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nucleotide polymorphisms in three commercial 
chicken populations
Johannes Geibel1,2*, Nora Paulina Praefke1,2, Steffen Weigend2,3, Henner Simianer1,2 and Christian Reimer1,2,3 

Abstract 

Background:  Structural variants (SV) are causative for some prominent phenotypic traits of livestock as different 
comb types in chickens or color patterns in pigs. Their effects on production traits are also increasingly studied. 
Nevertheless, accurately calling SV remains challenging. It is therefore of interest, whether close-by single nucleotide 
polymorphisms (SNPs) are in strong linkage disequilibrium (LD) with SVs and can serve as markers. Literature comes 
to different conclusions on whether SVs are in LD to SNPs on the same level as SNPs to other SNPs. The present study 
aimed to generate a precise SV callset from whole-genome short-read sequencing (WGS) data for three commercial 
chicken populations and to evaluate LD patterns between the called SVs and surrounding SNPs. It is thereby the first 
study that assessed LD between SVs and SNPs in chickens.

Results:  The final callset consisted of 12,294,329 bivariate SNPs, 4,301 deletions (DEL), 224 duplications (DUP), 218 
inversions (INV) and 117 translocation breakpoints (BND). While average LD between DELs and SNPs was at the 
same level as between SNPs and SNPs, LD between other SVs and SNPs was strongly reduced (DUP: 40%, INV: 27%, 
BND: 19% of between-SNP LD). A main factor for the reduced LD was the presence of local minor allele frequency 
differences, which accounted for 50% of the difference between SNP – SNP and DUP – SNP LD. This was potentially 
accompanied by lower genotyping accuracies for DUP, INV and BND compared with SNPs and DELs. An evaluation of 
the presence of tag SNPs (SNP in highest LD to the variant of interest) further revealed DELs to be slightly less tagged 
by WGS SNPs than WGS SNPs by other SNPs. This difference, however, was no longer present when reducing the pool 
of potential tag SNPs to SNPs located on four different chicken genotyping arrays.

Conclusions:  The results implied that genomic variance due to DELs in the chicken populations studied can be cap-
tured by different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling might be advis-
able for DUP, INV, and BND effects.
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Background
A type of genomic variation that affects large regions of 
the genome is caused by structural variants (SV). SVs can 
alter the total genome size by deleting (deletions, DEL), 
duplicating (duplications, DUP) or inserting (insertions, 
INS) longer stretches of DNA (unbalanced SV). Those 
SVs are often referred to as copy number variations 
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(CNV). In contrast, inversions (INV) and translocations 
(TRA) do not affect the length of the genome (balanced 
SV) [1]. Especially unbalanced SVs are assumed to come 
with a strong functional impact on the phenotype, e.g. 
by strong deleterious effects of DELs which can remove 
complete genes [2] or by DUPs that increase numbers of 
cis-regulatory elements [2, 3]. SVs and complex combina-
tions of multiple SVs are also known to be causative for 
some of the most prominent phenotypic breed charac-
teristics of livestock breeds as walnut- and rose comb in 
chickens [4] or belted color patterns and dominant-white 
color in pigs [5].

The power for detection of SVs of certain types and 
sizes, however, is highly technology-dependent in vari-
ous aspects [1]. During the last two decades, technolo-
gies evolved that increased the resolution and accuracy 
of SV detection at the submicroscopic level. Array-based 
comparative genomic hybridization (aCGH) allowed the 
detection of long CNVs > 35  kb [2]. The development 
and increased use of microarrays led to technologies that 
either detect DELs from characteristics of population-
level single nucleotide polymorphism (SNP) genotypes 
[6, 7] or utilized signal intensity information [8]. The 
increasing availability of short-read sequences during the 
last decade led to the development of multiple SV detec-
tion algorithms which use read depth distributions [1, 
9] and/ or information from split reads and insert size 
distributions of paired-end reads, potentially combined 
with local assembly procedures [1, 10–12]. However, 
short-read-based methods still come with a variety of 
limitations due to the short read sizes which highly vary 
between the algorithms [1, 13] and especially a general 
deficit in calling INS [14]. Therefore, current state-of-the-
art methods nowadays utilize the information of PacBio 
or Nanopore long-read sequencing or linked-read tech-
nologies as HI-C [15], but the availability of these types 
of sequencing data is still very limited for the majority of 
intensively researched livestock species.

