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Abstract

Despite advancements in ventilator technologies, lung supportive and rescue therapies, the

outcome and prognostication in acute respiratory distress syndrome (ARDS) remains incre-

mental and ambiguous. Metabolomics is a potential insightful measure to the diagnostic

approaches practiced in critical disease settings. In our study patients diagnosed with mild

and moderate/severe ARDS clinically governed by hypoxemic P/F ratio between 100–300

but with indistinct molecular phenotype were discriminated employing nuclear magnetic res-

onance (NMR) based metabolomics of mini bronchoalveolar lavage fluid (mBALF). Result-

ing biomarker prototype comprising six metabolites was substantiated highlighting ARDS

susceptibility/recovery. Both the groups (mild and moderate/severe ARDS) showed distinct

biochemical profile based on 83.3% classification by discriminant function analysis and

cross validated accuracy of 91% using partial least squares discriminant analysis as major

classifier. The predictive performance of narrowed down six metabolites were found analo-

gous with chemometrics. The proposed biomarker model consisting of six metabolites pro-

line, lysine/arginine, taurine, threonine and glutamate were found characteristic of ARDS

sub-stages with aberrant metabolism observed mainly in arginine, proline metabolism,

lysine synthesis and so forth correlating to diseased metabotype. Thus NMR based metabo-

lomics has provided new insight into ARDS sub-stages and conclusively a precise bio-

marker model proposed, reflecting underlying metabolic dysfunction aiding prior clinical

decision making.

Introduction

Acute respiratory distress syndrome (ARDS), despite many ventilator and therapeutic mea-

sures persists with a death toll of more than 40%,which has grabbed the attention of intensi-

vists worldwide[1]. With a incidence of 58.7 cases per 100,000 population [2], efforts are

needed to understand ARDS progression, aid prognostication and predict outcome with better
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follow up and surveillance. It is clinically manifested by acute respiratory hypoxemia, bilateral

pulmonary infiltrates and noncardiogenic pulmonary edema resulting from direct or indirect

pulmonary injury[3,4]. Since ARDS first depiction in 1967 [5], several studies have been car-

ried out to address its underlying heterogeneity, complex etiological factors and epidemiology

which misleads diagnosis, risk stratification and subsequent therapeutic intervention[6].

Despite large number of rescue therapies,[7–11]the diagnostic criteria do not suffice in the

management of ARDS[12–15]. The new diagnostic criteria based on Berlin definition[4] con-

vened in 2012categorizes ARDS patient on the basis of partial pressure of oxygen to the frac-

tion of inspired oxygen (P/F) ratio between 200–300, 100–200 and below 100 into mild,

moderate and severe group respectively. But the disparity in clinical definitions so far pro-

posed with no specific pharmacotherapy and many predisposing factors (sepsis, pneumonia,

trauma, aspiration, pancreatitis)[16,17]have added to ARDS morbidity, thus necessitating

symptomatic biomarkers. In continuum biomarkers of ARDS (interleukins, angiopoietin-2,

and surfactant proteins) [18–20] have been explored for high risk prediction and to predict the

mortality outcome. Biomarkers with predictive value, accuracy, specificity and sensitivity

would permit a comprehensive evaluation of underlying predisposition to disease[21,22]. In

search of biomarkers with high discriminatory ability, different biofluids have been studied

extensively for better prognostication which has always served as a conventional indicator of

disease pathophysiology[23,24].

The basis of further exploratory studies in ARDS relies on omics approaches by using

biofluids to monitor the cellular metabolism in the diseased state. Though genomics[25] and

proteomics[26]based studies have made significant progress in targeting pathological derange-

ments but metabolomics has complemented and facilitated the contemporary understanding

of dynamic, systemic and functional aspects of ARDS pathophysiology[27]. Metabolomics

gives a comprehensive overview of the metabotype in response to exogenous, endogenous and

environmental stimuli thus holds the novel aspect of providing readout of real time in-vivo

phenotype from the top-down biochemical phenomena[28]. Many disease implicated markers

of ARDS and related pulmonary diseases have been reported and probed in serum[29],

exhaled breath condensate[30], undiluted pulmonary edema fluid[31], plasma[32], whole

blood for gene expression analysis[33], urine[34], bronchoalveolar lavage fluid (BALF)[35–41]

employing metabolomics. The simultaneous targeted and untargeted metabolite profiling,

computing the inherent variance and its quantitation in response to disease or drug relies on

robust, reproducible and time conducive analytical platform requiring minimal sample prepa-

ration[42]. The multiple precipitating factors of ARDS has gained notable interest among cli-

nicians to rely on method that is unbiased, unambiguous and renders multiparametric

