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Abstract: Cervical cancer is a significant gynecological cancer and causes cancer-related deaths
worldwide. Human papillomavirus (HPV) is implicated in the etiology of cervical malignancy.
However, much evidence indicates that HPV infection is a necessary but not sufficient cause in cervical
carcinogenesis. Therefore, the cellular pathophysiology of cervical cancer is worthy of study. This
review summarizes the recent findings concerning the ion transport processes involved in cell volume
regulation and intracellular Ca2+ homeostasis of epithelial cells and how these transport systems are
themselves regulated by the tumor microenvironment. For cell volume regulation, we focused on
the volume-sensitive Cl− channels and K+-Cl− cotransporter (KCC) family, important regulators for
ionic and osmotic homeostasis of epithelial cells. Regarding intracellular Ca2+ homeostasis, the Ca2+

store sensor STIM molecules and plasma membrane Ca2+ channel Orai proteins, the predominant
Ca2+ entry mechanism in epithelial cells, are discussed. Furthermore, we evaluate the potential of
these membrane ion transport systems as diagnostic biomarkers and pharmacological interventions
and highlight the challenges.

Keywords: cervical cancer; cell volume regulation; K+-Cl− cotransport; volume-sensitive Cl−

channels; store-operated Ca2+ entry; stromal interaction molecule (STIM); Orai; migration; cell
cycle progression

1. Introduction: An Overview of the Epidemiology and Pathogenesis of
Cervical Cancer

Cervical cancer is the fourth most frequently diagnosed cancer and the fourth leading
cause of cancer death in women, with an estimated 604,000 new cases and 342,000 deaths
worldwide in 2020 [1]. Most cervical cancer cases are diagnosed among women in low-
income and middle-income countries [1–3]. The most common type of cervical cancer is
squamous cell carcinoma (SCC), which develops from cervical intraepithelial neoplasia
(CIN). The main risk factor for cervical carcinoma is human papillomavirus (HPV) infection,
which drives several critical molecular events in cervical cancer development [4]. The
integration of the HPV genome into the host chromosome of cervical epithelial cells is a
critical early event in the malignant progression of cervical lesions. The HPV oncoproteins
E6 and E7 are responsible for the initial pathomolecular changes in cervical epithelial cells.
The viral proteins inactivate two main tumor suppressor proteins, p53 and retinoblastoma
(Rb). Inactivation of these host proteins disrupts DNA repair machinery and apoptosis,
leading to uncontrolled cell proliferation. As a result, multiple genes involved in DNA
repair, cell proliferation, growth factor activity, angiogenesis, and mitogenesis become
highly expressed in CIN and cervical cancer [5]. This genomic instability allows HPV-
infected cells to progress towards invasive carcinoma.

Despite the critical role of oncogenic HPV in cervical dysplasia and cervical cancer
development, only a certain percentage of the persistent HPV infections eventually develop
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into cervical carcinoma, independent of their association with HPVs [1,6]. Much evidence
indicates that HPV infection is a necessary but insufficient cause of cervical cancer [1,7,8].
More than 80% of women have been infected with HPV, but only a small proportion of
women develop cervical cancer. The high-risk HPV types, mainly HPV16 and HPV18, cause
cervical cancer in more than 80% of the cases [1]. Some low-risk HPVs are known to cause
benign cervical lesions and genital warts. The incidence of invasive cervical cancer varies
considerably in different populations, reflecting the influence of variations in environmental
factors, some sexually transmittable infections (HIV and Chlamydia trachomatis), primary
prevention by HPV vaccination, Pap smear surveillance, and treatments of pre-invasive
lesions [1]. Additional factors may contribute to the pathogenesis of cervical cancer [9,10].
Therefore, the cellular pathophysiology of cervical cancer is still worth being investigated.

Membrane ion transport systems are the gatekeepers for cells and organelles, thereby
controlling the transportation of various exogenous/endogenous substances via influx/efflux
mechanisms. Recent studies have uncovered the remodeling of ion homeostasis during
cancer progression and explored the novel functions of membrane ion transport systems
in the regulation of tumor malignancy (see reviews [11–17]). However, little information is
available on the roles of membrane ion transport systems in the neoplastic transformation
and progression of cervical epithelial cells.

This review focuses on the membrane ion transport processes involved in cell volume
regulation and intracellular Ca2+ homeostasis of epithelial cells and how these transport sys-
tems are themselves regulated by the tumor microenvironment. For cell volume regulation,
we focused on the volume-sensitive Cl− channels and K+-Cl− cotransporter (KCC) family,
important regulators for the ionic and osmotic homeostasis of epithelial cells. Regarding in-
tracellular Ca2+ homeostasis, the Ca2+ store sensor STIM molecules and plasma membrane
Ca2+ channel Orai proteins, the predominant Ca2+ entry mechanism in epithelial cells, are
discussed. Furthermore, we summarized recent progress in studies on the potential for
diagnostic biomarkers and pharmacological interventions of these membrane ion transport
systems. Finally, the challenges that remain to be further dissected are also discussed.

2. Cell Volume Regulation and Volume-Sensitive Cl− Channels

The maintenance of homeostasis is a fundamental cellular property [18]. The reg-
ulation of cell volume, one of the fundamental cellular homeostatic mechanisms, is a
widespread process that enables cells to maintain their average volume in the face of alter-
nations in extracellular osmolarity [19]. Cells have to avoid drastic cell volume changes,
which jeopardize structural integrity and constancy of the intracellular environment. Even
under the constant extracellular osmolarity, cell volume is frequently challenged by the
membrane transport of osmotically active substances and the formation consumption of
cellular osmolytes by metabolism [20]. Accumulating evidence supports that cell volume
homeostasis does not simply mean volume constancy but also serves as the integration
of events in regulating cellular mechanic properties and functions, including epithelial
transport, metabolism, cell proliferation, differentiation, migration, and cell death [21–25].
Moreover, cancer cell migration and invasion that are committed steps in tumor metastasis
also involve extensive modification of the cell volume and geometrical morphology at
different regions of the cells [26,27].