Other than for SVs, the use of SNPs has become rou-
tine over the last two decades. Therefore, large whole-
genome-sequencing (WGS) reference panels [16, 17] 
and collections of individuals, which were genotyped by 
microarrays and phenotyped in routine breeding pro-
grams or during large-scale research projects [18], exist. 
Given the complexity of SV detection, it is of interest to 
know which part of the effects of SVs on the phenotype 
is already captured by potential linkage disequilibrium 
(LD) between the SV of interest and nearby SNPs. Strong 
LD would allow for the inclusion of those effects in e.g. 
genomic prediction without the need for a separate SV 
analysis.

LD between two variants can be measured using a vari-
ety of estimators (reviewed e.g. by Qanbari [19]), of which 

the squared correlation of haplotypes ( r2 ) is probably the 
most prominent one. It can be interpreted as the amount 
of information of a variant that is captured by another 
one. However, its upper limit is defined by the difference 
in minor allele frequency (ΔMAF) between the two vari-
ants [20]. The overall strength of LD is highly population 
depended and closely linked to the effective population 
size [19]. LD thereby shows a characteristic decay pattern 
of mean LD by distance. However, for many applications 
as genome-wide association studies (GWAS), the interest 
is more in the maximum observed LD of a causal vari-
ant to a close-by so-called tag SNP, which can capture the 
effect as a marker genotype.

By now, a bunch of studies has addressed the question 
of LD between SVs and surrounding SNPs in humans 
with contrasting results. Generally, common DELs were 
shown to be in good LD to SNPs by most of the studies 
[6, 21–24], but some found this LD to be weaker than 
SNP – SNP LD [25, 26]. Literature additionally suggests, 
that rare DELs are weaker tagged (tag SNP is SNP with 
highest LD to the variant within a defined distance) than 
common DELs [22, 27] and DUP were in weaker LD to 
SNPs than DELs [22, 26, 28]. It was additionally shown 
that the availability of tag SNPs for SVs depends on the 
SNP panel used (WGS vs. different arrays) [22–24]. A 
further effect that was found is the location of the SV 
on the genome. Regions of segmental duplications are 
known to trigger recurrent SV formation by non-allelic 
homologous recombination and therefore lead to SV hot-
spots [1, 29]. A closer look at those regions by Locke et al. 
[30] found very few of those CNV to be tagged by sur-
rounding SNPs.

Reduced LD between SNPs and SVs can have diverse 
reasons. A main factor is the increased possibility of 
the occurrence of recurrent mutations in regions of low 
sequence complexity by non-allelic homologous recom-
bination (NAHR) [29]. SVs from recurrent mutational 
events then show reduced LD to variants from a unique 
mutational event [6, 30]. LD between SNPs and SVs may 
further be decreased by different selectional proper-
ties of SNPs and SV [31], MAF differences between SVs 
and SNPs [20], or ascertainment of SNPs for arrays that 
excludes regions of high structural complexity due to 
technical reasons [32]. Additionally, known problems 
with SV calling accuracy [1] may lead to a high share of 
false-positive SV calls and therefore on average low LD to 
more accurately called SNPs.

For livestock, results on SV – SNP LD are very rare, 
even though a high number of publications targeted SV. 
Based on a GWAS on 26,362 Holstein dairy cattle 50  k 
genotypes, Xu et  al. [33] found a quarter of CNVs that 
were significantly associated with milk traits not being 
tagged by adjacent SNPs. The same was observed by 
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Lee et  al. [32] who investigated functional and popula-
tion genetic features of CNV regions in two dairy cattle 
breeds, also called from a 50  k SNP array. They identi-
fied a weak linkage between CNV regions and SNPs, 
which was slightly stronger between DELs and SNPs than 
between DUPs and SNPs. Wang et  al. [34] included a 
local LD analysis around CNVs (called from SNP arrays) 
that were significantly associated with production traits 
in pigs. Four out of eight significantly associated CNVs 
overlapped haploblocks of non-significant SNPs, but only 
one CNV was found 300 kb downstream of significantly 
associated SNPs. Note that this, however, may also have 
been an artifact of a much stronger correction for multi-
ple testing in SNPs than in CNVs.

In chickens, a variety of studies investigated CNVs on 
a quantitative basis. The studies either used aCGH [35–
39], utilized signal information of SNP arrays [40–45] via 
PennCNV [8], or read depth information of short-read 
sequences [46–50]. There were only three studies that 
also included non-CNV SVs [46, 50, 51]. None of the 
studies analyzed the LD patterns of the variants.

