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Abstract

Background

Measurement of end-tidal CO2 (ETCO2) can help to monitor circulation during cardiopulmo-

nary resuscitation (CPR). However, early detection of restoration of spontaneous circulation

(ROSC) during CPR using waveform capnography remains a challenge. The aim of the

study was to investigate if the assessment of ETCO2 variation during chest compression

pauses could allow for ROSC detection. We hypothesized that a decay in ETCO2 during a

compression pause indicates no ROSC while a constant or increasing ETCO2 indicates

ROSC.

Methods

We conducted a retrospective analysis of adult out-of-hospital cardiac arrest (OHCA) epi-

sodes treated by the advanced life support (ALS). Continuous chest compressions and ven-

tilations were provided manually. Segments of capnography signal during pauses in chest

compressions were selected, including at least three ventilations and with durations less

than 20 s. Segments were classified as ROSC or non-ROSC according to case chart anno-

tation and examination of the ECG and transthoracic impedance signals. The percentage

variation of ETCO2 between consecutive ventilations was computed and its average value,

ΔETavg, was used as a single feature to discriminate between ROSC and non-ROSC

segments.

Results

A total of 384 segments (130 ROSC, 254 non-ROSC) from 205 OHCA patients (30.7%

female, median age 66) were analyzed. Median (IQR) duration was 16.3 (12.9,18.1) s.

ΔETavg was 0.0 (-0.7, 0.9)% for ROSC segments and -11.0 (-14.1, -8.0)% for non-ROSC
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segments (p < 0.0001). Best performance for ROSC detection yielded a sensitivity of 95.4%

(95% CI: 90.1%, 98.1%) and a specificity of 94.9% (91.4%, 97.1%) for all ventilations in the

segment. For the first 2 ventilations, duration was 7.7 (6.0, 10.2) s, and sensitivity and speci-

ficity were 90.0% (83.5%, 94.2%) and 89.4 (84.9%, 92.6%), respectively. Our method

allowed for ROSC detection during the first compression pause in 95.4% of the patients.

Conclusion

Average percent variation of ETCO2 during pauses in chest compressions allowed for

ROSC discrimination. This metric could help confirm ROSC during compression pauses in

ALS settings.

Introduction

Waveform capnography provides a continuous non-invasive measure of the concentration of

partial pressure of carbon dioxide (PCO2) during the breathing cycle. The value of PCO2 at the

end of expiration is known as end-tidal carbon dioxide (ETCO2), and can be used to indirectly

monitor cardiac output and pulmonary blood flow [1–4].

According to current advanced life support (ALS) guidelines [5, 6], monitoring ETCO2 level

during resuscitation is beneficial for several reasons including: supervision of cardiopulmonary

resuscitation (CPR) quality [7–10], prediction of patient’s outcome [11–15], and early recogni-

tion of return of spontaneous circulation (ROSC) [16–19]. The relationship between ETCO2

and defibrillation effectiveness could also be useful to guide defibrillation during CPR [20].

Early recognition of ROSC prevents unnecessary administration of chest compressions and

adrenaline [21, 22]. However, inappropriate interruptions of chest compressions can reduce

the chance of survival [23–25]. In order to provide best chance of survival, interruptions in

CPR for assessing the presence of ROSC should be minimized [5, 6].

Accurate detection of ROSC using waveform capnography in pre-hospital ALS settings

remains a challenge. Existing methods are based on the detection of sudden increases in the

level of ETCO2 [16–19]. However, the obtained results generally lack sensitivity or specificity.

Quality of CPR influences the interpretation of ETCO2 [21, 22]. Chest compressions can raise

ETCO2, while increasing ventilation volume or rate decrease ETCO2 [26]. A recent study mod-

eled the ETCO2 percent decay with each ventilation in the absence of circulation, assuming

constant volume and rate [27].

The aim of the present study was to investigate if the assessment of the evolution of ETCO2

during chest compression pauses could allow for ROSC detection. Our working hypothesis

was: a decay in ETCO2 during a compression pause would indicate no ROSC while a constant

or increasing ETCO2 would indicate ROSC. Furthermore, if the ECG shows an organized

rhythm, ETCO2 trend could help to discriminate pulseless electrical activity (PEA) from a per-

fusing rhythm (PR).

