
tical analysis tools. The method we propose here can be
viewed as an extension of the COMBI method (31) re-
placing the rather simple prediction step of an SVM with
a more sophisticated deep learning method and using the
concept of explainability to extract SNP relevance scores
via LRP.

We propose a deep learning-based approach for the iden-
tification of SNP phenotype associations and call the novel
method DeepCOMBI (see Figure 1). The three-step algo-
rithm consists of
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Figure 1. Overview of the DeepCOMBI method. Receiving genotypes and
phenotypes of a GWAS as input, the DeepCOMBI method first applies a
deep learning step to train a DNN for the classification of subjects. After-
ward, in the explanation step, it selects the most relevant SNPs by apply-
ing LRP to calculate relevance scores for each SNP. Finally, for this set of
most relevant SNPs, DeepCOMBI calculates P-values and corresponding
significance thresholds in a statistical testing step. This figure is an adjusted
version of Figure 1 presented by Mieth et al. (31).

1. a deep learning step where we train a DNN for classify-
ing individuals based on their SNP data;

2. an explanation step where we calculate SNP relevance
scores by applying LRP and reduce the number of SNPs
by selecting only the most explanatory SNPs; and

3. a statistical testing step where only the SNPs selected in
step 2 are tested for statistically significant association
with the trait under investigation.

The main motivation behind DeepCOMBI is to harness
the immense potential of sophisticated, state-of-the-art arti-
ficial intelligence (AI) methods to examine complex and po-
tentially nonlinear structures in high-dimensional data by
applying the concept of DNNs to GWAS in the first step of
the algorithm. Subsequently, in step 2, DeepCOMBI identi-
fies a set of SNPs that have high effects on the classification
result of the DNN (either individually or in combination
with other SNPs and not due to correlation structures) by
calculating an explanation score for each SNP that reflects
its contribution to the final classification decision. The third
and last step assigns individual P-values to all selected SNPs

and quantifies their relevance with a permutation-based sig-
nificance threshold.

Figure 1 gives an overview of the overall workflow of
the DeepCOMBI method, which is described in detail in
the Materials and Methods section. DeepCOMBIs perfor-
mance on both controlled generated datasets as well as
on a 2007 GWAS dataset of seven common diseases (14)
is presented in the Results section. We show that Deep-
COMBI compares favorably to a number of competitor
methods in terms of both classification accuracy as well
as SNP association prediction when validated with all as-
sociations reported within the GWAS catalog accessed in
2020. A thorough discussion of the results and all re-
lated machine learning work is given in the Discussion
section. An implementation of the DeepCOMBI method
in Python is available on GitHub at https://github.com/
AlexandreRozier/DeepCombi.

MATERIALS AND METHODS

The proposed method applies deep learning and the con-
cept of explainable AI to GWAS data and enables the iden-
tification of SNPs that are associated with a given trait
with statistical significance. A graphical representation of
the method is given in Figure 1. The method is based on a
deep learning step that trains a DNN for the classification of
GWAS subjects into their respective phenotype class. Using
LRP as a post-hoc explanation method, we access the rele-
vancies of all SNPs regarding each individual classification
result. The obtained SNP relevance scores are used to select
the subset of most important SNPs to test for association in
the final multiple testing step.

In the following sections, we describe the statistical prob-
lem, which is investigated in a GWAS, present the proposed
method in detail and specify the experimental setup of per-
formance assessments on generated synthetic data and a
real-world application of a known GWAS dataset.

Problem setting

A GWAS investigates the observed genotypes
x = (xi j ) 1≤i≤n,1≤ j≤d ∈ �n×3d of d SNPs and n subjects la-
beled with the corresponding phenotypes y = (y1, . . . , yn).
Both the genotypic information in SNP j of subject i
and the phenotypes are encoded in a binary way, where
xi j ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} represents the number of
minor alleles and yi ∈ {0, 1} is the binary label separating
controls from cases.

The null hypothesis of a conventional single-locus test is
that there is no difference between the trait means of any
genotype group, which would indicate that the genotype at
SNP j is independent of the phenotype under investigation
(54). Via a chi-square test, RPVT calculates a P-value p j
for each SNP j and declares it significantly associated with
the phenotype if p j ≤ t∗. The threshold t∗has to be chosen
carefully as the significance level � in the case of a single test
and adjusted if multiple tests are being conducted to bound
the family-wise error rate (FWER), i.e. the probability of
at least one false-positive test result, to �. Bonferroni cor-
rection is the most straightforward way to take multiplicity
into account by setting t∗ = α

d (61).

https://github.com/AlexandreRozier/DeepCombi
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The individual RPVT P-value for the association of the
j-th SNP only depends on x∗ j and thus disregards any pos-
sible correlations and interactions with other SNPs. Ad-
ditional information can be yielded by applying machine
learning-based prediction methods, which use the informa-
tion of the whole genotype and calculating P-values only for
the SNPs that were of importance in the decision process of
such machines.

DeepCOMBI

Combining the concepts of DNNs, explanation methods
and statistical testing, we propose a novel algorithm con-
sisting of the following three steps:

1. Deep learning: Given the genotypes x = (xi j ) and the
corresponding phenotypes y = (yi ) of a GWAS, a DNN
is trained for phenotype prediction.

2. Explanation and SNP selection: A subset of SNPs is
selected by applying LRP as an explanation method
for each individual prediction and averaging the ab-
solute values of the resulting explanations to compute
global prediction relevance scores r1, . . . , rd . The rele-
vance scores are processed through a moving average
filter with window size l and, given a predefined up-
per bound k ∈ {1, . . . , d} for the number of informative
SNPs, we select the k most relevant SNPs based on r.

3. Statistical testing: A hypothesis test is performed for all
SNPs selected in the previous step to compute the P-
values of those SNPs, while the P-values of all other
SNPs are set to one. Via a permutation-based thresh-
old calibration and given an FWER level α, we decide
that SNP j is associated with the trait if p j < t∗, where
t∗ ≡ t∗(k, α) is chosen as the �-quantile of the permuta-
tion distribution of the k smallest P-values.

The proposed algorithm can be viewed as an extension of
the COMBI method (31), a two-step method including an
SVM step and a statistical testing step. We replace the for-
mer with state-of-the-art deep learning methods and expla-
nation techniques. The above steps are presented in detail
in the following sections.

The first step of DeepCOMBI––Deep learning. The first
step of the proposed method consists of constructing and
training a well-performing DNN for the prediction of the
phenotypes y = (yi ) of a GWAS, given the corresponding
genotypes x = (xi j ). Selecting a DNN architecture is often
critical for achieving good performance for a specific, in this
case, SNP-based classification task. Montaez et al. (43) de-
veloped a 2-class DNN for the classification of polygenic
obesity and have successfully shown its performance to
be superior to numerous competitor methods. Romagnoni
et al. (28) have compared the performance of similar archi-
tectures and have presented a detailed review of the best de-
sign choices for a DNN on a Crohn’s disease dataset. Tak-
ing inspiration from the conclusions of both of these works
and having checked performances on synthetic datasets, we
use an architecture of two fully connected layers with 64
neurons and ReLU activations and a dense softmax output
layer with two output nodes. To improve validation accu-

racy by reducing overfitting, each hidden layer is followed
by a dropout layer with a dropout probability of φ.

The loss function to be optimized in the training process
is based on the classic cross-entropy loss. Aiming for good
generalization to unseen samples and in order to avoid over-
fitting despite the large number of model parameters, the
binary cross-entropy loss is coupled with an L1-L2 mixed
regularization term:

loss =
∑

i

(yi ∗ log (ŷi ) + (1 − yi ) ∗ log (1 − ŷi ))

+ τ ∗
∑

j

∣∣∣∣w j
∣∣∣∣

1 + υ ∗
∑

k

||wk||2

with yi being the ground-truth label, ŷi the predicted class
which depends on the learned parameters w of the DNN
and τ, υ > 0 the regularization parameters. This loss func-
tion contributes to the ability of the network to avoid over-
fitting by minimizing the trade-off between small errors on
the data on the one hand and small L1 and L2 norms of
the vector w on the other hand. Adam (55) is used as an
adaptive learning rate optimizer to minimize the given loss
function.

To overcome limitations due to imbalanced datasets,
class weights were calculated according to the class frequen-
cies and used to direct the DNN to balance the impact of
controls and cases.

Once the parameters w of the DNN have been trained by
optimizing the above learning problem, the network is able
to predict the phenotype of any unseen genotype x. Regard-
ing this binary classification problem, the output node with
the highest score represents the predicted phenotype.