snapshot of molecular level changes aiding both qualitative and quantitative therapeutic

response to disease. Nuclear magnetic resonance (NMR) based metabolomics has emerged out

as a reliable method for detecting distinct chemical signature of each metabolite and its relative

perturbation in diseased state non-invasively with least sample processing thus enabling

dynamic reflection of pathophysiology in biofluids[43,44]. ARDS which is radiological and

clinically attributed by edema, infiltrates and inflammation of lungs requires localized epithe-

lial lining fluid to best capture the cellular and biochemical changes[45]. A recent study has

established mini Bronchoalveolar lavage fluid (mBALF)[46]from the proximal alveoli as diag-

nostic biofluid reflecting pulmonary metabolome for biomarker studies by NMR based meta-

bolomics[47].Aiming to resolve the long standing bottleneck of ARDS prognostication and

progression, NMR based phenotyping using mBALF though in its infancy has resulted in dif-

ferentiating metabolites of acute lung injury (ALI) and ARDS with respect to controls[48]. But

the explicit role of these metabolites as surrogate markers in terms of clinical utility and appli-

cability is yet to be validated for clinical decision making and clinical trials.

Systems biology of ARDS
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The severity classification as per the new Berlin definition is based on the clinical index

mainly P/F ratio which rules out some key ancillary variables of high risk profile thereby stress-

ing more reliable and unambiguous insightful studies. Our study aims to better interpret

ARDS severity classification using NMR based metabolomics and thereby set up metabolite

credentials for a biomarker model aiding ARDS disease management and follow up. Our pres-

ent study gives the distinct biochemical profile of mild and moderate/severe ARDS group

based on endogenous metabolic profile. Differential biomarker candidates were categorized

based on chemometric and pattern recognition methods from lung alveoli using NMR spec-

troscopy of mBALF. Comprehensive univariate and multivariate analysis resulted in the piv-

otal role of metabolites such as taurine, threonine, glutamate, proline, and lysine/arginine to

metabolic perturbations in acute and mild stages of ARDS. Substantial role of these metabo-

lites in ARDS intricate metabolic network was found to be governed by the dysregulated argi-

nine and proline metabolism, lysine synthesis and degradation, taurine and hypotaurine

metabolism, glycine, serine and threonine metabolism and glutamine and glutamate metabo-

lism. The above mentioned analysis led to a putative biomarker model predictive of ARDS sus-

ceptibility or recuperation and the underlying dynamic biochemical behavior. Potential and

prospects of the proposed biomarker model comprising these six metabolites is also evident

from receiver operating characteristic (ROC) curve and significant pathway analysis impact

greater than equal to 0.1. Thus metabolomics studies can correlate clinical endpoints with dis-

eased specific markers that will be predictive, preventive and participatory. Correspondingly

such biomarker model validated in large sample size holds application for early identification

of high risk individuals providing metabolic and clinical variables of ARDS progression left

unmapped.

Materials and methods

Patients

Total 36 samples were included in the study with 23 samples from patients diagnosed with

moderate/severe ARDS and 13 samples taken from mild ARDS patients enrolled at Intensive

Care Unit (ICU) admission of Sanjay Gandhi Post Graduate Institute of Medical Sciences

(SGPGIMS). Patients included in the study group were suffering from mild and moderate/

severe ARDS as stipulated by Berlin definition convened in the year 2012. The diagnostic crite-

ria for moderate/severe ARDS[49] was based on the P/F ratio between 100–200 and�100 with

bilateral opacities on chest radiograph that need not be explained by effusions or collapse, posi-

tive end-expiratory pressure(�10cm H2O) and respiratory system compliance. Similar diag-

nostic measures were followed for mild patients except the P/F ratio was taken between 200–

300. Lung protective ventilation as per the ARDSNet protocol was practiced in the ICU. Exclu-

sion criteria in the current study include patients with age less than 18 years, pregnancy,

chronic obstructive pulmonary disease (COPD) patients, bronchial asthma, interstitial lung

disease, and other chronic respiratory ailments.