The homeostasis of cell volume involves the continuous functioning of the ion trans-
port process across the plasma membrane and the fluxes of organic osmolytes and metabo-
lites [20,28,29]. In response to the hypotonic stress, cells defend themselves by activating
an efflux of cell osmolytes, including ions and specific organic molecules together with
osmotically responsive water, to accomplish the process of regulatory volume decrease
(RVD) [28,30]. Different ion transport systems have been reported to be responsible for the
loss of K+ and Cl− in response to cell swelling [31,32]. In most cell types, the predominant
pathway for RVD-associated loss of K+ and Cl− is the selective activation of separate
volume-sensitive K+ and Cl− channels [19,33,34]. Several proteins have been investigated
and discussed as the channel mediating the release of Cl– during RVD, e.g., ICln [35]
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and SWELL1 (also known as the leucine-rich repeat-containing protein 8A, LRRC8A) [36].
Another important pathway for RVD is the K+-Cl− cotransporter (KCC), which transports
K+ and Cl− stoichiometrically in either direction across plasma membranes and is observed
predominantly in erythrocytes [37–39], neurons [40], and some epithelial cells [41].

On the other hand, hypertonic stress that causes the osmotic shrinkage of cells can acti-
vate the regulatory volume increase (RVI). Shrunken cells can thereby increase their volume
towards the original levels by upregulating the net influx of cell osmolytes, including Na+,
Cl−, and often K+ as well, and concurrent uptake of water [42]. The central ion transport
systems accomplishing electrolyte accumulation in shrunken cells are the Na+-K+-2Cl−

cotransporter (NKCC) and the Na+/H+ exchanger (NHE) [43,44]. The effects of NHE also
lead to the alkalization of the cell and thus the coincidental activation of the Cl−/HCO3

−

exchanger [45]. A schematic diagram summarizing the regulation and homeostasis of cell
volume by the process of RVD and RVI is shown in Figure 1.
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Figure 1. Regulation and homeostasis of cell volume: regulatory volume decrease (RVD) and regula-
tory volume increase (RVI). Under hypotonic stress conditions of cell swelling (left side), the cell acti-
vates the regulatory volume decrease (RVD). In this condition, the volume-regulatory accumulation
and loss of electrolytes are mediated by the activity of membrane channels or transporters responsible
for the loss of K+ and Cl−, and organic solutes along with water in response to cell swelling. On
the contrary, cell volume shrinks due to water extrusion under hypertonic stress (right side), and a
counter-response of regulatory volume increase (RVI) occurs to restore normal cell volume. Shrunken
cells can thereby increase their volume towards the original levels by upregulating the net influx of
cell osmolytes, including Na+, Cl−, and often K+, and concurrent uptake of water.

2.1. Volume-Sensitive Cl− Channels Associated with Human Cervical Carcinogenesis

Volume-regulated anion channel (VRAC) is ubiquitously expressed in vertebrate
cells [46,47]. In addition to volume regulation, VRACs play essential roles in several
critical physiological processes, such as osmolyte transport, metabolism, hormone release,
cell migration, proliferation, and differentiation [32,48,49]. Among different VARCs, the
activation of volume-sensitive Cl− channels has been demonstrated essential in the volume
regulation of several non-excitable and excitable cell types [29,50]. Volume-sensitive Cl−

channels have been reported to participate in cell survival and migration, given their ability
to coordinate ion and water movement through the plasma membrane [19,51]. However,
the expression and functional significance of volume-sensitive Cl− channels in cervical
carcinoma have been less studied.

Our research group was the first to study the roles of the preferentially activated
Cl− channel in cervical carcinoma [52,53]. The activations of volume-sensitive Cl− cur-
rents in various human cervical epithelial cells representing different stages of cervical



Int. J. Mol. Sci. 2022, 23, 333 4 of 22

carcinogenesis were investigated using the whole-cell patch-clamp technique. It was found
that hypotonicity activated an outward rectified, ATP-dependent, volume-sensitive Cl−

current in human cervical cancer cells, including four cervical cancer cell lines, primary
cells of carcinoma in situ, and invasive cancer of the cervix, but not in non-cancerous
HPV-immortalized cells and normal cervical epithelial cells. This was the first report that
suggested that the activation of volume-sensitive Cl− channels is associated with malignant
transformation of human cervical squamous epithelium independent of various cancer
stages, histopathological types, and HPV DNA positivity. Moreover, the cAMP-mediated
Cl− currents were ubiquitously activated in all cervical squamous cells studied, regardless
of the stages of carcinogenesis, indicating that not all of the Cl− channels are uniformly
upregulated during cervical carcinogenesis [52].

In addition to the osmotic challenge, all cells possess mechanisms to maintain the
homeostasis in cell volume precisely during cell cycle progression [54–57]. Especially at the
G1/S transition, cells undergo a significant increase in size, disturbing the homeostasis of
cell volume. Thus the process of RVD is activated to balance such cell volume decrease. It
has been shown that the differential expression of K+ channels and accompanying mem-
brane potential changes are the key to cell cycle checkpoints [58,59]. However, whether the
progression of the cell cycle is accompanied by differential expression of VRAC activity
was less studied. We have previously demonstrated that cell cycle progression correlates
with the expression of VRAC activity by employing the whole-cell patch-clamp recording
in human cervical cancer cells under various characteristics of the cell cycle conditions [60].
The arrest of cell growth in the G0/G1 phase by aphidicolin was accompanied by a signif-
icant decrease in the VRAC current density. However, the inhibited VRAC activity was
recovered by the re-entry into the cell cycle upon aphidicolin removal.

Moreover, pharmacological blockade of VRACs caused proliferating cervical cancer
cells to arrest in the G0/G1 stage, indicating that activity of VRAC is critical for G1/S
checkpoint progression. This was the first study that provided important information on
the functional significance of VRACs in the cell cycle clock of human cervical cancer cells.
These results, together with reports showing the inhibition of cell proliferation by blockage
of volume-regulatory K+ and Cl− channels in other cell types, such as human peripheral
T lymphocytes [61], endothelial cells [62], and microglial cells [63], indicate a possible role
for these volume-sensitive channels in mitogenesis.