In a preprocessing step, the data are centered and scaled
by subtracting the global mean and dividing by the global
standard deviation. To minimize computational effort and
limit the number of model parameters in the DNN, a P-
value threshold κ can be applied in order to only select SNPs
with P-values smaller than κ to be used for training. This
preprocessing step can be applied to large datasets when
limited computational resources are available. While all dat-
apoints remain in the dataset, the number of features of the
dataset is decreased to only train the DNN on the SNPs
with a P-value smaller than the threshold �. The set of fea-
tures remains this size for all further steps (i.e., DNN train-
ing, LRP explanation, SNP selection, etc.) and all SNPs
with a P-value above the threshold automatically get as-
signed a relevance score of 0 and are no longer candidates
for the DeepCOMBI method. For a discussion of the poten-
tial effects of this feature selection step and potential adop-
tions to improve it, please refer to the Discussion section
below.

The second step of DeepCOMBI––Explanation and SNP se-
lection. To harness the potential of DNNs in the identifi-
cation of SNP disease associations in GWAS, we now ap-
ply the concept of explainable AI. Once the DNN is fully
trained, the aim is to define an importance measure that
determines which loci play an important role in the de-
termination of a phenotype. Generating relevance scores
from trained DNNs can be achieved by using LRP (48–50),
which consists of the following two steps: After a DNN f
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is trained on a prediction task, the prediction scores of a
datapoint xi are computed by f (xi ) = yi , a forward pass
through the network. Afterward, following a specific prop-
agation rule, a single output score, i.e. the highest out-
put score, yi is backpropagated successively layer-by-layer
through the network until reaching the input layer. In this
work, we use the αβ- LRP rule, where the relevance R(q,i )

s
of neuron s in layer q depends on the relevance of all of its
successors t in layer q+1 in the following way:

R(q,i )
s =

∑
t

(
α

(aswst)
+∑

s (aswst)
+ − β

(aswst)
−∑

s (aswst)
−

)
× R(q+1,i )

t

where as denotes the activation of neuron s, and wst is the
weight between the two neurons s and t. This rule allows us
to weigh the positive and negative contributions of neurons
t to their predecessor s differently by α and β.

Once the input layer R(0,i ) ∈ �3∗d is reached, a relevance
score ρi j of SNP j in subject i is attributed to each dimension
of xi with

ρi j =
(∑

u

R(0,i )
u

)/
3.

Since the original relevance vector R(0,i ) contains three
values for each one-hot encoded location, it is converted
back to size d by averaging over the three nodes u ∈
{( j × 3) − 2, ( j × 3) − 1, ( j ∗ 3)} corresponding to SNP j in
the input layer.

Note that all relevance scores ρ j i will be positive since a
softmax output layer with two output nodes for the binary
classification problem was used and only the highest of the
two output activations was backpropagated.

ρi j now demonstrates to which extent the dimension j of
xi plays a role in the classification decision f (xi ) and can
be used to uncover the most relevant SNPs for prediction.
Note, however, that LRP is applied individually to each dat-
apoint i. By averaging the values of all individual LRP ex-
planations ρi j of SNP j, we propose to generate a global
explanation

r j =
(

n∑
i=1

ρi j

) /
n

which is independent of datapoints. The relevance scores of
one sample sum up to the activation value of the output
prediction, which means that datapoints classified with low
certainty will also have a small impact on the global expla-
nation. Intuitively, the global LRP score rj of each SNP j
can now be interpreted as a measure of relevance regard-
ing the prediction. The higher rj, the greater the influence
of locus j on the decision process of the DNN.

To achieve better performance, Mieth et al. (31) suggested
that SNP relevance scores should be filtered before using
them to select the highest scoring locations. Hence, the LRP
relevance score vector r is post-processed through a p-th-
order moving average filter, that is:

rnew
j := p

√√√√√ min(d, j+(l−1)/2)∑
h=max(1, j−(l−1)/2)

(rh)p

where l ∈ 1, . . . , d denotes the window size l and p ∈]0,∞[.
We have now generated relevance scores showing which
SNPs played an important role in the classification deci-
sion and can use them for the selection of promising loca-
tions. For the next step of DeepCOMBI, we choose to test
all SNPs with the k largest values of the scores rnew

j and
eliminate all SNPs with lower relevance.

The third step of DeepCOMBI––Statistical testing. The
Statistical testing step of the DeepCOMBI method is di-
rectly derived from the second step of the COMBI method
(31). A χ2hypothesis test is performed for each of the k
SNPs selected in the LRP explanation step and the P-values
for all other SNPs are set to one. To identify statistically sig-
nificant associations, a P-value threshold t∗ is calibrated to
control the FWER for multiplicity by applying the permu-
tation procedure proposed by Mieth et al. (31). They de-
veloped an extension of the Westfall and Young procedure
(56). A thorough discussion and derivation of the method,
its assumptions and validity generally and in this specific
application can be found here (56–58) and here (31), respec-
tively. We estimate the distribution of P-values under the
global null hypothesis of no informative SNPs by repeatedly
assigning a random permutation of the phenotypes to the
observed genotypes and applying the complete workflow of
the DeepCOMBI method to save the resulting P-values of
the B Monte Carlo repetitions (31). The empirical lower
α-quantile of the smallest of these P-values is then a valid
choice for t∗ in the sense that the FWER for the entire pro-
cedure is bounded by α(31). In contrast to the Bonferroni
threshold calibration, this procedure takes all dependencies
in GWAS datasets caused by strong linkage disequilibrium
(LD) into account.

Baselines

In order to evaluate the performance of the proposed
DeepCOMBI method in comparison to competitor ap-
proaches, we select a set of representative baseline meth-
ods. RPVT is chosen as the most widely used traditional,
purely statistical testing approach. As a machine learning-
based method and the methodological background of
DeepCOMBI, we select COMBI as the main competi-
tor method we aim to succeed in terms of performance.
Since the COMBI method was shown to outperform
other combinatorial machine learning-based approaches
(6,58,59) and a number of purely statistical analysis tools
(21,27) on the same datasets evaluation methods used
here, there is no need to compare to all of those methods
again.

RPVT as a baseline. Raw P-value thresholding (RPVT)
is a statistical framework traditionally used in GWAS
for identifying significant associations between SNPs and
traits. The single-locus null hypothesis to be tested states
that the SNP at locus j is independent of the binary trait
of interest, i.e. that there is no correlation between this par-
ticular SNP and the development of the disease under in-
vestigation. A standard statistical test for this hypothesis
is the χ2-test (60), which tests for independence of the two
multi-level variables genotype (three different levels: 0, 1 or
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2 minor alleles) and phenotype (two different levels: case or
control) by calculating the test statistic

χ̂2 =
∑
ζ,π

(Oζ,π − Eζ,π )2

Eζ,π

where Oζ,π and Eζ,π are the observed and expected frequen-
cies of genotype ζ in combination with phenotype π . To
compute a P-value, χ̂2 is then compared to a χ2 distribu-
tion with two degrees of freedom. The P-value then repre-
sents the probability of observing a sample statistic as ex-
treme as χ̂2under the assumption of no association between
genotype and phenotype. If it is smaller than a predefined
threshold t∗, the null hypothesis is rejected and we declare
the SNP under investigation to be significantly associated
with the phenotype. If there was a single test to perform,
t∗ would usually be equal to the significance level α = 0.05.
When performing multiple testing, however, the threshold
is modified to take the multiplicity of the problem into ac-
count. The simplest method is the so-called Bonferroni cor-
rection (61), where t∗ is divided by the number of tests per-
formed, i.e. d, the number of SNPs in our case, which guar-
antees that the FWER, the probability of one or more erro-
neously reported associations, is bounded by �. The Bon-
ferroni correction works well under the assumption that all
null hypotheses are independent of each other, which is not
the case here. Indeed, since SNPs show high degrees of cor-
relation through LD, the Bonferroni correction can become
extremely conservative, leading to a high rate of false rejec-
tions, which is why the scientific community mostly applies
a fixed threshold that remains constant for multiple GWAS.
Here, based on the original publication of the data we are
analyzing (WTCCC data, see the Materials and Methods
section on validation datasets (14)) and the findings of Mi-
eth et al. (31), we present not only the strong associations
at a significance level of t∗ = 5x10−7 but also weak associ-
ations at t∗ = 1 × 10−5.

COMBI as a baseline. The COMBI method (31) combines
machine learning with multiple hypothesis testing to im-
prove the statistical power of GWAS. It is a two-step method
including the training of an SVM (53) and using the result-
ing SVM weights as importance scores to select a subset
of candidate SNPs for statistical testing. In the first step of
COMBI, an SVM for the prediction of the unknown pheno-
type y based on the observation of genotype x is trained to
determine the weight vector w. The following optimization
problem is solved:

w = argminw

(
‖w‖2

2 + C
n∑

i=1

max
(
0, 1 − yiw

Txi∗
)
)

)
where C is the regularization parameter that controls the
trade-off between a small norm of w and a small prediction
error of the machine. After training, the weight vector w is
filtered and interpreted as an importance score to determine
which loci play an important role in the decision process of
the SVM. A χ2 test is performed only on the SNPs with the
highest scores while all other P-values are set to one. The
same permutation test procedure as described in the Mate-
rials and Methods section about the multiple testing pro-

cedure of DeepCOMBI is applied to define a significance
threshold t∗.