Aim of the study
This is the first study that assessed SV – SNP LD in 
chickens to investigate the usefulness of SNP markers 
in capturing SV-based genomic variance. We, therefore, 
identified SVs from paired-end short-read sequences 
in three commercial chicken populations (white layers, 
brown layers, broilers), thoroughly described the SV call-
set, and assessed the strength of LD between those SVs 
and SNPs. We also identified major reasons for some 
existing differences to SNP – SNP LD and evaluated the 
performance of four available SNP arrays to tag SVs.

Results
Calling results and description of variants
For the study, paired-end short-read sequences of 90 
chickens from three populations (25 commercial white 
layers, WL; 25 commercial brown layers, BL; 40 commer-
cial broiler chickens, BR) were used. The raw data was 
first published by Qanbari et  al. [52] who described the 
studied populations in more detail. SNP genotypes were 
retrieved from a previous study [53]. SVs were called by 
a consensus calling approach, which used three paired-
end and split-read-based tools, followed by a strict filter-
ing procedure that further utilized read-depth and SNP 
information. Finally, the remaining SV calls were visually 
checked by evaluating samplots [54] for each variant, the 
merged SNP and SV set was phased, and missing geno-
types were imputed. The filtering procedure retained 
12,294,329 bivariate SNPs, 4,301 DELs, 224 DUPs, 218 
INVs, and 117 translocation breakpoints (break ends; 
BND) on chromosomes 1—33. Note that all INS were 

filtered out due to missing support by at least two variant 
callers.

Figure  1 A shows the length distribution of the 
called SVs. DELs were on average shortest with a 
median of 443  bp and a maximum of 67,037  bp. DUPs 
(median = 12,285 bp; maximum = 778,041 bp) were larger 
than DELs and INVs were largest (median = 25,643  bp; 
maximum = 5,795,187 bp). BNDs only indicate transloca-
tion breakpoints and, therefore, do not come with length 
information. The called SNPs in total accounted for 
1.28% of the autosomal reference genome length, while 
DELs covered 0.35%, DUPs 0.39%, and INVs 2.80% of 
the chicken genome. The distributions by individuals can 
be found in Fig. 1B. We additionally checked how much 
of the autosomal reference genome is homozygously 
deleted in the chickens. This number varied from 0.045% 
(135 kb) to 0.076% (727 kb) with BL showing a larger size 
of homozygously deleted reference genome than WL and 
BR (Fig. 1C)

We further checked for chromosome-wise differ-
ences in the number of called variants by regressing the 
relative number of called variants per chromosome on 
the relative chromosome length (Fig. S3). SNPs did not 
show any difference to the line of identity (slope = 1.00, 
p = 1.00), while DELs (slope = 1.28, p = 1.4e-4) and 
INVs (slope = 1.39, p = 6.1e-9) showed a significant 
bias towards larger chromosomes. DUPs (slope = 1.13, 
p = 0.34) and BNDs (slope = 1.14, p = 0.17) also showed 
a numerical bias towards larger chromosomes, which, 
however, was not significant. Note that the R2 value of the 
model was comparably small with 0.39.

Distributions of minor allele frequencies (MAF; Fig. 2) 
revealed a slight (DEL) to strong (DUP) shift towards rare 
variants compared with SNPs for DELs and DUPs, while 
INVs and BNDs showed a slight shift towards more com-
mon variants.

Variant effect predictions of Ensembl-vep [55] classified 
98.48% of the impacts of SNPs on genes as MODIFIER, 
1.14% as LOW, 0.37 as MODERATE and only 0.01% as 
HIGH. DEL impacts were classified only in 0.41% of the 
cases other than MODIFIER (MODERATE = 0.01%; 
HIGH = 0.40%), while DUP impacts were classified as 
HIGH in 9.95% of the cases (MODIFIER = 90.05%). In 
contrast, INV and BND impacts were completely classi-
fied as MODIFIER. Further results of VEP are summa-
rized in Fig. S4.

LD decay
To assess the information content of SNPs on SVs, we 
calculated the LD between SVs and all bivariate SNPs up 
to 100 kb apart from the breakpoints as squared haplo-
type correlation ( r2 ). Note, that SNPs that were located 
on SVs were excluded from the analysis, as their calls 
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Fig. 1  Length distribution of SVs (A), percent of affected autosomal reference genome by individual and variation type (B), and percent of 
homozygously deleted reference genome by individuals (C). The size in B is calculated as the average between the haplotypes of an individual 
affected by the non-reference allele. Note the log-scaled y-axis in A. Per-breed bars in the histograms are stacked on each other

Fig. 2  Distribution of minor allele frequency (MAF) across all samples by variant type
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may be directly influenced by the SV. To get a baseline 
for comparisons, we also calculated the SNP – SNP LD 
within this distance.