Methods

Data collection

This is a retrospective study of adult out-of-hospital cardiac arrest (OHCA) episodes attended

by Tualatin Valley Fire & Rescue (TVF&R), an ALS emergency medical service agency (Tigard,

Oregon, USA) from 2006 through 2017. The database is part of the Portland Resuscitation
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Outcomes Consortium Epidemiological Cardiac Arrest Registry approved by the Oregon

Health&Science University (OHSU) Institutional Review Board (IRB00001736). The database

does not include patient identifying information.

Episodes were recorded using Heartstart MRx monitor-defibrillators (Philips, USA),

equipped with capnography monitoring using sidestream technology (Microstream™, Oridion

Systems Ltd., Israel) and CPR quality monitoring (Q-CPR™). Airway management techniques

included bag-valve-mask (BVM) ventilation, supraglottic airway (SGA) devices and endotra-

cheal tube (ETT). In the early years, CPR followed the 30:2 approach moving to continuous

chest compressions (without pauses for ventilations) in 2012.

Segment selection

Two biomedical engineers (JJG and JMR) visually inspected four signals extracted from the

OHCA defibrillator recordings: capnogram, compression depth signal, ECG and transthoracic

impedance (TTI). Only episodes, one per patient, with reliable capnograms were included in

the study. Segments of capnography signal during pauses in chest compressions were identi-

fied in each episode. Only segments shorter than 20 s, with at least three ventilations, and with

ETCO2 values equal or higher than 10 mmHg were included in the analysis. ETCO2 values

lower than 10 mmHg were assumed to indicate absence of ROSC [5].

The selected segments were then classified as ROSC or non-ROSC. We reviewed the ROSC

annotations by the ALS providers and confirmed the presence of an organized rhythm in the

ECG. Then, in case of doubt between an organized non-perfusing (PEA) or PR, we examined

the TTI signal to locate its circulation component [28]. We selected a single ROSC segment

per patient, the first segment without chest compressions after the first clinical annotation of

ROSC. Conversely, several non-ROSC segments per single patient were included. Fig 1 shows

two segments corresponding to ROSC (panel A) and non-ROSC (panel B). Capnogram, com-

pression depth, ECG and TTI signals are depicted for each segment. In both segments, the

compression depth signal is a flat line, reflecting the absence of chest compressions. The ECG

in panel A corresponds to a PR. The presence of low amplitude ripples in the TTI between the

large fluctuations caused by ventilation confirm circulation [28]. Conversely, the ECG in panel

B corresponds to a PEA, confirmed by the absence of ripples in the TTI.

Segments characterization

For each included segment, the following values were manually annotated in the capnogram

(Fig 1): the start and end of the segment in seconds (ts, te), depicted in the figure with vertical

red lines; the number of ventilations within the segment (nv); and the ETCO2 value per venti-

lation (ETn), for n = 1. . .nv. ETn were calculated as the maximum concentration of CO2

reached in the capnogram plateau, and are depicted in the figure with red dots. Once a seg-

ment met the inclusion criteria, it was characterized by four features:

• Mean ventilation rate (ventilations per minute, vpm): vr ¼ nv
te � ts
� 60.

• ET0 (mmHg): the ETCO2 value for the first ventilation.

• ΔETn (%): percentage variation of ETn between consecutive ventilations calculated as

DETn ¼
ETn � ETn� 1

ETn� 1
� 100 for n = 1. . .nv−1. Positive ΔETn means a positive trend in

ETCO2 between consecutive ventilations while negative ΔETn means a negative trend. A

zero value indicates a stable ETCO2.

• ΔETavg (%): the average variation calculated as the mean of percentage variation ΔETn.
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Fig 1. Examples of segment annotation. (A) ROSC segment and (B) non-ROSC (PEA) segment. Capnogram,

compression depth, ECG and transthoracic impedance (TTI) signals are depicted for each segment.

https://doi.org/10.1371/journal.pone.0251511.g001
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Method for ROSC detection

Discrimination between ROSC and non-ROSC segments was conducted using the ΔETavg

feature, as a metric of the positive or negative trend in ETCO2 variation. We compared the

ΔETavg values with a detection threshold: segments presenting ΔETavg greater than the thresh-

old were classified as ROSC. Values equal to or less than the threshold were classified as non-

ROSC.