Raw SVM weights and LRP scores without statistical test-
ing as baselines. Instead of interpreting the SVM weights
from COMBI and the LRP scores from DeepCOMBI as
relevance scores to select a subset of SNPs to calculate P-
values for, this step can be skipped to use the raw SVM and
LRP scores as a test statistic. For evaluation, the vector of
raw SVM weights and LRP scores can be treated like the
vector of P-values of RPVT, COMBI and DeepCOMBI to
calculate performance curves. We compare DeepCOMBI to
these baseline methods of raw relevance scores and RPVT
to show that only the combination of machine learning /
deep learning and multiple testing shows the desired per-
formance increase, which cannot be achieved individually
by one of the components.

In an additional benchmark analysis, we compare the
SNP discoveries of DeepCOMBI to those of Lippert et al.
(21,27) who applied linear mixed models (LMMs) to the
seven 2007 WTCCC datasets (which are described in more
detail below) and explicitly take confounding factors such
as population structure, family structure and relatedness
into account.

Validation datasets

Validation on generated datasets. To create a realistic but
controlled environment where the ground truth labels of
a dataset, i.e. the SNPs that are indeed linked to the dis-
ease, are known, we generate semi-synthetic data for a first
evaluation of DeepCOMBI and the baseline methods from
above. We follow the instructions for the creation of such
GWAS datasets proposed by Mieth et al. (31). The basic
concept is to take an ensemble of real genotypes and gen-
erate a synthetic phenotype for each subject according to
a specific rule. With this method, the underlying architec-
ture of the genome, including, for example, genetic LD and
correlation structures, is kept intact while control over the
phenotypic labels is gained at the same time.

We use the WTCCC dataset (14) described in more de-
tail below and randomly select 300 subjects of the Crohn’s
disease dataset. We draw a random block of 20 consecutive
SNPs from chromosome 1 and a random block of 10 000
consecutive SNPs from chromosome 2. The former block
represents the informative SNPs and is placed in the mid-
dle of the 10 000 uninformative SNPs. Synthetic phenotypes
are now generated only based on one of the informative
SNPs (at position 5010) according to the following pheno-
type probability distribution:

P (Yi = +1| Xi,∗ = xi,∗) = 1
1 + e−γ (xi,5010−median(x∗,5010))

where γ is an effect size parameter, xi,∗ is the allele sequence
in nominal feature encoding (i.e. xi j is the number of minor
alleles in SNP j of subject i ) and Yi is the generated pheno-
type of subject i. Basing the label of a subject on the SNP at
position 5010 alone will create associations to all 20 infor-
mative SNPs and typical tower-shaped P-value formations
in the resulting Manhattan plots because there are real co-
variance structures and LD within the 20 informative SNPs.
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At the same time, the tower structure is limited to those
20 informative positions because there are no correlations
of those 20 SNPs with the surrounding 10 000 noise SNPs
coming from chromosome 2. The random generation pro-
cess will also ensure that the datasets will have associations
of different strengths to the 20 informative SNPs. The com-
plete data generation process is repeated to generate 1000
datasets. DeepCOMBI and all baseline methods are applied
to each dataset with an 80:20 class balanced split in train-
ing and test data. The prediction results on the test data are
evaluated with the known ground truth of only 20 informa-
tive SNPs at the positions 5000–5020 and the correspond-
ing performance can be measured in terms of the number
of true and false positives for each method.

Since we have adopted the data generation procedure
from Mieth et al. (31), let us point out that we do not per-
form a full investigation on its assumptions and its ability
to produce realistic GWAS datasets here. Please refer to Mi-
eth et al. (31) and in particular its Supplementary File where
Chapter 3 is dedicated to all necessary experiments and cor-
responding results can be found. To assess the performance
of the data generation procedure here, we include Manhat-
tan plots of three exemplary datasets in Figure 2. To sum up,
the experiments performed in Mieth et al. (31), they investi-
gated the effect size parameter γ and identified γ = 6 to be
the value that yields the most realistic tower structures. This
investigation was based purely on the RPVT P-values of the
resulting datasets and the level of difficulty in the generated
datasets was evaluated based on these P-values alone.

In addition, it was shown that an effect size of 6 was the
value where the permutation test procedure produced the
anticipated family-wise error rate of 0.05. Mieth et al. (31)
provide analyses assessing the difficulty of the problem un-
der investigation by estimating it with the true-positive rate
of RPVT. Extraordinary cases where the generated datasets
are either exceptionally hard or exceptionally easy are also
investigated. Furthermore, the effect of misspecifications
with effect sizes too high or too low is examined.

Validation on WTCCC data. For evaluation on real-world
genomic data, the performance of DeepCOMBI was as-
sessed on the Wellcome Trust Case Control Consortium
phase 1 dataset, released in 200714, featuring the genotypic
information on 500 000 SNPs of 17 000 British subjects.
With 3000 shared controls and 2000 case samples for seven
major human diseases (Crohn’s disease [CD], type 1 dia-
betes [T1D], type 2 diabetes [T2D], coronary artery dis-
ease [CAD], hypertension [HT], bipolar disorder [BD] and
rheumatoid arthritis [RA]), it was a landmark study both
in terms of sample size and dimensionality at the time of
its publication. For our analysis, a case–control dataset for
each disease was created, removing all SNPs and samples
that did not fulfill the quality control criteria provided in the
original WTCCC paper. In agreement with the lack of inter-
chromosomal LD and the findings of Mieth et al. (31), who
showed no significant performance increase with genome-
wide training, the DeepCOMBI method and all baseline
methods were applied to each chromosome separately.

For evaluation purposes, the concept of replicability was
applied proposed by Mieth et al. (31). Since the true under-

lying genetic architecture of the given traits, i.e. the sets of
informative SNPs for each disease, is unknown, an approx-
imation of the truth was created by employing the GWAS
catalog (62) and examining the results of the 13 years of in-
dependent studies after the WTCCC dataset was published.
To evaluate the reported finding of a method (DeepCOMBI
or competitor), the GWAS catalog (accessed on 30 July
2020) is inquired for that SNP and all SNPs in LD ([R2 >
0.2] according to PLINK LD calculations (63)) within a 200
kb window around that SNP. If an association with the dis-
ease with P-value <10–5 of the SNP itself or the SNPs in
LD was reported by at least one independent GWAS pub-
lished after the WTCCC study, the reported SNP is counted
as a true positive finding. In contrast, all SNPs that were not
replicated count as false negatives.

Parameter selection

The application of DeepCOMBI requires the determination
of a number of free parameters. In the following sections, we
present the selected optimal parameter values and describe
the process of finding them for the different datasets under
investigation.

Parameter selection on generated datasets. For the genera-
tion process of semi-synthetic datasets, all parameters were
selected according to the information given by Mieth et al.
(31). Most importantly, the effect size parameter was set to
γ = 6.

When applying the DeepCOMBI method to the gener-
ated datasets, we studied the effect of all hyperparameters
on the performance of the DNN. An accuracy-based ran-
dom grid search with a stratified split in 90% training and
10% testing data was conducted. Here, we present the se-
lected most successful values and the investigated parame-
ter intervals in parentheses:

• number of neurons per dense hidden layer nn = 64 [2, 4,
8, 16, 64],

• L1 regularization coefficient τ = 0.0001 [0, 1e-6, 1e-5, 1e-
4, 1e-3,1e-2, 1e-1],

• L2 regularization coefficient υ = 0.000001 [0, 1e-6, 1e-5,
1e-4, 1e-3,1e-2, 1e-1],

• dropout rate φ = 0.3 [0.3, 0.5],
• learning rate η = 0.01 with learning rate reduction on a

plateau with factor 0.7125 after 50 epochs of no improve-
ment and

• number of epochs e = 500 [100, 500, 1000].

A few different parameter values of the αβ- backpropaga-
tion rule were manually investigated on exemplary datasets.
By visually inspecting the resulting LRP vectors and their
corresponding DeepCOMBI P-values, the combination of
α = 1 [0, 1, 2] and β = 0 [0, 1, 2] was found to be best.

For post-processing the global relevance scores and se-
lecting the most relevant SNPs, we assumed that the most
successful values found by Mieth et al. (31) would also be a
good choice for our method. Hence, we set the window size
of the moving average filter to l = 35, the norm parameter
of the moving average filter to P = 2 and the SNP selection
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Figure 2. Three exemplary generated datasets and the corresponding COMBI and DeepCOMBI results. We present the results of three exemplary replica-
tions: one with weak (first row), one with medium (second row) and one with strong (third row) association of the 20 informative SNPs at position 5001–5020
(highlighted in all subfigures). Standard RPVT P-values are plotted in the first column of subfigures. Absolute SVM weights and corresponding P-values
of the COMBI method are shown in the second and third columns. Finally, LRP relevance scores and the corresponding P-values of DeepCOMBI are
presented in the fourth and last column.

parameter to k = 30. These values were found to be in agree-
ment with the biological background of the data, e.g. l = 35
reflects the reach of LD along a genetic sequence (31).