Mean SNP – SNP r2 was highest in WL (0.51 within 
500  bp), followed by BL (0.41) and BR (0.26). The DEL 
– SNP LD decay curve follows closely the pattern of the 
SNP – SNP LD decay (Fig.  3). Even though the level of 
LD was strongly reduced for the other variant types, 
a slight decay curve with increasing distance was still 
noticeable. Due to the small number of called DUPs in 
WL, the decay curve strongly fluctuated in this popula-
tion. However, BR and BL gave some evidence that the 
DUP – SNP and INV – SNP decay curves were compa-
rable, while BND – SNP decay came with a slightly lower 
level of LD.

To quantify the difference in LD between variants and 
populations and account for the population-specific level 
of LD, we expressed the mean LD in the 500 bp bins rel-
ative to the SNP – SNP LD and further averaged those 
values for the first 10 bins (Table 1). This revealed com-
parable values within variants and across populations of 

less than 12% difference. Across all populations, DEL – 
SNP LD was on the same level as SNP – SNP LD, while 
DUP – SNP LD was ~ 40%, INV – SNP ~ 27% and BND – 
SNP ~ 19% of SNP – SNP LD within 5 kb distance. Note 
that the relative r2 was not necessarily constant across the 
complete range of 100 kb (Fig. S5).

Effect of allele frequency
Figure  2 revealed differences in the MAF spectra of 
the variant types. We therefore further evaluated local 
MAF differences (ΔMAF) within-population by com-
paring ΔMAF for the SNP – SNP and SV – SNP pairs 
within 5 kb distance. This revealed elevated ΔMAF for 
DUP – SNP, INV – SNP, and BND – SNP pairs com-
pared to SNP – SNP and DEL – SNP pairs in BL and 
WL (Figs. S7, S8), but not in BR (Fig. S6). As the upper 
bound of r2 directly depends on ΔMAF [20], we inves-
tigated which part of the observed differences in the 
LD decay curves is due to the observed allele frequency 
differences. For this, we used the standardized squared 
correlation coefficient ( r2S ), which expresses r2 as the 

Fig. 3  LD decay in the broiler (BR), brown layer (BL) and white layer (WL) chickens. The LD is presented as mean r2 in 500 bp distance bins and the 
shaded areas represent Bonferroni-corrected 95% bootstrap confidence intervals. For SNP – SNP distance bins with > 1 M r2 values, no confidence 
intervals were estimated
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proportion of the maximum possible r2 given ΔMAF of 
the two variants [20] and thereby excludes effects of dif-
ferent allele frequencies on r2 . Mean r2S values (Fig. S1) 
were generally higher than mean r2  values (Fig. 3) due 
to the removal of the allele-frequency-dependent com-
ponent. While the r2S values of DEL – SNP relative to 
the SNP – SNP values (Table 1) were on a comparable 
level of > 94% as the relative r2 values (-3.8% to + 0.7%), 
the relative r2S values of DUPs, INVs and BNDs were 
between 14 and 33% higher than the according relative 
r2 values. The relative r2S values for the complete range 
of 100 kb are shown in Fig. S9.

Absence of homozygous SV genotypes
During the investigation of the reasons for the lower level 
of LD between non-DEL SVs and SNPs, we realized a 
strong absence of homozygous calls for DUPs, INVs, and 
BNDs, but not for DEL (exemplarily demonstrated for BR 
in Fig. 4A). To check whether this deviation is due to small 
variant allele frequencies, we calculated the deviation to 
Hardy–Weinberg-Equilibrium (HWE) and tested those 
for significance, using a Haldane Exact test under usage 
of the R package HardyWeinberg 1.7.2 [56] (exemplarily 
shown for BR in Fig. 4B). Homozygous DEL calls deviated 
into positive as well as into negative direction from the 
HWE. Homozygous calls for the other SV classes instead 
nearly exclusively deviated into a negative direction for all 
populations and only negative deviations were significant.

We tried to tackle the effect of this problem by corre-
lating the 0/1/2 coded SNP genotypes with a coverage-
dependent measure of copy number for DELs and DUPs, 
the Duphold Flanking Fold Change (DHFFC) [57]. How-
ever, as the DHFFC was also used for filtering, the results 
of this are potentially confounded and are only part of the 
supplementary material (Supplementary File 1).