Statistical analysis

Ten-fold cross-validation (multiple train/test split) was used to assess the predictive ability of

the discrimination method. For each iteration, the discrimination threshold was set using the

training set. The threshold was the value corresponding to the intersection between sensitivity

(Se) and specificity (Sp). Patients were unrepeated in the training and test set for each iteration.

No additional stratification was applied. Se was defined as the proportion of annotated ROSC

segments that were detected as ROSC by our method. Sp was defined as the proportion of

annotated non-ROSC segments that were detected as non-ROSC. Positive predictive values

(PPV) and negative predictive values (NPV) were also calculated. Their corresponding 95%

confidence intervals (CI) were reported.

Results were reported as median (IQR) since distributions did not pass the Lilliefors nor-

mality test. Comparison between groups was performed using the Wilcoxon rank sum test. P-

values lower than 0.05 were considered significant. The distribution of ET0, vr and ΔETavg per

segment were depicted using box plots.

We also analyzed the results with respect to the airway management technique, ETT or

SGA.

Results

Concurrent signals of interest (capnogram, compression depth, ECG and TTI signals) were

available in 980 adult OHCA episodes (one per patient), as illustrated in Fig 2, of which 390

included information regarding clinical ROSC annotation. Episodes with poor ECG, TTI or

chest compression signal quality were discarded (173 ROSC; 61 non-ROSC). We also excluded

episodes with high proportion of non-legible, non-recorded capnogram or capnogram pre-

senting frequent disconnections (40 ROSC; 225 non-ROSC). A total of 481 (177 ROSC; 304

non-ROSC) OHCA episodes were eligible for analysis.

After applying the inclusion criteria for segment selection, 384 segments from 205 patients

were included in the study. Median patient age was 66 years (55-79), and 63 of them (30.7%)

were female. Eighty seven (87) patients had their airway managed with SGA (42.4%), and 115

with ETT (56.1%). Airway type was not known for the remaining 3 episodes (1.5%). Of the

384 segments, 130 were annotated as ROSC (33.9%) and 254 were annotated as non-ROSC

(66.1%). Rhythm prevalence for non-ROSC segments was: 23 asystole, 193 PEA, 37 ventricular

fibrillation, 1 ventricular tachycardia.

Fig 3 shows some examples of the calculation of the discrimination parameter ΔETavg for

ROSC and non-ROSC segments.

Table 1 shows the distributions of the analyzed parameters. For the whole set, the median vr

was 13.3 (10.4, 17.5) vpm for ROSC segments, and 14.5 (11.1, 18.6) vpm for non-ROSC seg-

ments (p< 0.0001). ET0 was 45.8 (34.7, 58.4) mmHg for ROSC segments, and 29.4 (19.1, 39.6)

mmHg for non-ROSC segments (p< 0.0001). ΔETavg presented values of 0.0 (-0.7, 0.9)% for

ROSC segments, and -11.0 (-14.1, -8.0)% for non-ROSC segments (p< 0.0001).
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Fig 4 shows the distributions of ET0, vr and ΔETavg, for ROSC and non-ROSC segments.

Distributions of ET0 and vr presented wide overlapping ranges for ROSC and non-ROSC pop-

ulations, while for ΔETavg a small overlap was observed.

Table 2 shows the ROSC/non-ROSC classification performance of our proposed classifier

for the whole set and for the PEA/PR subset. Results are provided considering all ventilations

Fig 2. Flowchart of episode selection.

https://doi.org/10.1371/journal.pone.0251511.g002

Fig 3. Illustration of the behavior of ΔETavg. ROSC (A) and non-ROSC (B) capnogram segments with different ΔETavg values.

https://doi.org/10.1371/journal.pone.0251511.g003
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in the segment, only the first three ventilations, and only the first two ventilations. When

all the ventilations of each segment were considered, the median (IQR) duration was 16.3

(12.9, 18.1) s, Se was 95.4% and Sp was 94.9%. Considering the first 3 ventilations of each

segment the duration was 11.9 (9.3, 14.8) s, Se was 93.8% and Sp 95.3%. Considering the first

2 ventilations of each segment the duration was 7.7 (6.0, 10.2) s, with Se 90.0% and Sp 89.4%.