Parameter selection on WTCCC data. To choose hyperpa-
rameters for the DNN trained on WTCCC data in the first
step of DeepCOMBI, a parameter search was run on a sin-
gle dataset. The Crohn’s disease chromosome 3 dataset was
selected as a good representative, and an accuracy-based pa-
rameter search with a stratified split in 90% training and
10% testing data was conducted. We studied the effect of
the hyperparameters on the performance of the DNN and
the best performing hyperparameters were as follows (tested
intervals in parentheses):

• number of neurons per dense hidden layer nn = 64 [2, 4,
8, 16, 64],

• L1 regularization coefficient τ = 0.001 [0, 1e-6, 1e-5, 1e-
4, 1e-3,1e-2, 1e-1],

• L2 regularization coefficient υ = 0.0001 [0, 1e-6, 1e-5, 1e-
4, 1e-3,1e-2, 1e-1],

• dropout rate φ = 0.3 [0.3, 0.5],
• P-value threshold κ = 1e-2 [1e-4, 1e-2, 1],
• learning rate η = 0.00001 [1e-7, 1e-6, 1e-5, 1e-4, 1e-3,1e-

2, 1e-1],
• number of epochs e = 500 [100, 500, 1000].

Detailed results on the classification performance of the
final training parameter settings and the corresponding evo-
lution of training and validation measures on an exemplary
dataset can be found in the Results section.

As before, we visually investigated a few different param-
eter values of the αβ - backpropagation rule and their in-
fluence on both the resulting relevance scores and P-values.
On the Crohn’s disease chromosome 3 dataset, the combi-
nation of α = 2 [0, 1, 2] and β = 1 [0, 1, 2] was found to be
optimal.

After manually investigating the global LRP scores and
the corresponding DeepCOMBI P-values of the exemplary
dataset (Crohn’s disease chromosome 3), we found that
slightly different settings than for the analysis of the gen-
erated datasets should be applied for post-processing the
relevance vectors and selecting the most relevant SNPs.
Namely, the window size of the moving average filter should
be set to l = 21 and the SNP selection parameter should be
increased to k = 200. The need for a decreased filter size
and an increased number of selected SNPs might be caused
by the application of the P-value-based preselection step for
limiting the number of model parameters, which is only ap-
plied to the real dataset and not the generated datasets.

To determine the value of the significance level α to be
used in the permutation test procedure of the last steps
DeepCOMBI, we follow the recommendations of Mieth
et al. (31), who calculated the empirical distribution of P-
values using the Westfall-Young (56) procedure and de-
termined the error level that the RPVT threshold of t∗ =
1 × 10−5 corresponds to. For a valid comparison to both
the original WTCCC study as well as the COMBI publica-
tion, we employ the same significance levels.

All free parameters of the COMBI method, e.g. the SVM
optimization parameter C, were set according to the origi-
nal COMBI publication (31).
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Performance metrics

To assess the performance of DeepCOMBI and the base-
line methods, a number of statistical metrics were evaluated.
The performances of both the intermediate step of classi-
fication (of SVMs and DNNs) and the final result of pre-
dicted informative SNPs need to be explored.

Assuming we know the ground truth, the metrics are de-
fined as follows:

• TP = True positive; FP = False positive; TN = True neg-
ative; FN = False negative

• Accuracy = (TP + TN)/(TP + TN + FP + FN)
• Balanced accuracy = (TPR + TNR)/2
• Precision = TP/(TP + FP)
• True positive rate TPR = TP / (TP + FN)
• False positive rate FPR = FP / (TP + FN)
• Family-wise error rate FWER = P(FP > = 1)

The following performance curves and the area under
these curves (AUC) will be investigated:

• Receiver operating characteristic curve (ROC): TPR ver-
sus FPR or TP versus FP or TPR versus FWER

• Precision-recall curve (PR): Precision versus TPR or Pre-
cision versus TP

Implementation details

The DeepCOMBI method was implemented in Python
and the source code is available at https://github.com/
AlexandreRozier/DeepCombi. The implementation uses
the DNN development library Keras (64) in combination
with the LRP library iNNvestigate (65).

RESULTS

In the following section, we present the results of the pro-
posed DeepCOMBI method evaluated on generated as well
as on real-world data. Performance in terms of both classifi-
cation accuracy and SNP prediction is examined in compar-
ison to a number of baseline methods, which are presented
in full detail in the Materials and Methods Section. As eval-
uation criteria, we report prediction accuracy for the clas-
sification step and FWER, precision and TPR for the SNP
selection step. See the Materials and Methods section above
for a detailed description of the evaluated performance met-
rics.

Results on generated datasets

Here, we report our results averaged over the 1000 data
sets generated in the simulation process described in the
Materials and Methods section (‘Validation on generated
datasets’). We show that, on these data sets, DeepCOMBI
performs better than the traditionally used method for ana-
lyzing GWAS, RPVT, and its main competitor, the COMBI
method.

Prediction performance on generated datasets. The first
steps of both DeepCOMBI and COMBI consist of train-
ing a learning algorithm for the classification of all sub-

jects into their respective phenotypic group given their
genotypic information. Since all following steps depend
on the performance of these classifiers, high prediction
accuracy is crucial. On the generated datasets, the SVM
(as part of the COMBI method) achieves 59% accuracy
on average and 54% balanced accuracy. In comparison,
the DNN (as part of the DeepCOMBI method) performs
significantly better with an average of 74% classification
accuracy and also avoids negative effects of unbalanced
datasets more effectively by applying class weights in the
DNN training (74% balanced accuracy). Accuracy scores
and additional information are given in Table 1. Follow-
ing these promising intermediate results, in the next sec-
tion, we investigate whether the entire workflow of the
DeepCOMBI method can also outperform the baseline
methods.

SNP selection performance on generated datasets. To com-
pare the relevance scores and P-values obtained with the
novel LRP-based method to those derived from the SVM
weights in the COMBI method, we look at three exemplary
synthetic datasets and the corresponding results (see Fig-
ure 2). They can be distinguished by the level of associa-
tion of the 20 informative SNPs with the phenotype. In the
first column of subfigures, the strength of association for
each replication at positions 5001–5020 is shown in the cor-
responding RPVT Manhattan plots. While the first row of
subfigures represents a replication with very weak associa-
tions (small tower), the second has a moderate association
(medium-sized tower) and the third shows a very strong as-
sociation (large tower). In the second and third columns, the
raw SVM weights and LRP scores are shown. It can be seen
that LRP yields clearer relevance distributions in compari-
son to the SVM-based method. Even with the huge num-
ber of parameters, the DeepCOMBI explanation method
yields a lot less noise than the SVM weights of COMBI.
This results in the COMBI method only being able to clas-
sify the very strong association correctly (third column of
subfigures), while it misses the weak and moderate ones.
In contrast, DeepCOMBI is successful for both the sec-
ond and third replication with moderate and strong asso-
ciations and only misses the very weak association (last col-
umn of subfigures). Please note that DeepCOMBI not only
precisely identifies the correct informative tower but also
filters out a relatively high noise tower at around position
600, which––just by chance–– achieved a P-value < 10−5.
The method thus not only increases the probability of find-
ing the correct tower but also, and potentially more impor-
tantly, decreases the probability of falsely selecting a noise
tower (31).

To investigate whether these exemplary findings represent
a general trend, we now examine the results of all com-
petitor methods averaged over all 1000 generated datasets.
In Figure 3, the corresponding ROC and PR curves are
shown. In both subfigures and for all levels of error and de-
tection rates, DeepCOMBI consistently outperforms RPVT
and COMBI in terms of power and precision. The combi-
natorial approaches, DeepCOMBI and COMBI, also per-
form better than their individual components of a machine
learning algorithm (SVM or DNN with LRP) and a multi-
ple testing step (RPVT). This can be deduced from the fact

https://github.com/AlexandreRozier/DeepCombi
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Table 1. Classification performance on generated datasets. Summary statistics of the classification accuracy of the SVM (as in the first step of COMBI)
and the DNN (as in the first step of DeepCOMBI) are presented. Values corresponding to accuracy and balanced accuracy in parentheses are given

Mean accuracy
(balanced accuracy)

Standard deviation of
accuracy (balanced

accuracy)
Minimum of accuracy
(balanced accuracy)

Maximum of accuracy
(balanced accuracy)

SVM (as in COMBI) 0.59 (0.54) 0.05 (0.06) 0.41 (0.35) 0.76 (0.71)
DNN (as in DeepCOMBI) 0.74 (0.74) 0.07 (0.07) 0.55 (0.50) 0.97 (0.98)

Figure 3. ROC and PR curves of DeepCOMBI and all competitor methods on generated datasets. Performance curves of all methods averaged over the
1000 generated datasets are shown. ROC curves are presented on the left and PR curves on the right side.

that RPVT, as well as the other two baseline methods of di-
rectly thresholding the raw LRP scores and SVM weights
separately, cannot achieve the same performance as their
combinations (i.e. DeepCOMBI and COMBI).