2.2. Differential Osmosensing Signaling Pathways of Volume-Sensitive Cl− Channels Associated
with Human Cervical Carcinogenesis

The volume-sensitive Cl− channels, leading to RVD, were distinctly activated in cer-
vical cancer cells with different tumor potentials [52,53,60,64]. One would be curious
whether the osmosensing signalings involved in mediating RVD and controlling activities
of volume-sensitive Cl− channels are also altered in different cervical cell types. Several
signaling molecules have been suggested as potential mediators of RVD, including intracel-
lular Ca2+, calmodulin-dependent protein kinase, protein kinase C (PKC), cyclic adenosine
monophosphate (cAMP), and protein kinase A (PKA) [32,65–68]. The pharmacological
screening on the possible signaling pathways involved in cell volume regulation reported
that the signaling pathways mediating RVD in different cervical cell types involve the
differential activation of distinct PKC isoforms [68]. Phospholipase C (MAPK) signaling
with downstream activation of conventional, classic PKCs was involved in the RVD re-
sponse of cervical cancer cells. On the other hand, different PKC isoforms unrelated to
upstream PLC regulation were involved in the RVD of HPV-immortalized and normal
cervical epithelia. Results from the whole-cell patch-clamp studies and immunofluores-
cence staining suggested the involvement of the conventional PKC-α, but not PKC-β or
PKC-γ, in the regulation of RVD responses and activation of volume-sensitive Cl− channels
in cervical cancer cells [69]. Even though the vast amount of studies demonstrated that
the signaling of PKCs regulates multiple pathways relevant for cell cycle progression,
tumorigenesis, and metastasis, the relevance of individual PKC isoforms in the progression
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of human cancer is still a matter of controversy [70]. The above-mentioned results, together
with the previous studies showing the differential RVD responses in cervical cells with
different malignant potentials [52,53,60], suggested the differential role of individual PKCs
in cervical carcinogenesis involves the differential regulatory mechanisms on cell volume
regulation and volume-sensitive Cl− channels.

The cytoskeleton is a dynamic intracellular structure that plays an essential role in
regulating most biological processes, including the stability of cell shape, the onset of cell
movement, and wound healing. The dynamic rearrangement of the cytoskeleton has also
been shown involved in cell volume regulation in response to osmotic challenges [71–73].
In RVD, actin filaments are depolymerized during cell swelling, followed by actin polymer-
ization at the phase of volume recovery. Cell swelling also increases microtubule stability
and stimulates the expression of tubulin. The differential roles of actin filaments and micro-
tubules in regulating volume-sensitive Cl− channels and RVD responses in human cervical
cancer were investigated with the model of HT-3 cells [74]. The results from whole-cell
voltage clamping and cell size monitoring showed that the drugs that affect cytoskeleton
integrity have variable effects on the expression of volume-sensitive Cl− currents of cervical
cancer cells. Depolymerization of actin with cytochalasin B potentiated the expression of
Cl− currents in hypotonic stress and significantly prolonged RVD responses. In contrast,
stabilization of actin polymerization by phalloidin abolished the increase in hypotonicity-
elicited whole-cell Cl− conductance and retarded the cell volume recovery. Inhibition of
microtubule assembly by colchicine had no effects on volume-sensitive Cl− current and
RVD responses. Stabilization of microtubule by paclitaxel dose-dependently inhibited the
activation of volume-sensitive Cl− channels and the process of RVD. These point to the
importance of the functional integrity of actin filaments and microtubules in maintaining
the effective RVD responses and activation of volume-sensitive Cl− channels in human
cervical cancer cells.

However, it should be noted that the architecture of actin filaments seems to have
varying effects on RVD, and volume-sensitive Cl− channels in different cell types be di-
verse in a cell-dependent manner, indicating the cell-type-specific requirement of actin
cytoskeleton for cell-volume regulation. Some have similar findings to ours [74], show-
ing that disruption of actin filaments potentiates the activation rate of volume-sensitive
Cl− channels [75–77], whereas some other reports indicated that actin polymerization is
required for the activation of volume-sensitive Cl− channels [78–80]. This also implies
that different channels and transporters involved in volume regulation may have various
associations with the cytoskeleton.

The above-mentioned studies on the association and osmosensing signaling of volume-
sensitive Cl− channels in human cervical epithelial cells may provide a model for a better
understanding of the molecular carcinogenesis of human cervical cancer. In addition,
volume-sensitive Cl− channels in cervical cancer cells may offer a potential target for
therapeutic intervention of cervical carcinoma and the reversal of malignant progression in
human cervical carcinogenesis [81].

3. K+-Cl− Cotransport and K+-Cl− Cotransporter (KCC) Family

The electroneutral K+-Cl− cotransport in either direction across the plasma membrane
is another important pathway for RVD [40]. K+-Cl− cotransport was first characterized as a
hypotonically activated, Cl−-driven, K+ efflux mechanism in human red blood cells (RBCs)
responsible for mediating RVD and maintaining cell volume in response to hypotonic
cell swelling [82,83]. K+-Cl− cotransport is one of the major K+ and Cl− flux pathways
in erythrocytes, neurons, and epithelial cells [38–40]. The activity of KCC plays a signif-
icant role in ionic and osmotic homeostasis, cell volume regulation, and transepithelial
ion transport [41].

Several physiological changes are known to stimulate the activity of K+-Cl− cotrans-
port, such as cell swelling, decreased intracellular pH, increased partial pressure of oxygen,
and urea accumulation [84]. Some pharmacological activators of K+-Cl− cotransport
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have also been identified, including the oxidizing reagents (e.g., hydroxylamine, H2O2,
and NO) and the thiol-alkylating reagent N-ethylmaleimide (NEM) [85]. The intracel-
lular signaling cascades comprising multiple protein phosphorylation and dephospho-
rylation also play an important role in modulating K+-Cl− cotransport activity [86–93].
K+-Cl− cotransport is stimulated by kinase inhibition (e.g., thiol reagents, staurosporine,
and genistein) and inactivated by phosphatase inhibition (e.g., okadaic acid and caly-
culin) [84]. Protein phosphatases PP1A- and PP2A-dependent active dephosphorylation
and the With-No-Lysine (K) (WNK)–STE20-Proline Alanine rich Kinase (SPAK)/Oxidative
Stress Responsive Kinase 1 (OSR1) cascade-mediated inhibitory phosphorylation are im-
plicated in modulating the activity of KCC isoforms, respectively [94–97].