For PEA/PR, Se was 94.6% and Sp was 94.3% for all ventilations, 93.8% and 94.8% for the

first 3 ventilations and 88.5% and 88.1% for the first 2 ventilations. The method confirmed

the clinical decision of ROSC during the first chest compression pause in 95.4% of the

episodes.

There were statistically significant differences between airway types for ET0 within the

ROSC and non-ROSC populations (p = 0.01 in both cases). However, no significant differ-

ences were found for vr (p = 0.87 and p = 0.97 for ROSC and non-ROSC, respectively) and for

ΔETavg (p = 0.2 and p = 0.1, respectively). For ETT segments, Se and Sp were 91.2% (82.8%,

96.0%) and 92.4% (86.5%, 96.0%), respectively; whereas for SGA segments, Se and Sp were

95.8% (82.8%, 99.6%) and 96.5% (91.1%, 98.9%), respectively.

Table 1. Segments characterization as a function of the airway type and ROSC condition. Values are reported as median (IQR).

SGA ETT TOTAL

ROSC non-ROSC ROSC non-ROSC ROSC non-ROSC

Episodes 48 39 80 35 130 75

Segments 48 115 80 132 130 254

Duration (s) 17.0 (16.0,18.6) 15.3 (12.4,18.2) 17.7 (16.2,19) 16.2 (13.0,18) 17.5 (16.1,18.7) 15.9 (12.6,18.0)

nv 4 (3,5) 3 (3,4) 4 (3,5) 3 (3,5) 4 (3,5) 3 (3,4)

vr (vpm) 12.8 (11.0,17.2) 14.5 (12.3,17.8)a 13.6 (9.8,17.8) 14.6 (10.6,19.1)b 13.3 (10.4,17.5) 14.5 (11.1,18.6)c

ET0 (mmHg) 50.9 (40.3,60.8) 30.3 (22.2,39.9)c 41.8 (32.0,55.8) 24.9 (15.1,37.7)c 45.8 (34.7,58.4) 29.4 (19.1,39.6)c

ΔETavg (%) 0.0 (-0.7,1.1) -10.2 (-12.8,-7.3)c 0.3 (-0.5,1.3) -11.4 (-14.5,-7.9)c 0.0 (-0.7,0.9) -11.0 (-14.1,-8.0)c

nv: ventilations per segment; vr: ventilation rate in ventilations per minute (vpm); ET0: initial ETCO2; ΔETavg: average ETCO2 variation.
ap = 0.012,
bp = 0.001,
cp<0.0001.

https://doi.org/10.1371/journal.pone.0251511.t001

Fig 4. Statistical distributions for ROSC and non-ROSC segments. Initial ETCO2 (ET0), ventilation rate (vr), and average variation (ΔETavg) for all

ROSC and non-ROSC segments included in the study.

https://doi.org/10.1371/journal.pone.0251511.g004

PLOS ONE ETCO2 evolution for ROSC detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0251511 May 18, 2021 7 / 13

https://doi.org/10.1371/journal.pone.0251511.t001
https://doi.org/10.1371/journal.pone.0251511.g004
https://doi.org/10.1371/journal.pone.0251511


Discussion

In this retrospective study, we sought to analyze the evolution of ETCO2 during chest com-

pression pauses, that is, in the absence of blood flow generated by chest compressions, during

OHCA interventions. We proposed a metric, the average ETCO2 variation across the ventila-

tions within the pause, to perform as a threshold to discriminate ROSC from non-ROSC

segments.

Several methods for the automated detection of circulation based on the ECG and the TTI

signals can be found in the literature [28–34]. In general, they rely on the analysis of the signals

during chest compression pauses, looking for an organized rhythm in the ECG and the circula-

tion component of the TTI. Since ECG and TTI signals are typically the only available signals

in automated external defibrillators, these methods were intended primarily for basic life sup-

port (BLS) settings.

During ALS, the capnogram can be useful for ROSC detection, as it is an indirect indicator

of perfusion. Pokorná et al. studied the significance of a sudden increase in ETCO2 during

ALS OHCA episodes [18]. ETCO2 values were higher when ROSC was achieved (p< 0.0001).