Taggability
Theoretically, one SNP in strong LD to the variant of 
interest would be enough to serve as a marker that 
(partly) captures the effect of the variant for, e.g., GWAS 
or genomic selection as tag SNP. We, therefore, inves-
tigated the presence of potential tag SNPs close to the 
variants of interest. The used measure was the maximum 
observed r2 between a variant of interest and a pool of 
potential tag SNPs within a certain distance ( r2tag ). Nearly 
all variants in all variant classes came with at least one 
variable SNP within proximity of 10 kb (Fig. S14). Mean 
r2tag for all variants and populations showed an asymp-
totic trend with identifying the best tag SNP within 10 kb 
for most of the variants in all three populations (Fig. 5). 
Only mean r2tag of DUPs in BR was continuously grow-
ing until 100  kb distance (Fig.  5). Mean r2tag for SNPs 
only reached ~ 0.9 within 100 kb in all three populations, 
meaning that some SNPs were not in full phase to any 
other SNP. Mean r2tag was slightly reduced for DELs and 
strongly for DUPs, INVs and BNDs compared to SNPs 
(Fig. 5).

We additionally defined a variant as tagged if r2tag> 
0.75 and evaluated shares of accordingly tagged vari-
ants. While more than 85% of the SNPs were tagged in 
BR within 10  kb, this number was slightly smaller for 
DELs (> 75%). More than 25% of the DUPs were tagged 
within 10 kb distance and 50% within 100 kb, while less 
than 15% of INVs and BNDs were tagged. The tendency 
is the same in the two layer populations, but the abso-
lute numbers slightly deviate. As a maximum value of 
a sample is not independent of the number of sampled 
values, we also checked the number of present poten-
tial tag SNPs within 5  kb distance to the variant of 
interest. Interestingly, SNPs were surrounded by signif-
icantly more close variable SNPs on average than SVs in 

Table 1  SV – SNP r2/r2
S
 relative to the SNP – SNP r2/r2

S

a  Means of the first ten 500 bp bins relative to the SNP – SNP r2 [%] ± standard deviations [%]
b  Means of the first ten 500 bp bins relative to the SNP – SNP r2

S
 [%] ± standard deviations [%]

c  Difference between relative r2 and relativer2
S

Type All BR BL WL

r
2a

r
2

S

b Δc
r
2a

r
2

S

b Δc
r
2a

r
2

S

b Δc
r
2a

r
2

S

a Δc

DEL – SNP 100.1
± 6.1

98.8
± 4.3

-1.3 95.4
± 4.1

94.2
± 2.5

-1.2 107.0
± 3.2

103.2
± 1.2

-3.8 98.1
± 3.4

98.8
± 2.5

0.7

DUP – SNP 39.9
± 6.8

68.2
± 8.9

28.3 39.5
± 5.8

66.7
± 4.3

27.2 41.1
± 7.0

65.6
± 9.9

24.5 39.1
± 8.1

72.3
± 10.5

33.2

INV – SNP 26.8
± 5.2

46.0
± 4.3

19.2 32.6
± 2.4

46.8
± 1.7

14.2 26.0
± 2.4

50.1
± 3.4

24.1 21.6
± 3.1

50.1
± 6.2

28.5

BND – SNP 18.5
± 3.6

46.9
± 5.4

28.4 22.4
± 2.3

50.4
± 3.7

28.0 18.0
± 1.9

44.6
± 5.1

26.6 15.3
± 2.0

45.5
± 5.7

30.3
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all three populations (Table 2). This difference was still 
present when regarding only tag SNPs ( r2 > 0.75).

In practice, the interest of researchers and breeding 
companies may not be the taggability of SVs by WGS 
SNPs, but by array SNPs. Those come with a different 
allele frequency spectrum and lower resolution than 
WGS SNPs, which influences the LD patterns [19]. 
However, they are often available for a huge number 
of phenotyped individuals due to their use in routine 
breeding programs. We, therefore, evaluated the poten-
tial performance of four publically available chicken 
genotyping arrays with resolutions of 600  k [58], 60  k 
[59], 55 k [60], and 10 k [61].