Study protocol

The cross-sectional study was performed in ICU of a tertiary care medical center in SGPGIMS,

Lucknow, and Centre of Biomedical Research (CBMR), Lucknow, India. The experimental

protocol was approved by the SGPGIMS ethical committee and written informed consent was

obtained from all subjects or their surrogate decision makers. The mBALF sample from

mechanically ventilated patients was collected using the standardized non bronchoscopic

“catheter in catheter” technique[50] in ICU within 24 hours of diagnosis. For mBALF suction-

ing, a soft suction, nontoxic, pyrogen free, graduated 16 French gauge/8 French gauge catheter
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in catheter set was employed. The sample was collected in mucus trap using 10ml sterile dis-

tilled water, transferred to a collection vial following all the sterile aseptic precautions and then

quenched in liquid nitrogen till further processing. The mBALF sampling and experiments

were performed in accordance with the approved guidelines and regulations of the institute’s

ethical committee.

mBALF sampling and processing

The samples were vortexed and then centrifuged at 16000 rpm for 10min at 4˚C to remove cel-

lular debris, bacteria and then supernatant preserved at -80˚C inside freezer for storage till

NMR experiments were performed. The acquisition parameters were optimized for 1H NMR

mBALF spectra of mild and moderate/severe ARDS group in 800MHz NMR spectrometer

(BrukerBiospin). The process of NMR spectral acquisition begins with preparation of 550μl

sample including 200μl buffer to minimize the variation in pH with Trimethylsilylpropanoic

acid (TSP), D2O and 350μl BALF sample. TSP (6.53mM) was added in the buffer (0.1 M

Na2HPO4/NaH2PO4, pH-7.4) for internal chemical shift reference along with 10% D2O to pro-

vide a field frequency lock

NMR spectroscopy

NMR spectra of diseased sample were recorded at 800-MHz Bruker NMR spectrometer

encompassed with a cryogenically cooled triple-resonance TCI (1H, 13C, 15N, and 2H lock)

probe at 300.15K for one dimensional (1D) proton (1H) NMR data acquisition of mBALF sam-

ples. All 1D NMR spectra was based on water pre saturation pulse sequence and acquired

using a 90˚ flip angle, a 20ppm spectral width and a relaxation delay of 5 seconds, 32 transients

were collected into 64k data points with an acquisition time (Taq) of 1.99 seconds and 16

dummy scans. 1H 1D spectra were referenced to the TSP signal (δ = 0.00 ppm). The Free

induction decays (FIDs) were multiplied by an exponential weighting function corresponding

to a line broadening function of 0.3 Hz and zero filled before Fourier transformation. The

acquired spectra were phased and baseline corrected and manually integrated with respect to

TSP for chemical shift calibration and calculating relative resonance intensities of small molec-

ular weight metabolites. Small metabolite resonances present in 1Dspectra were assigned and

confirmed by using two dimensional (2D) NMR spectra including HSQC (Figure A in S1

Text), TOCSY (Figure B in S1 Text), COSY and Biological magnetic resonance bank (BMRB)

database. For 1H-13C HSQC, a total of 2048 data points were collected and 24 scans were aver-

aged for each of 826 increments covering spectral width of 16 ppm and 165 ppm in 1H and 13C

dimension respectively. Prior to Fourier transform, zero filling up to 2k data points with for-

ward linear prediction to 128 points and shifted sine- bell-squared apodization function were

used in both t2 and t1 dimension. TOCSY spectra was acquired in phase sensitive mode and

mixing time of 80 ms was set using MLEV spin lock. A total of 2k data points and 256 incre-

ments were acquired with 60 scans per increment. Prior to Fourier transform, FID was

weighted in both dimension by sine-bell shaped window function and zero filled to 1k data

points with 2s relaxation delay. Resonances present in 1H NMR spectra were assigned to 29

small molecular weight metabolites in the diseased spectra. Among these, 17 metabolites with

significant aberrance in concentration reported from our previous study[36] were manually

integrated using Topspin 2.1.

Statistical analysis

In order to compute potential discriminating markers of mild and moderate/severe ARDS

group, a series of univariate and multivariate analysis was performed using the software

Systems biology of ARDS
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Metaboanalyst[51] and SPSS 16.0. Data was Pareto scaled and log transformed, a pre-treat-

ment method to obtain Gaussian distribution. Discriminant function analysis(DFA) was per-

formed to get the accuracy of the model with 17 significant metabolites. PCA and PLS-DA

analysis of these discriminating variables were performed to reduce the dimensionality of

matrix and to maximize the covariance between predictor variables (metabolite intensities)

and the response variables (class labels). These biomarker candidates were further validated by

Independent Sample T-test at the univariate level to highlight the important variable with a

threshold p value of< 0.05. For statistical inference VIP values (weighted sum of squares of