Analyzing an increase of 10 mmHg in the measured ETCO2 during 2-min periods, they

obtained a sensitivity of 80% with a specificity of 59%. Davis et al. analyzed the prediction of

ROSC prior to a compression pause and non-ROSC indicators within the pause [35]. A heart

rate greater than 40 bpm and a ETCO2 value above 20 mmHg pre-pause and a ETCO2 decay

greater than or equal to 10 mmHg in less than 10 s, and ETCO2 < 20 mmHg intrapause,

yielded a PPV of 95% and NPV of 99% in ROSC detection. Lui et al. evaluated the diagnostic

accuracy of an abrupt and sustained increase in ETCO2 to indicate ROSC in OHCA patients

[19]. For an ETCO2 rise greater than 10 mmHg, ROSC was detected with a sensitivity of 33%

and a specificity of 97%. Brinkrolf et al. assessed the detection of ROSC by identifying ETCO2

trends in real time [16]. The study showed that ROSC time series presented larger percentages

of positive trends than non-ROSC time series (p = 0.003). ROSC was detected with a sensitivity

of 73.9% and a specificity of 58.4%. Finally, Elola et al. used the ECG and the TTI for ROSC

assessment during chest compression pauses. When they included the mean ETCO2 value of

the minute before the beginning of the compression pause in the classifier, they obtained high

sensitivity and specificity values [36].

Table 2. ROSC detection results, as a function of the number of considered ventilations per segment, for the whole set and for the PEA/PR subset. Durations are

reported as median (IQR). The 95% confidence intervals are in parenthesis.

Whole set All ventilations First 3 ventilations First 2 ventilations

Duration (s) 16.3 (12.9, 18.1) 11.9 (9.3, 14.8) 7.7 (6.0, 10.2)

Se (%) 95.4 (90.1, 98.1) 93.8 (88.1, 97.0) 90.0 (83.5, 94.2)

Sp (%) 94.9 (91.4, 97.1) 95.3 (91.8, 97.4) 89.4 (84.9, 92.6)

PPV (%) 90.5 (84.3, 94.5) 91.0 (84.9, 94.9) 81.3 (74.0, 86.8)

NPV (%) 97.6 (94.7, 99.0) 96.8 (93.7, 98.5) 94.6 (90.9, 96.9)

PEA/PR set

Se (%) 94.6 (89.1, 97.6) 93.8 (88.1, 97.0) 88.5 (81.7, 93.0)

Sp (%) 94.3 (90.0, 97.0) 94.8 (90.6, 97.3) 88.1 (82.7, 92.0)

PPV (%) 91.8 (85.8, 95.5) 92.4 (86.5, 96.0) 83.3 (76.2, 88.7)

NPV (%) 96.3 (92.4, 98.3) 95.8 (91.8, 98.0) 92.0 (87.0, 95.1)

Se: sensitivity (TP/(TP+FN)); Sp: specificity (TN/(TN+FP)); PPV: positive predictive value (TP/(TP+FP)); NPV: negative predictive value (TN/()TN+FN). TP: true

positive; FP: false positive; TN: true negative; FN: false negative.

https://doi.org/10.1371/journal.pone.0251511.t002
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In this work, we demonstrated that the average percent variation of ETCO2 during chest

compression pauses allows differentiation between non-ROSC and ROSC segments. The

hypothesis behind was that, in non-ROSC scenarios, with no flow being generated by chest

compressions, exhaled CO2 concentration is driven only by ventilations, and decays with each

ventilation [27]. Conversely, ETCO2 would increase (or at least remain constant) as a result of

the blood flow generated by spontaneous circulation.

This approach yielded a global sensitivity of 95.4% and specificity of 94.9% for predicting

the presence of ROSC, and 94.6% and 94.3%, respectively, for the PEA/PR subset. Our

approach did not rely on ETCO2 absolute measurements. In fact, the ETCO2 value measured

in the first ventilation within the compression pause was not a sensitive indicator of ROSC in

our database (see Fig 4).

ALS guidelines recommend not interrupting chest compressions for more than 10 s [5].