Results on WTCCC data

Prediction performance on WTCCC data. In the first step
of DeepCOMBI, a DNN is trained and we present the evo-
lution of both training and validation loss and accuracy
during training on an exemplary dataset (i.e. the Crohn’s
disease chromosome 3 dataset) in Figure 4. Overfitting is
avoided and both training and validation accuracy increase
during training and reach an optimum at the end of the
training process (to be seen on the left). Good generaliza-
tion can also be seen on the right where the model loss de-
creases with each epoch on both training and validation
data.

We now investigate the performance of the DNN on all
diseases and chromosomes. Figure 5 shows that the DNN
of DeepCOMBI performs consistently better than the SVM

of COMBI in terms of all four validation metrics described
in the Materials and Methods section under ‘Performance
metrics’.

SNP selection performance on WTCCC data. In Figure 6,
we present the results of the traditional RPVT approach,
the COMBI method and the DeepCOMBI applied to the
seven diseases of the WTCCC 2007 dataset. In each cor-
responding Manhattan plot, the negative logarithmic P-
values of all SNPs at a given position in a chromosome
are shown. While RPVT assigns P-values smaller than one
(i.e. nonzero in the plots on a logarithmic scale) to all SNPs
and, in consequence, produces a lot of statistical noise, both
COMBI and DeepCOMBI discard most SNPs (i.e. assign
P-value one, i.e. zero in the plot on a logarithmic scale) and
hence reduce the level of noise significantly. The COMBI
method selects 100 SNPs with high SVM weights per chro-
mosome and DeepCOMBI chooses 200 SNPs with high
LRP scores. In all plots, the significance threshold t∗ is rep-
resented by dashed horizontal lines and all statistically sig-
nificant SNP associations are highlighted. Please note that
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Figure 4. Training and validation metrics on an exemplary WTCCC dataset. Evolution of model metrics during DNN training on Crohn’s disease chromo-
some 3 dataset in 500 epochs. Model accuracy on both training and validation datasets is shown on the left and model loss (also on training and validation
data) on the right.

Figure 5. Classification performance on WTCCC data. Mean validation measures of SVM (as in the first step of COMBI) and DNN (as in the first step of
DeepCOMBI) averaged over all diseases and chromosomes are given with standard deviation. All datasets were split into 80% training and 20% validation
data.

in the case of RPVT, the threshold is constant at t∗ = 1 ×
10−5 (i.e. 5 in the plot) for all chromosomes. A chromosome-
wise threshold was generated for both COMBI and Deep-
COMBI via the permutation-based procedure described in
the Materials and Methods section to match the expected
number of false rejections of RPVT.

All SNPs reaching statistical significance in the
permutation-based thresholding procedure of the Deep-
COMBI method are presented in Table 2. Besides showing
basic information (associated disease, chromosome, identi-
fier and � 2 P-value) for all of these SNPs, the fifth and sixth

columns indicate whether they were found to be significant
by RPVT with the application of t∗ = 10−5 or by the
COMBI method. To validate all findings, the seventh and
eighth columns report whether––and if so in which external
study––they have been found significantly associated with
the given disease according to the GWAS catalog. By
investigating whether the identified SNPs were discovered
as significant in an independent GWAS published after
the original WTCCC study, it can be determined to which
extent those novel findings can be confirmed to be true
associations.
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Figure 6. Manhattan plots for WTCCC data. The negative logarithmic χ2test P-values are plotted against position on each chromosome for all seven
diseases. Results from the standard RPVT approach, the COMBI method and the DeepCOMBI method are shown. Thresholds indicating statistical
significance are represented by dashed horizontal lines and significant P-values are highlighted. Please note that the y-axes of all plots have the same limits
(0–15) to enable direct comparison.

The DeepCOMBI method finds 39 significant associa-
tions. According to the fifth column of Table 2, 31 of these
SNPs were also discovered by the traditional RPVT ap-
proach because they have P-values <10–5. The other 8 of
those 39 SNPs have P-values >10–5 and were hence not de-
termined to be associated with the disease with RPVT in
the original WTCCC publication. They are of special inter-
est because they represent additional SNP disease associa-
tions that the traditional analysis of the data was not able to
identify. Out of these eight novel discoveries, six have been
validated independently in later GWAS or meta-analyses:
rs7570682 on chromosome 2 and rs1375144 on chromo-
some 2 for bipolar disorder; rs6907487 on chromosome 6
for coronary artery disease; rs12037606 on chromosome 1
for Crohn’s disease; rs231726 on chromosome 2 for type 1
diabetes and rs6718526 on chromosome 2 for type 2 dia-
betes.

On the other side, two out of the eight novel DeepCOMBI
SNPs with P-values > 10–5 have not yet been replicated in
any independent GWAS or meta-analyses. They have also
not been identified by the COMBI method. Those entirely
novel DeepCOMBI discoveries are rs10889923 on chromo-
some 1 for hypertension and rs4769283 on chromosome 13
for type 1 diabetes. To determine whether those two SNPs
are biologically plausible discoveries for an association with
the respective disease, their genomic regions were investi-
gated in terms of functional indicators. Strong evidence of
potential functional roles in the diseases was found.

First, rs10889923 maps on an intron for NEGR1 (neu-
ronal growth receptor 1), a very important gene many times
linked to obesity, body mass index, triglycerides, choles-
terol, etc. and many other phenotypes highly correlated
with hypertension (66–68). Even though NEGR1 has been
associated with many phenotypes in the GWAS Catalog,
no GWAS has yet been able to directly link it to hyperten-
sion. Furthermore, rs10889923 is part of a high LD region
(according to LDmatrix Tool (69)) with variants that have
been reported to be significantly associated with a number
of psychiatric disorders and phenotypes, e.g. educational at-
tainment (rs12136092 with P-value < 1e−11 and a degree
of LD R2 = 0.86 to rs10889923; rs11576565 with P-value
< 1e−8 and R2 = 0.63) (17). This link suggests a potential
connection between hypertension and related phenotypes
with mental traits. rs10889923 can thus altogether be con-
sidered an excellent candidate for association with hyper-
tension.

Second, rs4769283 on Chr. 13 lies in an intergenic region
very close to a gene called MIPEP (mitochondrial pepti-
dase) that cannot be directly linked to T1D but is reported
as a significant eQTL (expression quantitative trait locus)
for two other genes, namely C1QTNF9B and PCOTH (70).
Thus, MIPEP and therefore rs4769283 significantly control
expression levels of mRNAs from these two genes in a par-
ticular tissue. Most remarkably, rs4769283 is a significant
eQTL (with P-value = 1.1e−6) for C1QTNF9B (comple-
ment C1q and tumor necrosis factor-related protein 9B) in
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Table 2. Significant SNPs of the DeepCOMBI method and related association details. For each SNP identifier on a specific chromosome that was found to
be significantly associated with a disease by the DeepCOMBI method, we show their � 2 test P-value and indicate whether the RPVT P-value is < 10–5 (i.e.
the SNP is a significant finding of RPVT), whether its COMBI P-value is smaller than the corresponding COMBI threshold (i.e. the SNP is a significant
finding of the COMBI method) and whether the SNP has been found significant with a P-value < 10–5 in an external study with a corresponding PMID.
Please note that the RPVT result in the fifth column corresponds to the � 2 P-values we have calculated here, not necessarily to the original WTCCC
publication, where they also investigated trend test P-values and potentially applied slightly different preprocessing steps. Similarly, the COMBI result
in the sixth column corresponds to the re-calculations of COMBI we performed here, not necessarily to those of the original COMBI publication where
slightly different results were produced due to the random nature of the permutation procedure

Disease Chromosome Identifier � 2P-value
Significant
in RPVT

Significant
in COMBI

P-value < 10–5 in at
least one external

GWAS or
meta-analysis

References
(PMID)

Bipolar disorder (BD) 2 rs7570682 1.77e-05 YES YES 21254220
2 rs1375144 1.26e-05 YES YES 21254220
3 rs514636 2.53e-06 YES YES YES 21254220
16 rs420259 5.87e-08 YES YES YES 21254220

Coronary artery disease
(CAD)

6 rs6907487 2.92e-05 YES 17634449

9 rs1333049 1.12e-13 YES YES YES 17634449
16 rs8055236 5.32e-06 YES YES
22 rs688034 2.75e-06 YES YES

Crohn’s disease (CD) 1 rs11805303 6.35e-12 YES YES YES 17435756
1 rs12037606 1.02e-05 YES 17554261
2 rs10210302 4.52e-14 YES YES YES 23128233
3 rs11718165 2.04e-08 YES YES YES 21102463
5 rs6596075 3.11e-06 YES YES
5 rs17234657 2.42e-12 YES YES YES 18587394
5 rs11747270 1.05e-06 YES YES YES 18587394
7 rs7807268 5.43e-06 YES YES 26192919
10 rs10883371 5.23e-08 YES YES YES 21102463
10 rs10761659 1.69e-06 YES YES YES 22936669
16 rs2076756 7.55e-15 YES YES YES 21102463