PLS loadings) greater than 1 was used to specify discriminating variables. Sorted 9 metabolites

were plotted in bar chart to get an overview of their mean concentration. DFA, PCA, PLS-DA

were performed in succession, using the resonance intensities of these 9 metabolites to catego-

rize the model and to project the latent variables (components) which best infer the response

variables. These putative metabolites were further narrowed down to selective differential bio-

markers by stepwise DFA. Using projection algorithms PCA and PLS-DA, these metabolites

were checked for improved separation between the groups. Feature selection tools like super-

vised hierarchical clustering (HC), empirical Bayesian analysis of metabolites (EBAM), vol-

cano plot and random forest (RF) led to the conclusive results. A detail of these statistical

models is provided in the supplementary information. The Pathway analysis module was per-

formed using Metaboanalyst, which incorporates pathway enrichment analysis and topology

analysis based on KEGG database and employs novel algorithms and concepts to identify the

utmost affected pathway in the diseased state. Area under the ROC curve(AUROC) was used

as a benchmark to assess the diagnostic parameters (sensitivity and specificity) of candidate

biomarker prototype responsible for validating the possible confounders within the stages of

diseased groups.

Results

Patient characteristics

The clinical and baseline characteristics of the patients at the time of sampling are provided in

Table 1 which includes demographic profile and illness severity scores like Acute Physiology

and Chronic Health Evaluation-II(APACHE II) and Sequential Organ Failure Assessment

(SOFA) which was taken at the time of admission. The mild and moderate/severe patients

were age matched and reported with more or less similar co-morbidities with a higher total

leukocyte count (TLC) and procalcitonin value in ARDS.

NMR snapshot of ARDS substages

A representative NMR spectrum showing the difference between mild and moderate/severe

ARDS is depicted in Fig 1. The NMR spectrum from moderate/severe stage of ARDS are

mostly dominated by resonances from amino acids, lactate, glucose, intermediates of tricar-

boxylic acid cycle and many other low molecular weight endogenous metabolites while the

mild group is predominated by glutamate and choline resonances in the complex mixture of

mBALF sample as per the Fig 1. In order to obtain a significant comparison across all subjects

with interpretation of metabolic signatures predictive of disease, data were subjected to che-

mometric analysis. Out of the 29 metabolites assigned 18 were found to have anomaly in

their intensity values as reported from our earlier study[36]. Due to the large variation exhib-

ited by lactate resonance which hindered the possible interpretation of significant results, it

was excluded from further statistical analysis. Lactate is also nonspecific and intrigued in

terms of its diagnostic value as its upsurge is common phenomena associated with tissue hypo-

perfusion together with many etiologies[52]. So in the present study (36 disease samples) the
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Table 1. Patient clinical and baseline characteristics at the time of sampling.

Characteristic Mild ARDS Moderate/Severe ARDS

Number of patients 13 23

Male/ females 9/4 15/8

Age (Mean ± standard error) 47.3 ± 3.18 45.8 ± 3.15

Admission Sequential Organ Failure

Assessment* (Mean±standard error)

7.92 ± 0.48 10.78 ± 0.99

Admission Acute Physiology and

Chronic Health Evaluation-II

(Mean ± standard error)

13.23 ± 1.00 15.65 ± 1.19

Partial pressure of oxygen/ fraction

of inspired oxygen (P/F) Ratio*
(Mean±standard error)

234.61 ± 6.05 161.30 ± 7.00

Length of ICU stay* (Mean±standard

error)

21.38± 1.59 16.61± 1.28

Day of mechanical ventilation*
(Mean±standard error)

20.08± 1.58 15.08± 1.17

Diagnosis Tropical infections: 4 Community acquired pneumonia: 3

Severe sepsis: 2 Severe acute pancreatitis:2 Guillain Barre

syndrome: 1 Unknown etiology: 1

Tropical infections: 8 Community acquired: 5

pneumonia Severe sepsis: 4 Severe acute

pancreatitis:3 Guillain Barre syndrome: 2 Unknown

etiology: 1

Co-morbidities Diabetes: 2 Hypertension:2 diabetes + hypertension: 5

Hypothyroidism:1Coronary artery disease: 2 Chronic

kidney disease: 1

Diabetes:5 Hypertension: 4 diabetes +

hypertension: 7 Hypothyroidism: 3 Coronary artery

disease: 2 Chronic kidney disease: 2

Total leukocyte count* (Mean

±standard error)

12.67 ± 0.65 17.04± 0.72

Procalcitonin* (Mean±standard

error)

1.41± 0.27 2.67±0.43

Positive end expiratory pressure*
(Mean±standard error)

9.85± 0.42 11.04± 0.33

Survival/ Nonsurvival* 6/7 6/17

*Statistically significant feature (p< 0.05)

https://doi.org/10.1371/journal.pone.0187545.t001

Fig 1. Representative proton nuclear magnetic resonance spectra from acute respiratory distress syndrome patients. a) Moderate/

Severe ARDS, b)Mild ARDS, proton = 1H.

https://doi.org/10.1371/journal.pone.0187545.g001
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17 prominent metabolites which contributed to the separation within different categories of

ARDS were selected to get a snapshot of their relevance on a larger dataset. These metabolites

were further substantiated for their paramount role in distinguishing 13 mild from 23 moder-

ate/severe patients by various chemometric approaches. The study made progress with screen-

ing of 9 significant variables from 17 selected and further narrowing down to 6 potential

biomarkers. Since single a priori statistical tool is susceptible to underlying data structure

therefore successive univariate and multivariate analysis were carried out to corroborate the

robustness and reproducibility of the six metabolites linked to the diseased group with their

anomaly interconnected to downstream metabolic pathway.

