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High throughput, deep sequencing assays are powerful tools

for gaining insights into virus–host interactions. Sequencing

assays can discover novel viruses and describe the genomes

of novel and known viruses. Genomic information can predict

viral proteins that can be characterized, describe important

genes in the host that control infections, and evaluate gene

expression of viruses and hosts during infection. Sequencing

can also describe variation and evolution of viruses during

replication and transmission. This review recounts some of the

major advances in the studies of virus–host interactions from

the last two years, and discusses the uses of sequencing

technologies relating to these studies.
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Introduction
The dynamic interactions between viruses and their hosts

during infection are complex. Viruses manipulate the

cellular environment and subvert host immune responses

in order to replicate, and the host counters the virus’s

maneuvers in order to control the infection. The interplay

between virus and host can be studied in many ways:

natural infections; model systems (either animal or cell

culture); manipulation of virus–host interactions; identifi-

cation of the proteins involved in virus–host interactions;

and studies of protein functions. High throughput, deep

sequencing is a powerful tool for gaining insights into

virus–host interactions. Sequencing assays can predict
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novel viruses and describe the genomes of novel and

known viruses. Genomic information can be used to dis-

cover viral proteins that can then be characterized, describe

genes in the host that are important in controlling infec-

tions, and evaluate gene expression of viruses and hosts

during infection. Sequencing can also assess variation and

evolution of viruses during replication and transmission.

This review recounts some of the major advances in the

studies of virus–host interactions from the last two years,

and discusses the uses (or potential uses) of sequencing

technologies relating to these studies (Figure 1).

Virus discovery and emerging pathogens
In order to understand how viruses interact with their

hosts and how they affect human health, we must under-

stand the scope of viral diversity and be able to detect the

viruses present in clinical samples. High-throughput,

deep sequencing has proven to be an effective tool for

this purpose. The relatively unbiased approach it offers

for screening clinical samples enables virus discovery

without preconceptions about which viruses might be

present in the samples. After 10 years of applying this

technology to virus detection, eukaryotic virus discovery

continues to be robust. A recent example of this is the

novel rhabdovirus, Bas-Congo virus, which is an emerging

pathogen associated with acute hemorrhagic fever [1],

notable for being the first instance of a rhabdovirus being

implicated as a cause of hemorrhagic fever. This virus was

characterized in the context of a small outbreak, and the

presence of antibodies in an asymptomatic caregiver

suggested that person-to-person transmission had

occurred. Another emerging pathogen, human corona-

virus EMC (HCoV-EMC), was recently identified and

characterized following an outbreak in the Middle East

[2]. This betacoronavirus causes symptoms resembling

those of its sister species, SARS coronavirus, including

respiratory symptoms and acute renal failure, although

HCoV-EMC is most closely related taxonomically to bat

coronaviruses. Using modern technologies, the genome of

HCoV-EMC was completely sequenced, and assays have

been developed to monitor its presence. This virus is

particularly interesting because coronaviruses are typi-

cally highly restricted to a specific host, but HCoV-EMC

can infect cells from primates (human and monkey),

swine, and bats (four families) in culture, suggesting that

this virus may utilize a receptor shared among these host

groups and may be readily transmitted between hosts [3].

These and similar studies demonstrate that continued

viral discovery is needed in order to identify and prepare

for the effects of emerging viral pathogens on human

health. The techniques and technologies are in place for

identifying pathogens with similarities to known viruses
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Figure 1

• High-throughput genomic sequencing is an ideal method for
   identifying novel organisms and mutations/reassortants in clinical
   and survey samples without culturing or prior knowledge about
   the virus genome.

Virus discovery and
emerging pathogens

Viruses associated with
diseases of unknown

etiology

• It is important to consider the dynamics and complexity of the
   microbiome, and genomics is a powerful tool for characterizing
   complete microbial communities to initiate and aid these kinds of 
   studies.

Components of the
microbiome interact with
and affect other microbes

• Detailed genomic analysis can be used to identify novel genes for
   further characterization and study.

• Faster sequencing and analysis brings us closer to clinical
   applications of genomic sequencing.

Genome characterization,
gene discovery, and the
future of diagnostic tests

• Many diseases are linked with potential viral causes (Table 2),
   and genomics has great potential for identifying pathogens that
   associate with clinical symptoms, again without the need for
   culturing or the necessity for prior knowledge of the genome.

Current Opinion in Microbiology

The major topics of this review are summarized. Areas of virology research are noted in the blue boxes, and the text in the gray boxes describes how

genomics can be used as a tool in that area of research.
(even remote similarities, see Table 1). The availability of

samples and the funding required for the experiments

currently bottleneck virus discovery efforts.