The electroneutral K+-Cl− cotransport is carried out by the four distinct members
of K+-Cl− cotransporter (KCC) encoded by the Solute Carrier 12 (SLC12) gene family
of electroneutral cation-chloride cotransporters [98,99], namely KCC1 (SLC12A4) [100],
KCC2 (SLC12A5) [101,102], KCC3 (SLC12A6) [103,104], and KCC4 (SLC12A7) [104]. The
four KCCs were predicted to share conserved structural features [105,106], including a
central core of 12 hydrophobic transmembrane helices (TMs) flanked by the intracellular
hydrophilic N- and C-terminal ends and a large extracellular domain with several N-linked
glycosylation sites between the 5th and 6th transmembrane helixes (TMs). The intracellular
C-terminal domain contains important sites for phosphorylation and dephosphorylation
that regulate the expression, trafficking, and activity of KCCs [86–93,107]. With the recent
advances in cryo-electron microscopy (cryo-EM), the structures of KCC isoforms have
also been resolved [107–111], which revealed new chemical and biological insights into
the structural topology of KCCs. The cryo-EM structural data confirmed an ordered and
glycosylated loop in the extracellular domain between TM5 and TM6 and two intracellular
domains with numerous phosphorylation sites at the N- and C-terminus. Results of
cryo-EM structures indicated the dimeric organization of KCCs through the dimerization
interphase formed by TM11 and TM12, except mouse KCC4 as a monomer [110].

The activities of KCC1, KCC3, and KCC4, so-called classical volume-regulated or
swelling-activated KCCs, are osmotically sensitive and participate in cell volume regu-
lation [112–114]. The neuronal-specific isoform KCC2 is also activated by cell swelling
and exhibits the constitutive K+-Cl− cotransport activity under isotonic conditions [102].
Therefore, KCC2 is vital in maintaining intra-neuronal Cl− concentration and is required
to establish GABAergic hyperpolarizing synaptic inhibition [40,115]. Indeed, mutations
in the SLC12A5 gene have been found in subjects affected by brain disorders, particularly
epilepsy [115–117].

KCC1, ubiquitously detected in mammalian cells and tissues, is considered to act as
a “housekeeping” KCC isoform for cell volume regulation and transepithelial ion trans-
port [112]. No specific human disorders have been linked to mutations in the SLC12A4 gene,
and K+-Cl− cotransport activity in RBCs is undiminished in KCC1 knockout mice. This
suggested the evolutionary redundancy of KCCs and other unknown functions of KCC1.

Loss-of-function mutations in the human KCC3 gene cause an autosomal disease,
known as Andermann syndrome or the agenesis of the corpus callosum with peripheral
neuropathy (ACCPN) [118]. The symptoms of Andermann syndrome include various
degrees of sensorimotor neuropathy, mental disability, psychotic symptoms, and com-
plete or partial ACCPN. KCC3 KO mice display slowly progressive deafness, peripheral
neurodegeneration, reduced seizure threshold, neurogenic hypertension, and locomotor
dysfunction [119–121], which are consistent with certain features of ACCPN. Moreover,
KCC3 plays a vital role in regulating cell proliferation [122].

KCC4, predominantly found in the heart and kidney, also contributes to volume
regulation [114]. Recently. A novel de novo deletion in the KCC4 gene was identified to
be associated with the sporadic congenital hydrocephalus [123]. Mice with KCC4 gene
disruption develop progressive deafness and renal tubular acidosis [124].

The details of structural insights, molecular characterization, physiological functions, and
pathological defects of KCC isoforms have been comprehensively reviewed [102,112–115,125].
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Here we focused on the emerging importance of K+-Cl− cotransport and individual KCC
isoforms in cervical epithelial carcinogenesis and tumor malignant behaviors.

3.1. K+-Cl− Cotransport Activity Affects Malignant Transformation, Proliferation, and Invasion of
Cervical Epithelial Cells

Our long-term and systemic research highlighted the emerging importance of K+-
Cl− cotransport in cervical epithelial carcinogenesis and tumor malignancies. Firstly,
whether cervical malignancy is accompanied by differential expression of volume-sensitive
KCCs was investigated [126]. The K+-Cl− cotransport activity of normal human cervical
epithelial cells was quiescent in normal physiological conditions but did not respond to
hypotonic stress. In contrast, cervical cancer cells have K+-Cl− cotransport activity which
was also nearly quiescent in normal physiological conditions, but high transport rates
were observed in response to the hypotonic challenge. Results of reverse transcription
polymerase chain reaction (RT-PCR) indicated that cervical carcinogenesis is accompanied
by the up-regulation of mRNA transcripts in volume-sensitive KCC1, KCC3, and KCC4.
Moreover, K+-Cl− cotransport activities were downregulated by protein phosphatase
inhibitors and upregulated by protein kinase inhibitors, indicating that a phosphorylation
cascade modulates the volume-sensitive KCC in cervical cancer cells. Evidence from
molecular identification and functional flux studies demonstrated that the malignant
transformation of cervical epithelial cells is associated with the differential activity and
expression of volume-sensitive KCC isoforms, which plays a significant role in the volume
regulation of cervical cancer cells [126].

Further study demonstrated the critical role of K+-Cl− cotransport as an important
modulator of growth and invasiveness in human cervical cancer [127]. In carcinogenesis,
cervical epithelial cells breach the basement membrane to proliferate and migrate within
the adjacent connective tissue. An important event in the dissolution of the basement
membrane matrix involves the activation of the matrix metalloproteinases (MMPs) cascade,
which is accompanied by the altered expression of several cell adhesion molecules in
the transformed cells [128–130]. Cervical cancer cells expressing a dominant-negative
loss-of-function KCC mutant exhibited inhibited cell growth accompanied by decreased
expressions of the cell cycle regulators retinoblastoma and cdc2 kinase, as well as the
inhibited cellular invasiveness accompanied by reduced expression of αvβ3 and α6β4
integrins and reduced activities of MMPs [127]. Inhibited tumor growth of the subcutaneous
implanted loss-of-function KCC mutant expressing cervical cancer cells in severe combined
immunodeficient (SCID) mice confirmed the crucial role of KCC in promoting cervical
cancer growth and invasion [127]. Thus, blockade of K+-Cl− cotransport may be a useful
adjunctive therapeutic strategy to retard or prevent cervical cancer invasion.

The metastatic and invasive properties of cancer cells are stimulated by specific growth
factors, which poses severe problems to successful cancer treatment. For example, the
insulin-like growth factor 1 (IGF-1) system performs multiple functions in the pathogen-
esis of different types of cancer [131–133]. A further study established the critical role
of K+-Cl− cotransport in IGF-1 signaling to promote the growth and spread of cervical
cancers [134]. The findings demonstrated that IGF-1 increased KCC expression and activity
in parallel with the enhancement of RVD. IGF-1-stimulated biosynthesis of KCC involved
the Erk1/2 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase
signaling pathways. Pharmacological inhibition and genetic modification of K+-Cl− co-
transport demonstrated that KCC is necessary for IGF-1-induced cancer cell invasiveness
and proliferation. These results suggested IGF-1 promotes cervical cancer development
and progression in part through its action on KCC [134].