Class separation based on significant metabolites

Although clinical disposition of ARDS and it varying heterogeneous causes and outcome adds

to the uninduced biological variation, hence standardized protocols were practiced in ICU by

clinicians and expertise to mitigate the amount of technical variation in sampling. All the intu-

bated patients in ICU underwent sedation and analgesia thereby corresponding to minimal

stress repercussions. Sampling has been carried out using a standardized non bronchoscopic

“catheter in catheter” technique and a fixed volume of sterile distilled water was used for suc-

tioning of tracheal aspirates by trained person. The visual interpretation of NMR generated

multidimensional datasets reflects the underlying induced biological variation. This necessi-

tates data mining and other exploratory data analysis by chemometrics with requisite data

pretreatment measures[53] to remove the heteroscedasticity due to uninduced biological vari-

ation[54] mentioned above. To strengthen the classification and prediction of differential

metabolites, NMR data was manually referenced to TSP and Pareto scaled[55] and log trans-

formed[56] removing the skewed distribution because of heteroscedasticity thereby obtaining

a symmetric data for further confirmatory statistical analysis.

Firstly, the DFA test classified the model with 17 metabolites as 94.4% accurate with lower

Wilks lambda, significant classification as apparent from chi square test, with greater Eigen

value and significant value of 0.01 (Table A in S1 Text). All the data were log transformed and

Pareto scaled (Figure C in S1 Text). The PCA and PLS-DA (Figure D in S1 Text) further

assured that the experimental parameters (17 metabolites) can be employed to probe for the

attributes contributing to separation between mild and moderate/severe stages of ARDS.

Details of PCA and PLS-DA component contributing to model significance are provided in

the supplementary information. The lower values of R2 and Q2 (accuracy = 0.88, R2 = 0.78

and Q2 = 0.54) can be correlated with the separation which is being sorted within the diseased

group. Amid all the 17 metabolites scrutinized, the determinant metabolites were ranked by

the VIP score. High VIP score of more than 1 was used as a cutoff to include variables with dis-

criminatory power (Table B in S1 Text). Phenylalanine, threonine, taurine, proline, lysine/argi-

nine, alanine, glycine, branched chain amino acids (BCA) were included in the classification.

In accordance with the Figure E in S1 Text all the metabolites except glutamate and acetate

were notable in the mild group. The observed significant metabolites obtained in independent

sample T-test with unequal variance (threshold p value <0.05 and confidence interval 95.0%)

were analogous with the VIP ranked metabolites (Table B in S1 Text). These results further

corroborated these set of metabolites as significant.

Chemometrics based screening of metabolites

These eight metabolites were further screened by an iterative multivariable data mining strate-

gies. The discriminating variables were again subjected to DFA with nine metabolites includ-

ing glutamate as its prominence was shown in the mild group. The mean concentration of
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these nine metabolites is also assessed in arbitrary unit (au) with respect to the concentration

of TSP with standard error shown as error bars (Figure F in S1 Text). An elevated level of all

the metabolites is depicted in the moderate/severe group excluding glutamate which is show-

ing an increased concentration in mild group. The PCA and PLS-DA showed improved sepa-

ration with glutamate and yielded conclusive results in subsequent analysis with DFA which

yielded 88.9% correct classification (Table C in S1 Text).

Six differentiating markers of ARDS disease course

Finally, stepwise DFA sorted out 6 metabolites (proline, lysine/arginine, taurine, threonine,

glutamate) with 83.3% correct classification suggesting their predominance in ARDS

(Table D in S1 Text). Their discriminating power is reflected both in PCA, PC 1 = 35.1% and

PC 2 = 20.8% (Fig 2a) and PLS-DA Component 1 = 20.8% and Component 2 = 26% (Fig 3a).