Testing samples from affected individuals during out-

breaks of diseases of unknown etiology is important for

surveillance of pathogens, but it is also important to

identify viruses producing symptoms that are mild or

subclinical because infection with these viruses may

nevertheless have long-term implications for human

health. For example, polyomaviruses and papilloma-

viruses may establish chronic infections. Some of these

viruses, including many alpha papillomaviruses and Mer-

kel cell polyoma virus, are associated with cancer [4–5]. In

light of their capacity to transform cells, identifying the

full range of polyomaviruses and monitoring their pre-

sence could ultimately provide insight into the develop-

ment of some cancers.

Potentially emerging pathogens are of great concern, and

influenza pandemics are of particular interest because

transmissions between animal reservoirs and humans

are observed and the emergence of pandemic strains is

expected. Current molecular technologies allow us to
Current Opinion in Microbiology 2013, 16:479–484 
screen for transmission of influenza between animal

species and between humans, and to evaluate mutations

and quasispecies. In two highly publicized studies,

researchers identified mutations that correlated with air-

borne mammal-to-mammal transmission of the virus, a

trait critical for the development of a pandemic [6�,7�].
Researchers used either an H5N1 influenza that origi-

nated in birds but had infected humans or a reassortant

virus with the avian subtype H5 hemagglutinin and the

other seven segments from a 2009 pandemic H1N1 virus.

In these studies, viruses were passaged in ferrets, and

isolates that had acquired mutations allowing for airborne

transmission between ferrets were identified. The strains

were sequenced and the mutations that correlated with

ferret-to-ferret transmission were identified. The

mutations were in the host receptor binding protein

hemagglutinin and in the polymerase complex protein

basic polymerase 2, and the studies showed that surpris-

ingly few mutations would be necessary for the virus to

achieve the capacity for airborne transmission between

ferrets. Furthermore, a second study showed that two of

the mutations were already circulating among H5N1

strains in birds [8]. These studies provide valuable insight

into the plausibility of emergence of an H5N1 pandemic
www.sciencedirect.com
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Table 1

Computational tools used to identify viral sequences, including those with remote sequence similarity to known viruses

Software Function References

IDBA-UD, MetaVelvet These programs assemble shorter sequences into longer contiguous

sequences. Longer sequences can help identification of more remote

sequence similarities

[28,29]

BLASTX and TBLASTX A translated nucleotide sequence is queried against a database of protein

sequences or translated nucleotide sequences. This approach is not as

sensitive as the searches involving profile Hidden Markov Models

(HMMs) and iterative searches (described below), but it is sufficient to

identify many viral sequences, including those from many recently

discovered novel viruses.

[30]

Realtime Genomics mapx,

MulticoreWare mblastx,

Rapsearch2

These three programs are like BLASTX but accelerated to accommodate

the large amount of data generated from high-throughput sequencing.

http://www.realtimegenomics.com,

http://www.multicorewareinc.com, [31]

HMMER3 A protein query is used to search a profile Hidden Markov Model (HMM)

database. Jackhmmer is an iterative alignment program that is part of this

package (similar to PSI-BLAST, described below).

[32]

Hhblits A profile HMM is constructed for the query sequence and then used to

query an database of profile HMMs.

[33]

PSI-BLAST Relatively closely related proteins are identified and conserved amino

acid positions are represented in a profile. The profile is used to search a

protein database to identify proteins with more remote homologies. The

new proteins are added to the profile and the search is repeated

iteratively.

[30]

PHI-BLAST A protein and specific pattern within the protein are used to query a

protein database. Proteins that contain the pattern and are similar to the

input protein around the pattern are retrieved. CSI-BLAST performs the

search iteratively.

[34]

DELTA-BLAST Searches a database of profile HMMs and identifies the HMM most

closely related to the query. The resulting HMM is then used to search a

protein database.

[35]
strain for which surveillance could be maintained to

anticipate potential outbreaks. It is important to note that

the effects of any mutations on the transmission and

pathogenesis of influenza in humans are regulated by

the genomic context, and the other influenza genes present

may play important roles in promoting or limiting the

spread of a virus in nature. The controversy generated

by this research stemmed from concerns over accidental

release from this laboratory or application of the knowledge

by bioterrorists. These studies sparked heated debate

worldwide, causing some countries to amend their laws

and restrictions for research on pathogens with potential as

agents of bioterrorism [9]. Some argue that tighter restric-

tions will slow research in these areas, potentially leaving us

less protected from coming pandemics.