3.2. The Distinct Roles of KCC Isoforms in Cervical Carcinogenesis

The emerging importance of individual KCC isoforms in cervical carcinogenesis was
enlightened by the investigations in breast cancer [135]. IGF-1 upregulates the activity
and expression of KCC3 and KCC4, which are differentially required for IGF-1 receptor
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signaling to promote the proliferation and invasiveness of breast cancer cells [135]. Further
studies substantiated the distinct roles of KCC3 and KCC4 in promoting the conversion
of epithelial cells to mesenchymal cells [epithelial-mesenchymal transition (EMT)] and
invasiveness of cervical cancer, respectively [136,137].

A key event for cancer invasion and metastasis is EMT. It is considered a potential
target for the successful treatment of cancer (as reviewed in [138–140]). EMT is known
to enhance some cellular functions of tumors, such as increased invasive migration and
resistance to anoikis. EMT has been regarded as a hallmark for cancer metastasis in
several types of cancer, including breast cancer, cervical cancer, colorectal cancer, and lung
cancer. The downregulation of epithelial markers, such as E-cadherin and β-catenin, and
upregulation of the mesenchymal markers, such as vimentin and fibronectin, are used to
detect the events of EMT.

The literature on the important role of EMT in cervical carcinogenesis is scarce, and
little information is available on the roles of membrane ion transport processes in the
regulation of EMT to promote cervical cancer progression [141]. We were the first group to
investigate if KCC activity is involved in the regulation of EMT by the model of cervical
carcinoma [136]. The blockade of KCC activity increased the colocalization of E-cadherin
and β-catenin in cervical cancer SiHa and CaSki cells [136]. Moreover, KCC3-overexpressed
cervical cancer cells, but not KCC1- or KCC4-overexpressed ones, displayed downregulated
E-cadherin/β-catenin complex formation by inhibiting transcription of E-cadherin gene
and accelerating the proteosome-dependent degradation of β-catenin protein [136]. The
promoter activity assays of various regulatory sequences confirmed that KCC3 expression
is a potent negative regulator for E-cadherin gene expression. That, therefore, promotes the
EMT of cervical cancer cells, thereby stimulating tumor progression.

Another study stresses the critical role of KCC4 in the malignant behaviors of cervical
cancer cells, especially IGF-1 and epidermal growth factor (EGF) dependent cancer cell
invasiveness [137]. IGF-1 and EGF are known to be overexpressed in most types of cancer
tissues and contribute to cancer resistance to existing treatments [131–133,142–144]. A
previous study has shown that IGF-1 and EGF are the two most potent stimulators for
gynecologic cancer cell invasiveness [145]. KCC4-specific siRNA significantly attenuated
endogenous cellular invasiveness of cancer cells, and the residual cellular invasiveness was
much less sensitive to IGF-1 or EGF stimulation. IGF-1 and EGF were shown to stimulate
the recruitment of KCC4 from a presumably inactive cytoplasmic pool of endoplasmic
reticulum (ER) and Golgi to the front-end plasma membrane of migrating cervical cancer
cells. Throughout the process of KCC4 trafficking along the track of actin cytoskeleton, the
membrane microdomain of lipid rafts functions as a platform for the association between
KCC4 the actin-dependent motor myosin Va. Moreover, KCC4 serves as a membrane
scaffold for assembly signal complexes via the association with the actin-binding protein,
ezrin, at the lamellipodia of migratory cervical cancer cells. IGF-1-induced membrane
trafficking of KCC4 and the interaction between KCC4 and ezrin near the cell surface were
dramatically suppressed by the interference with KCC activity by either a pharmacolog-
ical inhibitor or a dominant-negative loss-of-function mutant. Thus, blockade of KCC4
trafficking and surface expression may provide a potential target for preventing IGF-1- or
EGF-dependent cervical cancer metastasis [137].

The novel role of KCC2, known as the neuronal-specific KCC, has also been reported
by using the cell model of cervical cells, showing that KCC2 promotes cervical cancer
cell migration and invasion by an ion transport-independent mechanism [146]. KCC2
was found widely expressed in several human cancer cell lines, including the cervical
cancer cell lines SiHa and Hela. Overexpression of KCC2 in cervical cancer cells enhanced
IGF-1-stimulated cell migration and invasiveness. Immunofluorescent analyses suggested
that KCC2 increases cervical tumorigenesis via the modulation of cell spreading, actin
stress fiber formation, and focal adhesion formation. The novel finding on the role of KCC2
in cervical cancer cells supported that KCC2 expression and function are not restricted
to neurons [147].
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The mechanisms by which K+-Cl− cotransport activity and individual KCC isoforms
affect cervical cancer proliferation and invasion are summarized in Figure 2.
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Figure 2. Schematic diagram illustrating the mechanisms by which KCC affects cervical cancer
proliferation and invasion. The protumorigenic growth factors IGF-1 and EGF are known potent
stimulators for the expression and activity of KCC in cervical cancer cells. K+-Cl− cotransport activity
plays an important role in controlling cancer cell proliferation via the modulation of phosphorylation
two key cell cycle regulators, retinoblastoma (Rb) and cdc2 kinase. Among different KCC isoforms,
KCC3 plays a vital role in regulating cell proliferation. The abundance of E-cadherin and β-catenin
are affected by the expression and activity of KCC3. Thus, the dissociation of the E-cadherin/β-
catenin complex leads to the disorganization of cell-cell junctions, thereby resulting in cervical cancer
invasion. On the other hand, the lamellipodia-localized KCC4 functions as a plasma membrane
scaffold to regulate cytoskeletal reorganization through the interaction with actin-binding protein,
ezrin. The potent effects of KCC4 overexpression on cancer invasion and metastasis also involve
the modulation of MMP-2 activity and cell volume control. KCC2 promotes cervical cancer cell
migration and invasion by an ion transport-independent mechanism of cell spreading, actin stress
fiber formation, and focal adhesion formation.↑, upregulation by KCC; ↓, downregulation by KCC.

3.3. Clinical Implications and Therapeutic Significance of KCC in Cervical Carcinogenesis

Despite the advances in the diagnostic and therapeutic modalities for treating cancer
patients, tumor metastasis and cancer recurrence still represent the primary cause of cancer
death. Molecules that are consistently upregulated in metastatic and recurrent cancers have
the potentials as a reliable biomarker to predict the occurrence, progression, or prognosis
of human cancers.