The availability of variable SNPs close to the variants 
of interest was strongly dependent on the resolution of 
the arrays. While the 600  k array had a variable array 
SNP within 15 kb for more than 90% of the variants in 
all three populations, the 60 k and the 55 k array came 
with a slight shift of this dependency of having a variable 
array SNP for > 80% of the variants at 50 kb and > 90% at 
100 kb (Fig. S16). The 10 k array, however, contained no 
variable array SNP for 50% of the variants within 100 kb. 
A non-random difference in SNP density by variant type 
is not present for any array. The reduced density com-
pared to WGS also reduced the taggability. Mean r2tag val-
ues for SNPs and DELs reached between 0.06 for BR and 
the 10 k array and 0.65 for WL and the 600 k array within 
100 kb distance (Fig. S15). Interestingly, DELs seem to be 

slightly stronger tagged than SNPs in BL and WL (Fig. 
S15), while the other variant types were tagged by maxi-
mally 50% of the level which was reached in SNPs and 
DELs. The results are comparable when checking the 
proportion of variants with r2tag> 0.75 (Fig. S17). 40% of 
the WGS SNPs and even 45% of DELs were tagged with 
more than r2tag> 0.75 by a SNP of the 600 k array in WL. 
In contrast, less than 1% of SNPs and DELs were tagged 
by a SNP of the 10 k array in BR.

Discussion
Strong LD between genomic markers and causal genomic 
variants is the fundamental requirement of methods like 
genomic prediction [62] and GWAS [63]. A stringent 
evaluation of LD between SNP marker panels and poten-
tially causal SVs of different classes is therefore of strong 
interest for researchers and practical breeders, especially 
as the strength of this LD is discussed differently in litera-
ture (e.g. [6, 21–28, 32]). We here present the first study 
that performed this evaluation in chickens.

Implications from the SV calling pipeline
The median sequencing coverage of the samples (5 – 17 X) 
was comparably low for SV discovery. Despite the fact that 
the sequencing depth differed between layers and broilers, 
results were similar for all three populations. An effect of 
the sequencing depth on the results is therefore unlikely, as 
the results could be repeated across sequencing depths.

Fig. 4  Percentage of individuals carrying SV genotype (A) and deviations of homozygous variant genotypes from the Hardy–Weinberg-Expectation 
(B) in the broiler population for each called SV. Deviations from HWE were tested by a Haldane Exact test under usage of the R package 
HardyWeinberg 1.7.2 [56]. Bonferroni correction of the p values was applied within SV class. Homref – homozygous for the reference allele; het – 
heterozygous; homvar – homozygous for the variant allele; n.s. – not significant. Comparable figures for WL and BL can be found in Figs. S11 and S12
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The SV calling approach was intended to return highly 
accurate variant calls, therefore prioritizing precision 
over sensitivity. This especially required the exclusion 
of regions with unusually high coverage, as they may be 
artefacts of inaccurate read mapping in regions of low 
sequence complexity [64]. As those regions are known to 
be hot spots for SV formation by non-allelic homologous 

recombination (NAHR) [28–30, 65], we expect to have 
missed a significant proportion of SVs, especially multi-
copy DUP. Further, there was a missing overlap between 
DELLY and MANTA at INS calling, resulting in no INS 
calls. A generally weak power in INS calling from short 
reads is expected, though [14]. Those two problems high-
light the need for long-read sequencing data for future 

Fig. 5  Mean taggability for broiler (BR), brown layer (BL), and white layer (WL) chickens. Taggability ( r2tag ) was calculated as the maximum r2 
value up to a certain distance from the variant of interest. Means across variants are presented as lines while the shaded area represents the 
Bonferroni-corrected 95% bootstrap confidence intervals

Table 2  Median number of variable SNPs within 5 kb distance to variants of interest

Different lowercase letters within columns account for significantly different medians at the significance level of 0.05 (Bonferroni-corrected pairwise Wilcoxon rank-sum test)

Variant BR BL WL

All r
2
≥ 0.75 all r

2
≥ 0.75 all r

2
≥ 0.75

SNP 140 a 7 a 85 a 5 a 73 a 9 a

DEL 70 d 5 b 41 c 4 b 38 c 6 b

DUP 78 cd 4 b 48 bc 3 ab 31 c 4 ab

INV 90 c 3 b 49 bc 5 ab 42 bc 11 ab

BND 119 b 6 ab 59 b 1 ab 61 b 1 ab
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studies, which should allow for improved resolution of 
complex regions and comes with improved abilities for 
INS calling [1, 15]. The limitations of the calling approach 
and the resulting characteristics of the callset need to be 
considered when comparing our results to SV callsets 
that were derived by different approaches and therefore 
probably capturing SVs with different properties.