Viruses associated with diseases of unknown
etiology
There are many diseases of unknown etiology, including

Kawasaki disease and chronic fatigue syndrome that have

attracted efforts to discover a microbial cause (e.g. see

Table 2). XMRV is a retrovirus that was previously associ-

ated with chronic fatigue syndrome and prostate cancer. It

was discovered in prostate cancer samples, and its com-

plete genome was sequenced [10]. Expanded studies of

this virus suggested that it was present in prostate cancer

tissue of 40% of patients with a mutation in the RNase L
www.sciencedirect.com 
gene, which encodes an antiviral function, compared to

only 1.5% in prostate cancer patients without the mutation

[10]. A separate study also showed an association of XMRV

with prostate cancers in patients who did not have an

RNase L mutation [11]. Subsequently XMRV was also

associated with chronic fatigue syndrome [12]. However,

these observations were highly controversial, because ot-

her studies found no correlation of XMRV with prostate

cancer, chronic fatigue syndrome, or a plethora of other

diseases of unknown etiologies. The story of this virus has

changed dramatically in the last year as additional studies

showed that XMRV was a laboratory contaminant that

arose from recombination between two proviruses during

the passage of prostate cancer tumor cells through mice

during the development of cell lines [13�] and ruled out a

causal relationship between XMRV and prostate cancer

[14]. This story illustrates the caution that must be exer-

cised in the process of virus discovery. Highly sensitive

molecular assays may uncover low-level contaminants as

well as legitimate pathogens, so carefully constructed

controls are critical for accurate interpretation of the data.

Components of the microbiota interact with
and affect other microbes
Interactions of viruses with hosts is not only affected by

the host genotype but may be influenced by the effects of

the bacterial microbiome. This is an area where research
Current Opinion in Microbiology 2013, 16:479–484
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Table 2

Diseases of unknown etiology with a suspected viral cause

Disease of unknown etiology Viruses associated Reference (review article)

Kawasaki disease Unknown; many have been examined and ruled out [36]

Multiple sclerosis Epstein Barr virus (EBV); human endogenous retroviruses (HERV) [37–40]

Obesity Human adenoviruses 36, 37 and 5; animal viruses [41,42]

Rheumatoid arthritis EBV and HERV [39]

Systemic lupus erythematosus EBV and HERV [39]

Pityriasis rosea Human herpesvirus 7, possibly human herpesvirus 6; many other

viruses have been examined and ruled out

[43,44]

Amytrophic lateral sclerosis Unknown [45]

Brain tumors Cytomegalovirus (CMV), human 6, herpes simplex viruses 1 and 2 [46]

Inflammatory bowel disease CMV [47]

Bell’s palsy Herpes simplex virus 1 [48]

Inclusion body myositis Retroviruses [49,50]
is only beginning, but already interesting observations are

being made. For example, the retrovirus MMTV and

poliovirus have enhanced ability to infect mice in the

presence of gut microbes [15,16]. In the case of MMTV,

the virus uses bacterially derived LPS to subvert the

antiviral response by a mechanism involving the TLR-

4-dependent induction of the immunosuppressive cyto-

kine IL-10 [15]. In the case of poliovirus, gut bacteria

appear to enhance infectivity by promoting virus attach-

ment to host cells [16]. Likewise, depletion of commensal

bacteria in the airways of mice by antibiotic treatment

dampened the immune response to influenza virus, likely

due to the role of commensal bacteria in developing and

regulating the immune system [17��]. These studies

suggest that shifts in bacterial communities may be

important considerations when trying to understand the

implications of viral infections for human health. In each

of these cases, mouse models were used, enabling the

controlled comparison of viral infection in genetically

identical mice, which were germ-free, antibiotic-treated,

or colonized with commensal bacteria. Similar studies

correlating viral infections in humans with bacterial com-

munities are important, but much more complicated.

Nonetheless, metagenomic sequencing analyses have

the potential to broadly characterize all of the microbial

organisms present in a clinical sample, a capability that can

be especially powerful when coupled with patient infor-

mation. Ultimately, we may be able to identify bacteria

and viruses that frequently co-occur or are mutually

exclusive and correlate these patterns with clinical symp-

toms and outcomes. This could yield insights into patho-

genesis as well as better diagnostic tools and treatments.