Each spectrum represents an observation (scores) and by examining the proximity of these

observation due to variables contribution (loadings) under each observation within and

between the cluster of Mild ARDS and Moderate/Severe ARDS the similarity and dissimilarity

in metabolic profile of mild ARDS and moderate/severe ARDS can be explained. Projection of

Fig 2. a) Two-dimensional score plot of principal component analysis with red colour representing mild ARDS and green as moderate/

severe ARDS b) Biplot of principal component analysis c) Loading plot of principal component analysis. principal component = PC.

https://doi.org/10.1371/journal.pone.0187545.g002
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scores and loadings in two dimensional score plot of PCA and PLS-DA (Figs 2 and 3), visually

revealed variance and separation between mild ARDS and moderate/severe ARDS. On the

basis of PCA scores and loadings as points and arrows, a biplot (planar graph) (Fig 2b) and

loading plot (Fig 2c) was plotted which provided the explanatory pattern in the data set. The

six most important metabolites contributing to the 60% PCA variance were interpreted on the

basis of loadings. Further biplot, a scatter plot representing an overlay of scores and loading

was reduced along two principal components with arrows indicating the loadings of six metab-

olites, making the observation (scores) and the corresponding metabolite correlation more

obvious and significant in mild ARDS and moderate/severe ARDS. Longer arrow outlines the

relevance of these metabolite and distance of projection depicts its level in discriminatory

group as per the Fig 2b. The Fig 2b explains the role of glutamate in mild ARDS whereas threo-

nine, taurine, lysine/arginine, and proline contribution was found towards moderate/severe

ARDS group. An improved accuracy = 0.91, predicted (R2 = 0.72) and expected variance

(Q2 = 0.60) were in accordance with the above stated result using leave one out cross valida-

tion (LOOCV) (Fig 3b and Table E in S1 Text). The PLS-DA model validation by permutation

test was determined by separation distance based on sum of squares between and sum of

Fig 3. a) Two-dimensional score plot of partial least squares discriminant analysis with red colour representing mild ARDS and green as

moderate/ severe ARDS b) third component best classifies the model shown with asterisk c) Permutation test by separation distance B/W.

https://doi.org/10.1371/journal.pone.0187545.g003
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squares within (B/W) ratio. The random class assignment prediction based on 100 permuta-

tions is plotted in histogram (Fig 3c). The p valueless than 0.01 and B/W ratio of real class

assignment is calculated as shown in Fig 3c. If the real B/W ratio is not a part of the random

distribution, it can be deduced that the difference between the respective groups is significant

as seen in the Fig 3c.

Validation of predictive biomarker model

The selected subsets of disease specific markers (proline, lysine, arginine, threonine, taurine

and glutamate) were further supported by various feature selection tools. The results were con-

firmed with volcano plot, EBAM (Figure G in S1 Text), random forest analysis (Figure H in S1

Text) and hierarchical clustering analysis (HCA). The details of these analyses have been pro-

vided in the supplementary information. In HCA, represented as tree dendrogram a discrete

grouping is observed which signifies biological variance using the Pearson correlation and

wards linkage (Fig 4a). The groups were segregated on the basis of metabolic intensities of 6

metabolites with the height of branches representing the distance between the groups. Red

cluster denoting mild group and green as moderate/severe ARDS. Heat map of metabolite

intensities of the 6 selective biomarkers shows correlation between the 1H NMR spectral

regions of selective metabolites to respective mild and moderate/severe ARDS group (Fig 4b).

The predictive accuracy, specificity and sensitivity of a single biomarker is rather speculative

thus an ensemble of biomarkers is sorted for more elaborate understanding of pathophysiol-

ogy which governs its clinical utility. Subsequently ROC study was applied for the proposed

biomarker prototype comprising proline, taurine, lysine/arginine, threonine and glutamate

which came out to be 0.95 (Fig 4c).

Metabolome interaction network

The putative biomarker model comprising narrowed down metabolites pooled from biostatis-

tics were further evaluated by generating metabolite pathway analysis highlighting the most

correlated and discriminant pathway under study. The pathway analysis helped in establishing

the underlying connectivity of the proposed biomarker prototype with the affected biological

process based on signature specificity and metabolite impact�0.1. The most relevant and sig-

nificant metabolic pathway mirroring ARDS biochemical phenomena included arginine and

proline metabolism, lysine biosynthesis, lysine degradation, aminoacyl-tRNA biosynthesis,

taurine and hypotaurine metabolism, glycine, serine and threonine metabolism and D-gluta-

mine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism (Fig 5a). The

interaction between metabolites and the corresponding biological process involved in the dis-

eased condition can help to probe the possible biological roles of the upregulated/ downregu-

lated metabolites (Fig 5b). The metabolites comprising biomarker model (proline, lysine/

arginine, taurine, threonine, glutamate) were also found with significant impact in pathway

analysis thereby further large sample study will help in predicting their role in susceptibility/

recovery of ARDS disease course.