We further identified a lack of homozygous calls of 
DUPs, INVs, and BNDs with regard to HWE (Figs. 4, S11, 
S12). One possible reason may be a deleterious load and 
therefore purifying selection on those variants. While lit-
erature highlights the deleterious potential of DELs, INVs, 
and BNDs [2, 66], DUPs are rather considered positive by 
increasing gene expression [2, 3]. In our case, DELs rather 
show a slight excess of homozygotes than an expected 
lack under purifying selection (Figs. 4, S11, S12). The lack 
of homozygous calls was instead present for DUPs, INVs, 
and BNDs. Additionally, VEP impact predictions classified 
99.6% of the DEL impacts as MODIFIER and only 0.4% 
as HIGH, while DUP impacts were classified as HIGH in 
10% of the cases. The discrepancy with literature for DELs 
may partly be due to past inbreeding in the populations 
[52, 67], which resulted in small effective population sizes 
[68] and therefore may have purged strongly deleterious 
DELs [69, 70]. Purging of deleterious DELs may, together 
with limitations of the used SV callers, also be a reason 
for the relatively short sizes of the called DELs. Neverthe-
less, as none of the INVs and BNDs had predicted impacts 
besides MODIFIER, a second reason seems to be more 
likely: There may be deficits of the genotypers in accu-
rately distinguishing between heterozygous and homozy-
gous calls of DUPs, INVs, and BNDs.

LD decay results
The overall levels of SNP – SNP LD within the popula-
tions reflect the knowledge from the literature [19, 68] 
and the different levels of variability (BR > BL > WL) [52, 
71]. This resulted in WL having the strongest overall level 
of LD and BR the weakest. Besides that and if not espe-
cially indicated differently, results were the same for all 
three populations throughout the following sections.

The DEL – SNP LD, all in all, was on the same level 
as SNP – SNP LD. This implies good predictability of 
DEL effects by SNP call sets and is in accordance with 
the majority of the existing studies [6, 21–24]. Stud-
ies that found DEL – SNP LD to be on a reduced level 
compared to SNP – SNP LD mostly performed the DEL 
calling from SNP arrays, which implies low breakpoint 
resolution [32]. It is also common to merge CNV to copy 
number variable regions (CNVR) in SNP array or read-
depth-based studies [32]. Therefore, a CNVR can reflect 
multiple mutation events and not only a single variant, 
resulting in reduced LD to bivariate SNPs, an effect we 

do not expect to be present in our data due to the more 
precise variant definition.

The level of DUP – SNP LD was strongly reduced com-
pared to SNP – SNP LD and DEL – SNP LD, which is 
in accordance with the existing studies [22, 26, 28, 32]. 
However, levels of ~ 40% of the SNP – SNP LD (Table 1) 
were higher than what was found e.g. by Lee et al. [32], 
who found DUP – SNP LD to be ~ 20% of SNP – SNP LD 
in two dairy cattle populations. A main factor of DUP – 
SNP LD being reduced compared to SNP – SNP LD may 
be due to the lower allele frequencies of DUP in our call-
set (Fig.  2) and therefore increased local ΔMAF (Figs. 
S7, S8) in BL and WL. Removing the ΔMAF dependent 
part of LD by expressing LD as r2S increased the rela-
tive r2 of 30% to a relative r2S of 68% of the SNP – SNP r2S 
(+ 28%, Table 1). This means that local differences in the 
allele frequency spectra between SNPs and DUP account 
for ~ 50% of the difference between SNP – SNP LD and 
DUP – SNP LD.

A second cause for reduced DUP – SNP LD could be 
a higher rate of genotyping errors in DUP. In fact, we 
identified a significant reduction of homozygous DUP 
calls compared to HWE (Figs. 4, S11, S12) as already dis-
cussed above. The potential genotyping inaccuracy may 
additionally be supported by the, admittedly subjective, 
observation of the two assessors during the visual filter-
ing step that DUP came with less clear support than DEL. 
This, however, resulted only in a moderately reduced 
inter-observer reliability of 94% in DUP compared to 97% 
in DEL (Supplementary file 3).

A further possibility of reduced DUP – SNP LD may 
be the occurrence of multi-copy CNVs (mCNVs) [28, 
30] in our callset. DUP in the callset may partly repre-
sent CNVs that occur with different copy numbers and 
are therefore multi- instead of bivariate variants. This 
reduces the linkage to bivariate SNPs. We saw slight sup-
port for the occurrence of some mCNV in the callset 
e.g. by some high DHFFC values. However, mCNVs are 
known to cluster in special regions of the genome [28] 
due to non-allelic homologous recombination (NAHR) 
as a formation mechanism [29, 72]. Note that NAHR can 
also occur recurrently [29], resulting in variants that are 
called bivariate but stem from multiple mutation events. 
As those clusters should result in high-coverage regions, 
which we removed in the filtering step, we do not expect 
a higher number of mCNV and recurrent mutations in 
our callset.