The implications of co-infections are important when

evaluating virus–host interactions. For example, the fla-

vivirus GBV-C has been shown to slow the progression of

HIV to AIDS [18,19], and herpes simplex virus 1 infection

enhances the risk for infection by HIV [20]. Recently,

disease progression of pathogenic SIV infection was

shown to be associated with a major expansion of the

enteric virome [21��]. These initial observations were
Current Opinion in Microbiology 2013, 16:479–484 
made using high-throughput metagenomic sequencing,

which identified at least 32 novel enteric viruses in non-

human primates. Virus infections may compromise the

integrity of the intestinal epithelial lining, allowing the

translocation of immunostimulatory molecules from the

gut into the blood stream with subsequent systemic

immune activation. This study suggests that viruses that

co-infect with SIV may have important roles in the

pathogenesis of the disease. Metagenomic analyses of

samples from people with HIV, sepsis, immunosuppres-

sion from transplants, or even more routine illnesses like

rhinovirus infections, may reveal co-infections that cor-

relate with disease development or symptoms. Recent

PCR-based studies of respiratory samples have found co-

infections with multiple viruses in 12–21.7% of children

with acute respiratory illness [22–24]. In another study,

co-infections were found to be common in patients pre-

senting to the emergency room with fever without a

source, based on metagenomic sequencing [25] and

PCR assays [26], with as many as five viral genera

detected in samples from some subjects [25]. These

studies and others indicate viral co-infections are common

and worthy of further investigation.

Genome characterization, gene discovery,
and the future of diagnostic tests
Genomic sequences of viral strains can be used to predict

viral features that are important for viral replication or

pathogenesis. For example, based on alignment of influ-

enza A virus segment 3 (PA) from >1000 strains, research-

ers recently identified a conserved region that leads to a

pause and ribosomal frame shift during translation [27�].
This results in a fusion protein called PA-X consisting of

the N-terminus of the RNA-dependent RNA polymerase

and the newly discovered peptide. This protein appears

to have nuclease activity that dampens the host antiviral

response. What this study illustrates is that comparative

genomics of well-studied viruses can reveal exciting,

novel genomic features with implications for virus repli-

cation, pathogenicity, and interactions with the hosts. In

addition to these kinds of discoveries, the characterizations
www.sciencedirect.com
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of specific viral genotypes or viral variants that associate

with virulence can lead to enhanced diagnostic assays that

provide information that was not previously available to

clinicians. In a new generation of diagnostic tests, rapid

sequencing assays could be used not only to detect viruses

in patient samples but to provide information about the

viral subtype and the presence of virulence genes, which

could be used to predict disease severity and outcome.

Sequence-based diagnostic tests could also be used to

identify the presence of antiviral drug resistance alleles,

which would inform the management of some viral infec-

tions, including influenza A and cytomegalovirus. Further-

more, ultra deep sequencing (resulting in >100–1000

sequences at each base position of the viral gene or

genome) could be used to assess viral variation and qua-

sispecies, which could be important for monitoring emer-

ging pathogens or to development effective vaccines.

Sequencing assays aimed at the human transcriptome also

have the potential to be developed into clinical tests to

measure the host response to viral infection, which may

help both with diagnosis and selection of treatment. An

additional advantage of diagnostic tests based on high

throughput sequencing is that they may be less vulnerable

than PCR-based assays to sequence variation in primer-

binding or probe-binding regions.

Conclusion
Studies of virus–host interactions are firmly supported by

the usage of genome sequencing technologies. A number

of applications and advances that have occurred in the last

two years are described here, but as sequencing becomes

faster and less expensive, the applications to research and

diagnostics expand further. Exploratory sequencing

analyses can be powerful tools to carry out targeted,

hypothesis-driven studies that lead us to better under-

stand pathogenic effects of viruses.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Grard G, Fair JN, Lee D, Slikas E, Steffen I, Muyembe J-J, Sittler T,
Veeraraghavan N, Ruby JG, Wang C et al.: A novel rhabdovirus
associated with acute hemorrhagic fever in central Africa.
PLoS Pathog 2012, 8:e1002924.

2. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS,
Zaki AM, Osterhaus ADME, Haagmans BL, Gorbalenya AE,
Snijder EJ et al.: Genomic characterization of a newly
discovered coronavirus associated with acute respiratory
distress syndrome in humans. MBio 2012:3.

3. Müller MA, Raj VS, Muth D, Meyer B, Kallies S, Smits SL, Wollny R,
Bestebroer TM, Specht S, Suliman T et al.: Human coronavirus
EMC does not require the SARS-coronavirus receptor and
maintains broad replicative capability in mammalian cell lines.
MBio 2012:3.

4. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA,
Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N: Human
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