A series of studies have highlighted the critical role of the KCC family in tumor devel-
opment and progression, suggesting their potentials as the biomarker for the prognosis
of cancer patients. Indeed, the studies on cervical cancers have demonstrated the close
correlations between the expression of individual KCC isoforms and the clinical outcomes
of cancer patients. Immunofluorescent analyses of different KCC isoforms and real-time
RT-PCR of laser microdissected tissues suggested that KCC3 is highly expressed in cervical
carcinoma whereas KCC4 in metastatic cervical cancer tissues [136,137]. Normal squamous
epithelial and non-cancerous stromal tissue express little KCC3 protein, whereas cervi-
cal carcinoma and the tumor nest invaded deeply into stromal tissues express abundant
KCC3 proteins [136]. Moreover, levels of KCC3 mRNA transcripts expressed in tumor
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tissues are closely associated with the tumor size. Similar to the expression pattern of
KCC3, KCC4 protein is insignificant in non-cancerous cervical squamous epithelial tissues
but is obviously expressed at the primary cancerous tissues of the cervix [137]. Higher
tumoral expression of KCC4 correlates with poor clinical outcomes, including the more
significant percentage of parametrial invasion and pelvic lymph node metastasis, as well
as the increased risk of cancer relapse.

The expressions of KCCs and its potent stimulator IGF-1 are abundant in cervical
cancer tissues but are nearly undetected in the adjacent normal cervical epithelial and
non-cancerous stromal tissues [134]. In addition, IGF-1 and KCC colocalize in the surgical
specimens of cervical cancer [134], suggesting the possible autocrine or paracrine effect of
IGF-1 on KCC production in vivo. Moreover, the expression of IGF-1 and KCC in surgical
specimens shows an excellent linear correlation to tumor size [134], the in vivo indicator
of tumor progression. These findings indicated that KCC activation by IGF-1 plays an
important role in IGF-1 signaling to promote the growth and spread of cervical cancers.
Additionally, KCC4 and its stimulators, EGF and IGF-1, are colocalized in the metastatic
cancer tissues [137], suggesting the cooperation between KCC4 and EGF or IGF-1 in tumor
metastasis. The results indicated that metastatic cervical cancer tissues express abundant
KCC4, which benefits cancer cells in invasiveness. The above-mentioned evidence based
on the molecular investigation in surgical specimens of cervical cancer suggested that
the clinical outcome of cancer patients is highly associated with the expression of KCC3,
KCC4, and their potent stimulators, IGF-1 and EGF [134,135,137]. Therefore, KCC3, KCC4,
EGF, and IGF-1 may be a panel of promising diagnostic biomarkers to predict cancer
patient outcomes.

Despite several inhibitors or activators that have been shown to manipulate KCC
activities effectively, most of them are non-selective for specific KCC isoforms. None of them
are utilized as approved therapeutic drugs for cancer treatment [17,148,149]. The discovery
and characterization of WNK–SPAK/OSR1 cascade-mediated inhibitory phosphorylation
has shed light on the druggable “switch” for the pharmacological manipulation of KCC
activity. Furthermore, an improved understanding of WNK/SPAK-mediated KCC activity
in cancer cells could reveal novel avenues for therapeutic approaches. Indeed, a previous
study has shown that SPAK plays an important role in regulating KCC3-mediated cervical
cancer aggressiveness [150]. Mechanistic investigations revealed that KCC3 overexpression
led to the increased MMP2 expression and augmented binding of NF-κB to its putative
SPAK promoter binding site. This suggested that SPAK promotes KCC3-mediated cervical
cancer aggressiveness via the NF-κB/p38 MAPK/MMP2 axis. Thus, the KCC3/SPAK-
mediated pathways may be an attractive target for pharmacological intervention of cervical
cancer [150]. More importantly, the cryo-EM structures of KCCs have advanced our
understanding of the structural topology of KCCs. Further elucidating the structure-
activity relationships (SAR) of KCCs will lead to a better understanding of the emerging
role of KCCs in carcinogenesis and stimulate structure-based drug discovery of potent and
selective modulators of specific KCC isoforms for effective treatment of cancers.

4. Intracellular Ca2+ Homeostasis and Store-Operated Ca2+ Entry (SOCE)

The cytosolic Ca2+ is a crucial second messenger involved in controlling diverse cellu-
lar functions, such as proliferation, differentiation, survival, migration, and gene expres-
sions [151–153]. The increase in the cytosolic Ca2+ levels is mainly contributed by the Ca2+

fluxes from the extracellular space or the internal Ca2+ storage. Store-operated Ca2+ entry
(SOCE), which constitutes the release of Ca2+ from the ER and the influx of Ca2+ through
the plasmalemmal store-operated Ca2+ (SOC) channel, is the primary pathway to increase
the cytosolic Ca2+ levels in non-excitable cells [154,155]. The molecular determinants under-
lying the activation of SOCE comprise two families of proteins, the ER Ca2+sensors, stromal
interaction molecule 1 (STIM1) and STIM2, and the pore-forming proteins of the SOC chan-
nel, Orai1 to Orai3 [154,156,157]. STIM proteins are the ER-resident transmembrane protein
with several functional domains and protein-protein interaction motifs essential for SOCE
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activation (see reviews in [158,159]). Once ER Ca2+ is depleted, STIM proteins aggregate
into oligomers that translocate toward the plasma membrane junctions to interact with
and activate Orai proteins, allowing the Ca2+ entry. STIM molecules were identified as the
microtubule-interacting protein via the direction with the microtubule-plus-end-tracking
proteins EB1 and EB3 [160,161]. Several studies have demonstrated the essential roles of
microtubules and microtubule-plus-end-tracking mechanisms in the translocation of STIM1
toward the ER-plasma membrane junctions and the following SOCE activation [162–164].
With the use of the direct stochastic optical reconstruction microscopy (dSTORM), our
recent study provided the ultrastructural view into the activation, aggregation, and translo-
cation of STIM1, as well as the interaction between STIM1, microtubules, and EBs during
the dynamic process of SOCE of cervical cancer cells [165]. Upon ER Ca2+ depletion, the
activated STIM1 interacted with EB1 regardless of undergoing aggregation. Moreover,
EB1 silencing did not impair aggregation, but the trafficking of STIM1 to the ER-plasma
membrane; and EB3 compensates for the crosstalk between STIM1 and microtubule after
EB1-silencing. Results from dSTORM imaging provided novel insights into STIM1 traffick-
ing that is independent of the aggregated state and revealed the role of the microtubule
network, end-binding protein EB1, and EB3 in SOCE [165].