A comparison study was followed up to understand the role of these biomarkers in lung

physiology. The novel findings in this study arise from the fact that:(1) NMR based metabolo-

mics can differentiate mild and moderate/severe ARDS group on the basis of discrete meta-

bolic signature distinct from the clinical and other ancillary variables. (2) This is the first

differential study executed on such sample size of ARDS employing the New Berlin definition.

(3) The results have been validated independently in multivariate datasets. (4)The six selective

pool of endogenous markers constituting the predictive biomarker model can reflect the
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metabolic anomaly in ARDS substages with 95 percent accuracy defined by AUROC and the

significantly associated metabolic pathway.

Discussion

Lung injury due to its many etiologies results in complex metabolic perturbation, consequently

metabolites linked to the diseased state shows a surge of metabolites interlinked with the dysre-

gulation of metabolism that can be used to address the various clinical manifestations. ARDS

pathophysiology governing inflammatory reactions results in hypoxia, reactive oxygen species

(ROS) production and oxidative stress which trigger oxidative attack on lysine, arginine, pro-

line, threonine leading to carbonylated proteins. Carbonylated proteins which are oxidated

proteins have found to be implicated in ARDS [57]similar to what we found elevated in our

study. Glutamate was found in increased concentration in the mild group indicating its

Fig 4. a) Hierarchical clustering showing clustering obtained by the discriminating potential of the selected metabolites. b) Heat map

showing the relative intensity of each metabolite in different subgroups in conjunction with dendrogram. c) Area under the curve depicting

the sensitivity and specificity of the proposed biomarker model with 95% accuracy.

https://doi.org/10.1371/journal.pone.0187545.g004
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association with less diseased lung of ARDS. Falling in the class of excitatory neurotransmitters

glutamate evidential role has been implicated in acute lung injury[58]. The role of glutamate

agonist N-methyl-D-aspartate (NMDA) has been reported in the rat lungs.[59] NMDA medi-

ates excitotoxicity through NMDA receptors present possibly in the alveolar capillary area by

causing pulmonary edema[60]. Glutamate signaling can in turn evoke nitric oxide (NO) pro-

duction and apoptosis attributed by caspase 3 productions. Further studies on the physiologi-

cal role of glutamate signaling in lung toxicity can unravel more restorative measures for

ARDS.

Macrophage and neutrophil sequestration results in the collateral release of ROS, proin-

flammatory cytokines hampering epithelial and endothelial functions with increased micro-

vascular permeability due to endothelial barrier disruption. The consequent free radical

production during the pathogenesis of ARDS is likely reduced by the high concentration of

taurine. Taurine is an endogenous sulphur containing amino acid found in neutrophil. Tau-

rine has already been attributed for its protective role as an antioxidant with anti-inflammatory

properties. Taurine has also been found imperative in alleviating IL-2 induced lung injury by

attenuating neutrophil- endothelial interaction[61]. Thus taurine escalation in ARDS is an

index of rescue mechanism to check inflammation.

Another metabolite found proliferated in ARDS patients in our study was arginine. The key

role of arginine has been signified in the intermediary metabolism of critically ill patients with

salient effect in the periods of hypermetabolic stress[62]. Arginine is the only biosynthetic pre-

cursor of NO. Arginine upregulation can be correlated with the body defense mechanism to

increase NO production to relieve pulmonary hypertension associated with hypoxia[63]. NO a

Fig 5. a) The metabolic pathways found significant in ARDS with pathway impact�0.1. b) The significant metabolites (in bold red color)

interaction and associated biological process in ARDS substages is shown with their relative concentration in arbitrary units with respect to

TSP in mild ARDS and moderate/severe ARDS.

https://doi.org/10.1371/journal.pone.0187545.g005
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potent endothelial derived relaxing factor produced by lungs, has got pertinent roles in lung

physiology and pathobiology of lung diseases[64]. Arginine can be prospective target to modu-

late the endothelial NO production. Lysine level was also found to be increased in ARDS and

may be ascribed for its viable defensive role in ARDS. Its role has been found evident in

decreasing NO production thus increasing vascular resistance as reported in neonatal pigs[65].

Another metabolite upregulated in the diseased group is threonine. Threonine a gluconeo-

genic amino acid is found to be associated with sepsis[66] which accounts to be a major aetio-

logical factor of ARDS. It regulates immune responses by the production of antibodies,

triggers lymphocyte proliferation with a significant role in the inhibition of apoptosis[67].