With our criterium of pauses shorter than 20 s we obtained good performance results, above

90% for all metrics. Our approach needed several ventilations to obtain measurement points

in order to assess the ETCO2 evolution, but this may limit the applicability of the method. To

test the algorithm with pauses closer to the recommended 10 s, we applied the method to the

first three and two ventilations of the segments. In case of three ventilations, the median dura-

tion of the segments was 11 s. Performance was similar to the global results. In case of two ven-

tilations, the median duration was 7.7 s and the performance slightly decreased, with values

close to 90%, except for PPV (81.3%). Similar conclusions were derived from the analysis con-

ducted with the PEA/PR subset.

During chest compression pauses for pulse check, the ECG signal is not affected by the

artifact caused by compressions and it can be directly analyzed to establish whether the elec-

trical activity of the heart is compatible with a pulse-generating rhythm. ECGs compatible

with pulse-generating rhythms can be PEA (non-ROSC) or PR (ROSC). Direct observation

of the evolution of ETCO2 in the capnogram would allow us to determine whether there is

ROSC or not. In spite of the efforts made, to the best of our knowledge there is no monitor-

defibrillator providing an automated assessment for the detection of ROSC [23]. Our

method provides a valuable metric from waveform capnography and could be considered as

another step towards an automated algorithm for confirming circulation. Nevertheless,

including additional parameters such as initial ETCO2, ventilation rate or ECG features

could yield better results, especially for PEA/PR discrimination. The reliable and automated

detection of ROSC based on the signals and data provided by the monitor-defibrillator

would be valuable, on the one hand, to prevent prolonged detrimental interruptions of CPR

with PEA, and, on the other hand, to avoid potentially harmful chest compressions and

unnecessary drug administration to patients.

Limitations

A limitation of our work comes from the need to obtain measurement points for several venti-

lations during pauses in compressions. This resulted in the inclusion of pauses longer than rec-

ommended or with ventilation rates differing from recommendation, which should not be

frequent in the practice. The goal for ventilation rate is normally assessed on a minute-by-min-

ute basis or for the whole episode. However, ventilation rate may be locally either lower or

higher than the average. Considering segments with ventilation rates close to 10 vpm implied

discarding the majority of potential segments, most of them for having much higher rates.

Aware of this limitation, we analyzed the first two ventilation segments (see Table 2). As

expected, results were worse but reflected the goodness of the method when in adherence to

the guidelines.
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Our study did not consider the variability in ventilation volumes (unavailable in our data-

base and generally in the field). We hypothesize that our method would be a reliable tool in

clinical practice when ventilations are administered with stable volumes.

In our study, ROSC was confirmed by clinicians’ annotations and by the analysis of the

ECG and of the circulation component in the TTI. This methodology has been widely used

in the literature as a surrogate for circulation assessment, and constitutes the best possible

approach in the absence of invasive indicators. Still, we recognize the challenge of a real deter-

mination of ROSC in pre-hospital settings. Thus, we only selected the first ROSC segment for

each episode. This restrictive criterium may, however, limit the applicability of the method.

The database was completed over a long period of time. Guidelines changed and the EMS

systems moved from 30:2 compression-ventilation ratio to continuous compressions. Recom-

mended depth and rate of chest compressions also changed (2010 and 2015 guidelines). How-

ever, the results of this study should not be affected as the analysis was performed during chest

compression pauses.

All the recordings of the database were obtained using a single capnograph manufacturer

ETCO2 levels could be slightly influenced by the equipment, so it would be helpful to validate

our findings using capnographs from different manufacturers. Also, a large number of record-

ings were discarded due to poor signal quality. This work would deserve validation with more

data to ensure that our results are generalizable.

Conclusion

Assessment of ETCO2 variation during pauses in chest compressions is a valuable metric to

detect ROSC. A negative value would suggest non-ROSC while a constant or positive value

would reflect ROSC. The metric we propose could help confirm the presence or absence of cir-

culation during compression pauses, for ALS agencies that have ETCO2 monitoring capability.

However, performance slightly worsened for pauses less than 10 s, so further research is neces-

sary to obtain a feasible ROSC indicator from waveform capnography.

Supporting information

S1 File. Segment characterization. Detailed results per recording, segment and individual

ventilation within each segment (see Table 1 for reference).
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