The details of structural insights, molecular characterization, physiological functions,
pathological defects of STIM and Orai proteins, as well as their dynamic protein-protein
interactions that mediated the mediate the activation of SOCE, have been extensively inves-
tigated and comprehensively reviewed [166–176]. Increasing evidence demonstrating the
essential roles of STIM and Orai proteins have made them potential prognostic biomarkers
or antitumor therapeutic targets [177–183]. Here we updated the recent advances on the
importance of STIM/Orai-dependent SOCE in cervical epithelial carcinogenesis and tumor
malignant behaviors and the emerging development of SOCE mechanisms as the selective
therapeutic target in cervical cancer.

4.1. SOCE-Dependent Ca2+ Signaling Network in Cervical Carcinogenesis
4.1.1. Proliferation and Cell Cycle Regulation

The functional significance of STIM-mediated SOCE in cervical cancer cell prolifera-
tion was extensively studied. Investigations in human cervical cancer cells showed that cell
proliferation and cell cycle progression were significantly slowed down by STIM1 silenc-
ing that was attributed to the increased expression of cyclin-dependent kinase inhibitor
p21 protein and decreased levels of phosphatase Cdc25C protein [184]. Results from the
intracellular Ca2+ measurement in cervical cancer cells synchronized in different cell cycle
status found the fluctuating SOCE activity during cell cycle progression, in which SOCE
is upregulated in G1/S transition and downregulated from S to G2/M transition [185].
Mechanistic investigations showed that the blockade of SOCE activity by pharmacolog-
ical inhibitors or STIM1/Orai1 silencing resulted in the decreased phosphorylation of
the cyclin-dependent kinase CDK2 and increased expression of cyclin E, leading to the
cell cycle arrest in G1/S transition accompanied with autophagy [185]. Therefore, these
studies established the role of SOCE mediated by the STIM1 and Orai1 as the molecular
determinants responsible for the Ca2+ fluxes controlling the G1/S cell cycle checkpoint of
cervical cancer cells [185]. Regarding the role of STIM2 in cervical cancer cell proliferation,
results from the individual or simultaneous silencing of STIM1/STIM2 suggested that
both STIM1 and STIM2 contribute to the cell proliferation [162], at least partly through
the regulation of SOCE during G1/S transition [185]. Furthermore, the growth of human
cervical cancer xenograft in the SCID mice was attenuated by the interference with STIM1
expression or blockade of SOCE activity, demonstrating the in vivo significance of SOCE in
cell proliferation [184]. These studies highlight the important roles of the STIM-mediated
SOCE pathway in controlling cervical cancer cell proliferation via the regulation of the
G1/S cell cycle checkpoint.
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4.1.2. Tumor Angiogenesis

Tumor angiogenesis is the process of the recruitment of a new blood vessel network by
which the uncontrolled growth, expansion, and dissemination of cancer cells are sustained
with the supportive microenvironment enriched in oxygen and various nutrients [186]. The
functional significance of STIM1-dependent SOCE in tumor angiogenesis supporting the
progression of cervical cancer was revealed from the study using the model of SiHa cervical
cancer cells [184]. Results from the mouse tumor xenograft model of cervical cancer showed
that STIM1 silencing or SOCE blockade resulted in a reduction in tumor neovascularization
and tumor growth. Measurement of the secretions of vascular endothelial growth factor
(VEGF), a potent inducer of vascular endothelial cell proliferation and migration, showed
that STIM1 expression regulated VEGF-A productions from cervical cancer cells. Together
with other investigations dissecting the functional roles of SOCE in vascular endothelial
cells [187–189], it is suggested that STIM1-mediated Ca2+ machinery can be an attractive
therapeutic target for strategies against tumor neovascularization.

4.1.3. Cell Migration

It has been well established that SOCE dependent Ca2+ signaling network plays a vital
role in the cellular migration of both non-cancerous and cancer cells through orchestrating
cytoskeletal reorganization, focal adhesions, and direct sensing [190,191]. Results from
STIM1 overexpression or silencing, as well as the pharmacological blockade of SOCE in
cervical cancer, showed that STIM1-mediated SOCE is crucial for the migratory capability of
cervical cancer cells [163,184,192]. The molecular mechanisms by which STIM1-dependent
SOCE regulates cervical cancer cell migration mainly are through the Ca2+-dependent
molecules controlling the focal adhesion turnover and actomyosin contractility, including
calpain protease, myosin light chain kinase (MLCK), and focal adhesion proteins protein-
rich tyrosine kinase (Pyk2), focal adhesion kinase (FAK), and talin. Therefore, it is proposed
that STIM1-mediated Ca2+ influx regulates the contraction of myosin II-based actomyosin
via the phosphorylation of the myosin II regulatory light chain by the Ca2+-dependent
MLCK [192]. Moreover, the recruitment of the active focal adhesion proteins to nascent cell
adhesions at the cell front, as well as the activation of the Ca2+-sensitive protease calpain at
the rear end, are dependent on STIM1 expression or activity. Therefore, by altering the focal
adhesion turnover and actomyosin contractility of cancer cells, STIM1-dependent SOCE
promotes tumorigenesis and tumor metastasis of cervical cancers.

4.2. Diagnostic and Prognostic Values of SOCE in Cervical Carcinogenesis

Aberrated overexpression of STIM1 or Orai1 and thus upregulated SOCE activity have
been observed in several types of human cancers, including cervical cancers. STIM1 and
Orai1 are overexpressed in tumor tissues when compared with non-cancerous or precan-
cerous tissues in patients with cervical cancers [162,163,184,185]. The distinct distribution
of overexpressed STIM1 was identified in the invasive tumor front of the surgical speci-
mens of human cervical cancer [193]. The studies in human cervical cancer indicated that
poorer clinical outcomes, such as larger tumor size and elevated lymph node metastasis,
are correlated with STIM1 upregulation in primary tumors [184], highlighting the clinical
significance of STIM1 in cervical cancer progression.