Hypertension (HT) 1 rs10889923 1.38e-05
15 rs2398162 6.01e-06 YES

Rheumatoid arthritis
(RA)

1 rs6679677 <1.0e-15 YES YES YES 20453842

4 rs3816587 7.28e-06 YES YES
6 rs9272346 7.38e-14 YES YES
22 rs743777 1.01e-06 YES YES 23143596

Type 1 diabetes (T1D) 1 rs6679677 <1.0e-15 YES YES YES 19430480
2 rs231726 1.43e-05 YES 30659077
4 rs17388568 3.07e-06 YES YES YES 21829393
6 rs9272346 <1.0e-15 YES YES YES 18978792
12 rs17696736 1.56e-14 YES YES YES 18978792
12 rs11171739 8.36e-11 YES YES 19430480
13 rs4769283 1.20e-05
16 rs12924729 7.86e-08 YES YES YES 17554260

Type 2 diabetes (T2D) 2 rs6718526 1.00e-05 YES YES 20418489
4 rs1481279 9.44e-06 YES YES YES 28869590
6 rs9465871 3.38e-07 YES YES YES 21490949
10 rs4506565 5.01e-12 YES YES YES 23300278
12 rs1495377 7.21e-06 YES YES YES 22885922
16 rs7193144 4.15e-08 YES YES YES 22693455

(among several other tissues) the pancreas, which produces
very little or no insulin in T1D patients. So even though the
association of rs4769283 with Type 1 diabetes is not an ob-
vious one, it is indeed an interesting novel discovery of the
DeepCOMBI method.

To present a more condensed view of these discover-
ies, Table 3 summarizes the findings of the three competi-
tor methods, RPVT, COMBI and DeepCOMBI. When no
screening step is conducted and RPVT P-values are calcu-
lated for all SNPs, 68 locations with P < 10–5 were identified
as significant RPVT hits. COMBI and DeepCOMBI both
apply a learning-based SNP preselection step and thus, find
fewer significant associations. The DNN-based approach to

this is seen to be more conservative than the SVM-based
one, with only 39 identified locations of DeepCOMBI in
comparison to 53 findings of the COMBI method. Even
though the DeepCOMBI method finds fewer significant
SNPs than COMBI, the number of independently repli-
cated SNPs of DeepCOMBI (31 replicated SNPs, yielding
a precision of 79%) is identical to that of COMBI (31, pre-
cision = 58%) and almost identical to that of RPVT (33,
precision = 49%). In addition, the DeepCOMBI method
misclassified only 8 of all unreplicated SNPs as associated
with the disease (yielding an error rate of only 21%), while
RPVT wrongly classified 35 SNPs (error rate = 51%) and
the COMBI method made 22 mistakes (error rate = 42%).
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These observations are quantified with pairwise two-sided
Fisher’s exact tests for the null hypothesis of equal error
rates for both methods. They produce significant P-values
for both the comparison of DeepCOMBI versus RPVT
(Fisher’s exact test P-value of 0.002) and the comparison
of DeepCOMBI versus COMBI (P-value = 0.0435).

Instead of investigating the significant findings of the
three competitor methods achieved by matching a specific
error level, it is also possible to examine the performance
of those methods for different levels of error. By increas-
ing the significance threshold of each method from very
conservative ( t∗ = 0, no significant SNPs) to very liberal
( t∗ = ∞, all SNPs significant), we investigate here how the
three methods perform under these circumstances. In Fig-
ure 7, we present the corresponding ROC and PR curves,
where we interpret the replication of SNPs according to
the GWAS catalog as a validation, i.e. we count a SNP as
a true positive if it has achieved P < 10–5 in at least one
external study. Overall, the findings obtained by the Deep-
COMBI method are better replicated than those obtained
by RPVT and COMBI for all levels of error. The perfor-
mance metrics of the DeepCOMBI method are consistently
better than that of RPVT and COMBI. The DeepCOMBI
method finds more true positives for different levels of er-
ror and yields higher levels of precision for different levels
of recall than COMBI and RPVT.

Figure 7 also shows the performance curves of the other
two baseline methods that threshold SNPs solely based on
raw LRP relevance scores or raw SVM weights, respectively.
As we can view these two methods and RPVT as the in-
dividual components of the combinatorial approaches and
neither of these three can achieve the same level of perfor-
mance as COMBI and DeepCOMBI, it can be deduced that
all subparts are essential. Only the combination of the two
parts of the DeepCOMBI method (DNN with LRP expla-
nation and statistical testing) can achieve the desired per-
formance increase.

In an additional benchmark analysis, we compare the
SNP discoveries of DeepCOMBI to those of Lippert et al.
(21,27) who applied LMMs to the seven 2007 WTCCC
datasets explicitly taking confounding factors such as pop-
ulation structure, family structure and relatedness into ac-
count and reported their results as a list of significant SNPs.
For comparison, we access this list via Supplementary Table
S2 presented by Lippert et al. (21) that includes 573 SNPs
associated with six diseases (i.e. no reports for CAD). From
this list, we exclude any SNPs that were discovered by them
with a method other than LMM or that were not included
in the dataset analyzed with the DeepCOMBI method (po-
tentially due to different preprocessing steps) to ensure a fair
comparison and avoid ascertainment bias. Since a lot of the
remaining 110 SNPs are part of small SNP clusterings, we
select representative markers for each locus through the LD
pruning option in PLINK (63) and compute pairwise LD
with a sliding window of two SNPs (with steps of 1 SNP
at a time). We discard one SNP out of each pair if they are
in high LD (R2 ≥ 0.8). We run the final list of 72 SNPs,
consisting of 1 discovery for BD, 0 for CAD, 19 for CD, 1
for HT, 3 for RA, 39 for T1D and 9 for T2D, through our
validation pipeline using the same parameters that we use
to evaluate the performance of DeepCOMBI (physical dis-

tance to tag-SNP: < 200 kb. LD with tag-SNP: R2 ≥ 0.2).
The corresponding results in comparison to the results of
DeepCOMBI as presented in Table 2 are shown in Table 4.

Of the reported 72 SNPs, Lippert et al. (21) have dis-
covered 24 true-positive SNPs that have been validated in
external studies published after the WTCCC study, cover-
ing only three of the seven diseases (9 true positives for
CD, 6 for T1D and 9 for T2D). The corresponding preci-
sion of 33% is much smaller than for DeepCOMBI, which
achieved a precision of 79% by reporting 39 discoveries out
of which 31 were validated. Not only does the DeepCOMBI
method give rise to more validated discoveries in total and
has higher precision than LMMs, but its discoveries also
cover the whole range of WTCCC diseases while the vali-
dated findings of Lippert et al. (21) are limited to CD, T1D
and T2D. Overall, the advantage of DeepCOMBI over the
univariate analysis of Lippert et al. (21) is significant with
a P-value < 0.0001 (two-tailed Fisher’s exact test for a 2×2
contingency table with replicated versus unreplicated SNPs,
i.e. 31 versus 8 for DeepCOMBI and 24 versus 48 for Lip-
pert et al. (21)).

CONCLUSIONS AND DISCUSSION

Numerous different approaches for the analysis of GWAS
have been introduced since the first of its kind was published
in 2002. Traditionally, they focus either on accurate pheno-
type prediction (1–5) or the identification of SNP pheno-
type associations (6–10). At first, most of these approaches
were of a purely statistical nature (15,16), but since machine
learning has become increasingly important in data science,
it has also found its way to the investigation of genetics data.
A large range of all kinds of machine learning-based tools
have been proposed and investigated: regression and classi-
fication approaches, non-penalized and penalized methods,
linear and nonlinear models (4,28–30,32,33). A number of
very well-performing methods introduce the combination
of traditional statistical testing concepts with more sophis-
ticated machine learning tools (6,7,31). With the increas-
ingly larger amounts of available data, deep learning-based
approaches and artificial DNNs are now also being applied
to GWAS datasets (41,42). However, most of these publi-
cations focus on pure classification or regression prediction
tasks (28,43–45) rather than the identification of associated
SNPs in the corresponding datasets (28,46).