There is a paucity of literature suggesting the immunoregulatory role of threonine in the criti-

cal setting of lung physiology. Proline, a proteogenic secondary amino acid is a key precursor

of collagen formation and mesenchyme in the lungs. It showed a significant increase in the

ARDS group. Collagen is found to be associated with branching in airways. Airway remodel-

ling in chronic lung diseases is reported with the production of proline due to the activity of

arginase from alveolar macrophages[68]. Proline residues are vulnerable to oxidation by ROS

resulting in fragmentation and apparent loss of function. Proline displays a relevant role as a

stress substrate in the microenvironment of inflammation[69].

These metabolites (lysine, arginine, proline, threonine, taurine, glutamate) can be used as a

possible measure to illustrate the complex pathophysiology associated with lung injury and

thus exemplifying the different metabolic pattern and its associated biochemical alterations

exhibited in mild and moderate/severe ARDS. The above pilot study helped in identifying

diagnostic signatures based on ARDS substages. But the subsequent biomarker credentials

based on severity and progression requires more such follow up and outcome studies with vali-

dation in large sample size. The above mentioned limitation is on the pipeline to further estab-

lish the role of the proposed biomarker model in the clinical setting.

Conclusion

In conclusion, NMR based metabolomics study was performed to fingerprint the metabo-

lites depicting different stages of ARDS and their impact in the associated biological path-

way suggesting their possible role in susceptibility/recuperation. Iterative statistics led to

the compilation of 6 key metabolites which could differentiate mild and moderate/severe

ARDS, thus arriving at a conclusive predictive biomarker model. The pivotal biological

roles of these biomarker candidates investigated through pathway analysis can further estab-

lish their contribution to ARDS complex heterogeneity and disease manifested systemic

response. The prior research findings are based on pilot study which necessitates streamlin-

ing the putative biomarker model in future prospective cohort studies to establish its diag-

nostic accuracy and potency. Further research into these biomarkers can give better

understanding of the pathophysiology, progression and their possible utility and applicabil-

ity as therapeutic targets. Our study infers NMR based metabolomics as a plausible tool with

multidisciplinary applications to provide biomarker model having potent implication in

ARDS management with distinct clinical relevance and downstream effect of metabolome

in ARDS stages.

Supporting information

S1 Text. (Figure A): Representative 800 MHz 1H−13C HSQC spectrum of mBALF collected

from ARDS patient depicting diseased lung-specific metabolites. (Figure B): Representative

800 MHz 1H−1H TOCSY spectrum of mBALF collected from ARDS patient depicting dis-

eased lung-specific metabolites. (Figure C): Data normalization by Pareto scaling and log
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transformation. Branched chain amino acids = BCA. (Figure D): a) Two-dimensional and b)

Three-dimensional score plot of principal component analysis with red color representing

Mild ARDS and green as Moderate/ Severe ARDS, c) Two-dimensional and d) Three-dimen-

sional score plot of partial least squares discriminant analysis with red color representing Mild

ARDS and green as Moderate/ Severe ARDS e) values of the classification performance

assessed by accuracy, R2 and Q2f) third component best classifies the model shown with

asterisk. Principal component = PC, partial least squares discriminant analysis = PLS-DA.

(Figure E): Variables importance in projection (VIP). (Figure F): Mean ± standard error of

the nine metabolites is shown with respect to the Trimethylsilylpropanoic acid concentration

(relative concentration in arbitrary unit). Trimethylsilylpropanoic acid = TSP, arbitrary

unit = au, Branched chain amino acids = BCA. (Figure G): a) Volcano plot with red dot show-

ing important metabolites. b) Significant values obtained from volcano plot. PRO = Proline,

LYS/ARG = Lysine/arginine, TAU = Taurine, THR = Threonine c) statistical tool empirical

Bayesian analysis of metabolites to show the discerning markers d) values obtained from

empirical Bayesian analysis of metabolites. Fold change = FC, false discovery rate = FDR,

empirical Bayesian analysis of metabolites = EBAM. (Figure H): a) and c) Random forest clas-

sification error with accuracy b) significant metabolites on the basis of mean decrease accu-

racy and d) Values of mean decrease accuracy. out of bag error = OOB error. (Table A):

Classification results obtained from discriminant function analysis of 17 metabolites with

prediction accuracy of 94.4%. (Table B): Significant metabolites selected by T-test with a

threshold p value of <0.05 analogous with Variable importance in projection values.

(Table C): Discriminant function analyses of nine metabolites with 88.9% correct classifica-

tion. (Table D): The classification result of stepwise discriminant function analysis to weed

out 5 discriminating markers with 83.3%correct classification. (Table E): Partial least squares

discriminant analysis cross validation details of 6 putative biomarkers with values of the classi-

fication performance assessed by accuracy, R2 and Q2and third component best classifies the

model.
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