Regarding STIM2, our recent study on a limited number of surgical specimens of
cervical cancer showed a decreased tumoral STIM2 expression when compared with non-
cancerous epithelium, whereas a higher tumoral STIM2 level when compared with invasive
tumor front [162]. The simultaneous STIM1 and STIM2 immunostaining showed that,
despite the overexpression of both isoforms in tumor tissues, STIM1 is the principle ER
Ca2+-sensing molecule detected in the invasive tumor front [162]. These imply that STIM1
is associated with tumor growth and invasion, whereas STIM2 is mainly correlated with
tumor growth. Therefore, using the STIM1/STIM2 ratio as a marker of cervical cancer
aggressiveness might be promising and worth further evaluation.



Int. J. Mol. Sci. 2022, 23, 333 13 of 22

4.3. Recent Development of Therapeutics Targeting SOCE in Cervical Carcinogenesis

Given the importance of SOCE tumor biology and cancer progression, it is plausible
to suggest that the blockade of STIM1/Orai1-dependent Ca2+ signaling can be a practi-
cal therapeutic approach for cervical cancer. Studies on preclinical animal models have
demonstrated the potentials of several small-molecule SOCE inhibitors in cancer thera-
pies [194–198]. However, these SOCE inhibitors have not been approved for clinical use
for cancer therapies. For example, SKF-96365 and 2-aminoethoxydiphenyl borate (2-APB),
two of the potent pharmacological blockers of SOCE, prevented the tumor growth and
angiogenesis in human cervical cancer-implanted SCID mice [184]. Further evidence from
the overexpression or silencing of STIM1 and Orai1 supported that in vivo anti-tumor
effects of SKF-96365 or 2-APB involve the blockade of STIM1/Orai1 complex [163,184].

Due to the ubiquitous expression of STIM and Orai protein, as well as their essential
roles in the human immune system, including antitumor immunity, developing cancer
cell-specific SOCE modulators is essential for effective antitumor therapeutics. For example,
a study in the model of human cervical cancer has suggested that the different regulatory
effects on the microtubule-dependent STIM1 trafficking between non-cancerous epithelial
and cancerous cells could be the key to target cancer cell-specific mechanisms of SOCE
activation [163]. Reversible acetylation of α-tubulin on Lys40 is important for regulating
microtubule stability and function and thus modulating cell motility [199–201]. The hi-
stone deacetylase 6 (HDAC6) is a unique cytosol-localized HDAC member known as a
prominent α-tubulin deacetylase [202,203]. It was found that the microtubule-dependent
STIM1 translocation and subsequent SOCE activation of cervical cancer cells, but not
in non-cancerous epithelial cells, was abrogated upon hyperacetylation of α-tubulin by
pharmacological blockade or silencing of HDAC6 [163]. Thus, the microtubule-associated
HDAC6 can be a cancer-specific target of malignant phenotypes mediated by STIM1-
dependent SOCE, at least for cervical cancers with upregulation of HDAC6 and STIM1.

A recent investigation demonstrated the important role of the lysosomal cysteine
protease cathepsin S in regulating STIM1 trafficking [204]. It highlighted the potential of
the α-ketoamide-based highly selective cathepsin S inhibitor RJW-58 in the suppression
of cervical cancer cell migration and invasion of cervical cancer cells [204]. Cathepsin S,
a lysosomal cysteine protease, has been reported to be associated with the degradation
of the extracellular matrix, thus promoting cell migration and invasion [205]. Results
of immunoprecipitation assays demonstrated that cathepsin S interacted with STIM1,
which was reversed by RNAi-mediated silencing and enzymatic inhibition of cathepsin S.
Analyses of confocal microscopic and super-resolution imaging indicated that cathepsin S
inhibition led to STIM1 puncta accumulation in the ER and interrupted the STIM1-EB1
interaction, a critical step for STIM1 trafficking towards the cell periphery. In addition,
RNAi-mediated silencing and enzymatic inhibition of cathepsin S significantly decreased
SOCE and reduced the activity of downstream Ca2+-dependent effectors NFAT1 and Rac1.
These results provide new insight into the potential of a highly-selective cathepsin S
inhibitor RJW-58 as a promising anti-cancer treatment that targets microtubule-dependent
STIM1 translocation and subsequent SOCE activation [204].

The mechanisms by which STIM-mediated SOCE regulate the tumorigenesis of cervi-
cal cancer cells through regulating cell cycle progression, migration, and angiogenesis, as
well as their therapeutic implications, are summarized in Figure 3.
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Figure 3. STIM1/Orai1-mediated of SOCE in cervical carcinogenesis and therapeutic implica-
tions. Ca2+ homeostasis is remodeled in cervical cancer cells, with Ca2+ influx increasing through
STIM1/Orai1upregulation. STIM1-mediated SOCE controls the G1/S cell cycle checkpoint by regulat-
ing several cell cycle regulators. STIM1-mediated Ca2+ influx is important for the release of vascular
endothelial growth factor (VEGF) from cervical cancer cells, thereby promoting tumor angiogenesis.
Additionally, STIM1/Orai1-dependent Ca2+ signaling integrates the dynamic interactions between
focal adhesion turnover and actomyosin contraction to mediate cellular contractile force and thus cell
migration. Therefore, STIM1/Orai1-remodeled Ca2+ homeostasis is important for aggravating tumor
development in vivo. Moreover, the microtubule-dependent STIM1 trafficking that is specifically
modulated in cancer cells can be a cancer-specific target of malignant phenotypes mediated by
STIM1-dependent SOCE, at least for cervical cancers.

5. Conclusions and Prospects

Accumulating evidence has advanced our understanding of the potentially pivotal role
of membrane ion transport systems, especially those involved in cell volume regulation and
intracellular Ca2+ homeostasis, in a variety of malignant characteristics and progression
of human cervical cancer. This knowledge will stimulate the discovery of potent and
selective pharmacological interventions for human cancers. The recent discovery and
characterization of cryo-EM structures and activating dephosphorylation mechanism of
KCC has revealed the druggable niche of KCC function to therapeutically modulate ionic
fluxes and cell volume regulation in human cancer. Further investigations elucidating their
structure-activity relationship will lead to the discovery and development of innovative,
selective, and safe therapeutics for patients with cancer. Regarding the STIM1/Orai1-
mediated SOCE, further studies aiming at developing potent and selective inhibitors that
target cancer cell-specific microtubule-dependent STIM1 trafficking mechanism on SOCE
activation will facilitate better therapeutic approaches.
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