To fill this gap and firmly based on the combinatorial
approach of the COMBI method (31), the proposed Deep-
COMBI method uses a deep learning-based phenotype pre-
diction in combination with statistical testing for the iden-
tification of SNPs that are associated with the phenotype
under investigation. DeepCOMBI could be considered an
extension of COMBI, replacing the rather simple predic-
tion tool of a linear SVM with a more sophisticated deep
learning method and using the recent concept of explain-
ability to uncover the decision-making process of DNNs
and extract SNP relevance scores via LRP (48–50). To our
knowledge, Romagnoni et al. (28) were the first and only
scientists to use explainable AI in the context of GWAS
and proposed to apply PFI. Even though they were able to
identify some novel predictors, the prediction performance
of their DNN was not better than that of traditional ma-
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Table 3. Quantitative summary of the significant findings of RPVT, COMBI and DeepCOMBI. For each of the three competitor methods, the numbers
of replicated and unreplicated hits (i.e. the number of true and false positives) as well as precision and error rates are presented. Pairwise tests for the null
hypothesis of identical distributions for DeepCOMBI and the two baseline methods are performed and the corresponding P-values are given

Number of significant SNPs of

RPVT DeepCOMBI method COMBI method

SNPs that have achieved P < 10−5 in at
least one external study

33 (49% precision) 31 (79% precision) 31 (58% precision)

SNPs that have not achieved P < 10−5 in
an external study

35 (51% error rate) 8 (21% error rate) 22 (42% error rate)

Overall 68 39 53
Pairwise P-value (two-sided Fisher’s exact
test)

DeepCOMBI versus RPVT = 0.002 DeepCOMBI versus
COMBI = 0.0435

Figure 7. ROC and PR curves of DeepCOMBI and all competitor methods on WTCCC datasets. Performance curves of all methods averaged over all
diseases and chromosomes are shown. ROC curves are presented on the left and PR curves on the right side. Replicability according to the GWAS catalog
was used for validation.

Table 4. Quantitative comparison of the significant findings of the Deep-
COMBI method and the univariate method from Lippert et al. (21,27).
The numbers of discoveries and validated discoveries of the DeepCOMBI
method from Table 2 and the univariate analysis presented by Lippert et al.
are presented.

DeepCOMBI
Lippert et al. univariate

analysis

Disease Discoveries
Validated

discoveries Discoveries
Validated

discoveries

BD 4 4 1 0
CAD 4 2 0 0
CD 11 10 19 9
HT 2 0 1 0
RA 4 2 3 0
T1D 8 7 39 6
T2D 6 6 9 9
Overall 39 31 72 24

P-value of two-sided Fisher’s exact test: < 0.0001

chine learning-based tools. In addition, PFI is a generalized,
model-agnostic approach and more sophisticated methods
specifically tailored to DNNs are available. Hence, Deep-
COMBI makes use of deep Taylor-based explanation tech-
niques by adopting LRP for the analysis of such GWAS
data.

DeepCOMBI was shown to compare favorably to its
main competitor COMBI on both generated controlled
datasets as well as seven real-world GWAS datasets. These
findings are in accordance with Romagnoni et al. (28), who
found that deep learning-based methods can provide novel
insights into the genetic architecture of specific traits. By ap-
plying LRP, we were able to leverage the power of DNNs
and generate relevance scores that are less noise inflicted
than the SVM importance scores of COMBI. In return,
the preselection of candidates SNPs is better than that of
COMBI, and a higher true positive rate and precision can
be achieved for all levels of error. Since the COMBI method
itself was shown before to outperform other combinatorial
machine learning-based approaches (6,58,59) and a num-
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ber of purely statistical analysis tools (21,27), it can be di-
rectly deduced that DeepCOMBI also outperforms those
approaches. For example, Wasserman and Roeder (59) lose
a great amount of statistical power by splitting the GWAS
data under investigation into two parts, performing SNP
preselection on one part and statistical testing on the other.
This approach is significantly less successful in identifying
SNP disease associations than COMBI and hence Deep-
COMBI, who both perform all substeps on the complete
(and therefore statistically more powerful) dataset. Another
exemplary statistical method that was shown to be outper-
formed by COMBI and DeepCOMBI is based on linear
mixed models (LMMs) proposed by Lippert et al. (21,27).
Even though they test for pairwise epistatic interactions in
addition to the univariate tests and address the issue of pop-
ulation stratification in GWAS, they still test genetic loca-
tions and pairs thereof individually instead of simultane-
ously. In comparison to COMBI and DeepCOMBI, which
examine the genomic dataset as a whole, LMMs cannot
achieve the same level of power and detection rates.

In addition to the main competitor method, COMBI,
we also compared DeepCOMBI to the baseline methods
of RPVT, raw LRP relevance scores and raw SVM impor-
tance scores and showed that only the combination of deep
learning and multiple testing show the desired performance
increase, which cannot be achieved individually by one of
these components.

A drawback of DeepCOMBI to consider might be that
dense DNNs scale poorly with the number of SNPs studied.
However, we have shown that DeepCOMBI performs well
in combination with a P-value-based SNP preselection step.

Let us also address potential issues arising from the op-
tional feature selection procedure excluding SNPs with a P-
value smaller than the threshold � from the analysis. Most
importantly, it is unlikely that this procedure will cause our
method to be overly conservative by excluding promising
candidate SNPs from the analysis since only SNPs with rel-
atively low P-values will reach significance via the permu-
tation test procedure in the final step of the method. How-
ever, one advantage of the DeepCOMBI method lies in au-
tomatically taking into account correlation structures and
interactions between SNPs which might not show signifi-
cant effects when examined individually. Therefore, the pre-
processing step might dilute such effects and has to be ap-
plied carefully and only if necessary. A removed low-impact
SNPs might not have reached significance itself if included
but could have caused another more high-impact SNP to
reach significance. On the other hand, let us point out that
selecting a subset of features for DNN training might cause
our method to introduce an optimistic bias and produce
an increased amount of false positives (71,72). When the
same dataset is used to select features and train a classi-
fier, so-called feature selection bias can indeed become an
issue (71,73). The cause of this bias is that the feature se-
lection procedure is part of the training, but not external
to the test samples (74). It is therefore essential to state
that the current results might overestimate the real predic-
tive effects of certain SNPs. However, we have evaluated our
findings in an independent validation procedure with exter-
nal GWAS studies which would inherently reveal a problem
with selection bias if existent. However, in spite of any po-

tential feature selection bias, we have shown that, in com-
bination with the applied feature selection method, Deep-
COMBI objectively performs better than methods without
feature selection. It achieves higher power and precision
than the examined competitor methods while yielding fewer
false and more true discoveries when its results are validated
on later GWAS studies. Nevertheless, introducing a more
sophisticated feature selection procedure could be the fo-
cus of future research endeavors. Inspiration can be taken
from a number of previous publications which focus on ad-
dressing related issues in the field of biomedical research
(72,73,75,76).

Furthermore, the DeepCOMBI method does not ac-
count for confounding factors such as relatedness which is
studied as one of the most important challenges in statisti-
cal genetics (77,78) and GWAS typically involve related in-
dividuals. We, therefore, dedicate the following sections to
address potential issues with confounding factors and selec-
tion biases caused––among other things––by including re-
lated individuals, i.e. non-independent and identically dis-
tributed (non-i.i.d.) samples in the datasets under investi-
gation. In general, machine learning and, more specifically,
neural networks are formally based on the assumption of
i.i.d. random variables (79,80). This assumption enables the
simple development of efficient theories (81) and methods
(53), causing most ML-based research to focus on learning
with i.i.d. data. In particular, neural networks require inde-
pendent samples to avoid getting stuck in the training phase,
finding local optima or overfitting and not generalizing well
to external data (79,80). When one datapoint influences and
is hence not independent of another datapoint, this viola-
tion of the i.i.d. assumption is called an interdependency
(80). In practice, non-i.i.d. samples are often assumed to be
only a theoretical issue and included in analyses nonetheless
(82). In part, that is because they can be accounted for by,
for example, choosing the architecture and hyperparame-
ters of the network appropriately (80). On the other hand, in
some areas, related samples seem to actually have no effect
on the overall performance of a neural network. This is par-
ticularly prevalent in the field of image recognition, where
datasets often include related images which are rarely ad-
dressed as such explicitly (37). With large enough datasets,
where small clusters of dependent samples (close or distant
relatives in our case) are selected at random from the en-
tire data distribution (i.e. population), the effects are often
negligible. However, selection bias due to related samples
can indeed become an issue when the complete dataset is
too small. In addition, interdependencies are very common
in computational biology since the corresponding datasets
are often composed of related organisms (27), phenotypes
(83) or features (84). Since ignoring these confounding fac-
tors in the corresponding datasets can indeed cause false-
positive discoveries that cannot be replicated on indepen-
dent data (85), a number of approaches have been devel-
oped to account for population structures due to related-
ness between samples (21,27,78,80,86,87). Some of these
approaches extend existing algorithms to account for non-
i.i.d. data (82,88). Others have been proposed to address
time-structured dependencies (89). For example, recurrent
neural networks are used, in contrast to feedforward net-
works, to model interdependent data by allowing connec-
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tions between a neuron and neurons of the same or pre-
vious layers (90). However, this architecture is designed to
account for non-i.i.d. data caused by sequentially depen-
dent data (e.g. time series data) and not for dependencies
arising from grouped relatedness as found in GWAS. Con-
sidering this kind of non-i.i.d. data, a number of methods
have been presented to correct for population structures fol-
lowing both statistical (27) as well as ML-based approaches
(86). Recently, very large datasets containing related sam-
ples have been investigated (91–93) to examine the effect
of interdependencies in GWAS using LMMs as one of the
most widely used tools to account for relatedness regressing
the phenotype measures on a relationship matrix of fixed ef-
fects. LMMs capture confounding factors such as popula-
tion structures, family structures and relatedness simultane-
ously, without the exact knowledge of which are present and
without the need to tease them apart (27). The underlying
idea is to model the output based on a mix of factors: the
functional ones we are trying to identify and the fixed ones
that just arise from confounding factors. To evaluate the ef-
fect of interdependencies and population structures in the
WTCCC datasets under investigation here, we compared
the performance of DeepCOMBI to that of the LMM ap-
proach proposed by Lippert et al. (21,27) in a benchmark
analysis and found that the DeepCOMBI method yields
both more discoveries that were validated in external stud-
ies and higher precision than the LMMs as presented by
Lippert et al. (21,27). The validated discoveries of Deep-
COMBI are also more broad covering the whole range of
diseases while the validated findings of Lippert et al. (21)
are limited to CD, T1D and T2D. In general, the compar-
ison of the two methods is favorable to DeepCOMBI with
a significant P-value of < 0.0001 (two-tailed Fisher’s exact
test). Even though the comparison of our method with an
approach correcting for population structures was highly
favorable to DeepCOMBI, it is not possible to conclude
that relatedness within the 2007 WTCCC dataset is lim-
ited and non-i.i.d. samples have no impact at all. However,
the unique benefit of our method was demonstrated when
we revealed biological signals with state-of-the-art methods
in datasets of almost 15 years of age that standard GWAS
analyses have not been able to capture in any dataset pub-
lished to this day. Furthermore, we clearly demonstrate the
replicability of our findings, which is a robust way (94) and
the gold standard (95) of verifying the biological signals un-
derneath the investigated data.

In conclusion, DeepCOMBI, a novel AI-based method,
was proposed for the analysis of GWAS data. After train-
ing a carefully designed DNN for the classification of sub-
jects into their respective phenotype, the concept of ex-
plainable AI is applied by backpropagating the class pre-
diction score to the input layer through the network via
LRP. The resulting SNP relevance scores are used to select
the most relevant SNPs for multiple testing in combination
with a permutation-based thresholding procedure. On both
generated, controlled datasets as well as seven real GWAS
datasets, DeepCOMBI was shown to perform better than
a number of competitor methods in terms of classification
accuracy of the DNN and in terms of ROC and PR curves
when using either the generated labels or replicability in ex-
ternal studies as a validation criterion. In addition, two very

promising, entirely novel SNP disease associations were dis-
covered. Located on an intron for NEGR1, an important
gene many times linked to obesity, body mass index and
other correlated factors, rs10889923 on chromosome 1 was
found to be significantly linked to hypertension. Another
novel location found by DeepCOMBI to be associated with
type 1 diabetes is rs4769283. It is part of an intergenic re-
gion on chromosome 13 and was previously found to be an
eQTL for C1QTNF9B in the pancreas, the affected organ
in T1D patients.

Future work on the subject of deep learning and explain-
able AI in the context of analyzing GWAS datasets could
focus on one of the three steps of DeepCOMBI. In the first
step, DNNs with different architectures or other suitable
analysis tools could be investigated. For example, future re-
search could aim to harness the potential of convolutional
networks (96) in this application. By integrating multiple
output nodes for multiple phenotypes, the DNN could also
be extended to cover multivariate output variables and ex-
amine multimorbidities. DNNs can easily be adjusted to
nonbinary phenotypes. Improvement ideas for the second
step of the proposed method include the application of dif-
ferent explanation methods (e.g. PFI) or LRP backpropa-
gation rules, for example, according to the layer types, as ad-
vised by Montavan et al. (48). Great potential lies in finding
more sophisticated ways to combine the local LRP expla-
nations of each individual subject to a single global expla-
nation used for SNP selection. A very promising candidate
would be a method called SpRAy (97), which clusters the in-
dividual explanations and simplifies the identification of ex-
planatory structures in subsets of subjects. Future research
work considering the third step of DeepCOMBI might ex-
amine the effects of replacing the χ2test with a different,
more sophisticated kind of test, e.g. investigating pairwise
hypotheses or other multivariate effects.

In addition, fully evaluating our approach on datasets
with related samples and integrating DeepCOMBI with
LMMs or adapting it to correct for relatedness could be the
focus of future research. A dataset much larger with respect
to both samples and SNPs would have to be investigated.
For example, the UK Biobank dataset could be the focus of
such an analysis since it includes about 500 000 subjects for
whom hundreds of phenotypes have been registered (98).
Some of the subjects in this dataset are related and it has
been the testing ground for several algorithms to account
for relatedness (91–93). To elaborate on potential ways in-
terdependencies could be accounted for in extensions of
the DeepCOMBI method, let us first comment on Xiong
et al. (88) who have shown that in certain settings perfor-
mances of neural networks can be improved when they are
explicitly designed to handle non-i.i.d. samples. They pro-
pose to adopt the concept of mixed effect models (99,100) in
classical statistics to convolutional DNNs for gaze estima-
tion with multiple measurements from the same individuals
and achieve a 10–20% increase in performance. A similar
approach could be adapted for the DeepCOMBI method
where the interdependencies come from related subjects in-
stead of repeated measurements. In this context, LRP, as
applied in DeepCOMBI, has been successfully applied to
convolutional DNNs for example by Harley (101). A com-
bination of the two approaches could be developed to adapt
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our approach to account for related subjects by employ-
ing mixed effect models in convolutional DNNs and apply-
ing LRP explanation to identify associated SNPs. Another
potential focus of future research including the proposed
method could lie in identifying and quantifying the effect of
small groups of non-i.i.d. samples (i.e. families) in GWAS
datasets. This could be achieved by clustering the LRP ex-
planations of all samples as proposed by Lapuschkin et al.
(97) and identifying the locations of related individuals in
the resulting clustering structures. If the subjects of a fam-
ily end up in the same clusters in such an analysis, the effect
of the underlying selection bias could be visualized and it
could be shown that SNPs that have an effect in a specific
family are not necessarily associated with the trait in the
general population.

While the focus of this work is on SNP discovery, let us
address how its results relate to risk prediction and in which
ways the DeepCOMBI method might be used to estimate
heritability. There are several state-of-the-art tools and ap-
proaches that can estimate polygenic risk scores for diseases
using SNPs from classic GWAS (102). They focus on exam-
ining how well a certain set of SNPs separates cases from
controls and, in the last instance, identifying the contribu-
tion of a specific SNP to the heritability of a specific disease.
Future research on the DeepCOMBI approach could po-
tentially address these questions and use its results, a ranked
list of SNPs, for risk prediction and heritability estimates. In
this context, let us point out that the DeepCOMBI method
is composed of a class prediction step with DNNs and a
subsequent identification step of the SNPs that increase the
risk of a high prediction score. Predicting the risk of new
subjects can be achieved by providing their genetic sequence
as input to the trained DNN and interpreting the predic-
tion score as a risk score. The method inherently contains a
measure of the overall contribution of the genetic compo-
nent to the disease, namely the explanation scores learned
from LRP, which––per definition––sum up to the prediction
score of each sample. Running LRP as a follow-up investi-
gation after calculating prediction scores for new subjects
will highlight the SNPs that had the largest effect on this
specific prediction. Averaging these scores for multiple sub-
jects provides an estimate of the general contribution of a
specific SNP to the disease under investigation. Beyond the
intrinsic risk prediction properties of DeepCOMBI, let us
discuss some potential downstream directions for estimat-
ing heritability. Many DNN-based approaches have been
proposed for post-GWAS prioritization (103–105), but very
few are designed for SNP discovery. To our knowledge, ap-
plying DNN-based methods to calculate risk predictions or
heritability estimates could open up a new field of research
that has not been given much attention. Given that Deep-
COMBI is one of the first tools designed to use DNNs in
GWAS for SNP discovery, and not for post-GWAS priori-
tization, its results could be used for heritability partition-
ing, where a particular set of SNPs is evaluated for enrich-
ment in explaining the percentage of heritability of a specific
phenotype. A widely used approach addressing this issue
is the LD-score (LDSC) (106). An adoption of heritability
partitioning through LDSC to extend our deep learning-
based approach could be the subject of a specialized re-

search project on heritability and risk estimates for patients
in a larger cohort.

Besides the discussed objective of GWAS to extrapolate
risk predictions, our study could also be used to increase
the statistical power of limited sample-size GWAS studies,
offering an easy-to-use tool available to situations of lim-
ited resources or rare phenotypes where it is not possible
to gather large sample sizes. Individual GWAS loci have al-
ready shown the potential for large-scale prioritization by
providing novel biological insights and potential drug tar-
gets and drug repositioning opportunities (107).
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