We also evaluated the linkage between SNPs and INV/ 
BND and found low levels of LD (26.8% and 18.5% of SNP 
– SNP LD). The reduced LD in our study is again partly 
due to local allele frequency differences (Figs. S6— S8) 
as for DUP. Relative r2s  values were therefore 14% to 30% 
higher than relative r2 values (Table 1). However, r2s  values 
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for INV – SNP and BND – SNP were still only ~ 50% of 
SNP – SNP r2s  . The remaining gap may partly be due to 
genotyping problems. We identified the lack of homozy-
gous calls for INVs and BNDs (Figs.  4, S11, S12) as for 
DUPs. In combination with the missing ability to use cov-
erage information for filtering, we would trust the INV 
and BND genotypes least in our callset. In contrast to 
our results, Sudmant et al. [28] found INV to be in good 
LD to SNPs in a very accurate callset from 2,504 human 
genomes, which further supports that the accuracy of 
INV calls was low in our study.

Taggability
The analysis of taggability revealed comparable patterns 
as the LD decay. A high fraction of SNPs and DEL was 
tagged by close-by WGS SNPs in all three populations 
(Figs. 5; S14), while only a small fraction of DUPs, INVs, 
and BNDs was tagged. However, in contrast to the decay 
patterns, SNPs on average were tagged slightly stronger 
than DEL, and between 5 and 10% more SNPs were 
tagged with r2tag > 0.75 than DEL. A reason for the higher 
taggability of SNPs compared to DEL, while the LD decay 
does not differ, may be the reduced SNP density around 
DELs (Table 2), as the chance for higher maximum values 
increases with the number of SNPs in the region of inter-
est. In contrast, DELs were tagged slightly better by array 
SNPs than WGS SNPs by array SNPs. In the case of array 
SNPs, no locally increased density was present, as array 
design aims at an equidistant spacing of markers across 
the genome [58]. This resulted in no difference between 
the taggability of SNPs and DELs by array SNPs. Poten-
tial issues of excluding SNPs in complex regions during 
array design as suggested by Lee et al. [32] as a reason for 
reduced CNV – SNP LD, were not observed in this study, 
as we excluded SVs in those regions due to a minor call-
ing accuracy. Using array SNPs to tag the WGS variants 
further revealed a strong need for dense marker maps to 
provide good tag SNPs, as only the 600 k array could pro-
vide tag SNPs with r2tag > 0.75 for more than 25% of SNPs 
and DEL. This may largely explain why e.g. Xu et al. [33] 
found a quarter of CNVs that were significantly associ-
ated with milk traits in Holstein cattle to be not tagged by 
SNPs of a 50 k array. It suggests that this is not solely due 
to the nature of CNV but that they also missed a compa-
rable fraction of effects, which are caused by SNPs.

The concept of taggability is especially relevant for 
GWAS, where phenotype-marker associations are tested 
for each marker separately. The strength of the LD 
between marker and causal variant then directly influ-
ences the power of the GWAS. However, the absence 
of single tag SNPs does not imply that the effect of an 
SV cannot be captured by a longer haplotype. Methods 
that utilize effects of multiple SNP at once (e.g. ridge 

regression best linear unbiased prediction [62]), of which 
each can explain a slightly different fraction of the vari-
ance of the causal variant, may be more robust in this 
sense. Additionally, imputation of known SVs would 
probably be a way to overcome the issue of low taggabil-
ity and needs further investigation.

Conclusions
We evaluated LD patterns between a comprehensive 
SV callset and surrounding SNPs in three commercial 
chicken populations. We found DEL – SNP LD to be on 
the same level as SNP – SNP LD, while DUP – SNP, INV 
– SNP, and BND – SNP LD were strongly reduced. This 
was in accordance with the availability of tag SNPs for a 
high share of SNPs and DELs, while tag SNPs for DUPs 
were rare and mostly missing for INVs and BNDs. Differ-
ent arrays came with a density-dependent ability to tag 
WGS SNPs and SVs but did not show strong systematic 
differences compared with taggability by WGS SNPs. The 
main reason for existing differences in SNP – SNP and 
DUP/INV/BND – SNP LD in our study was due to local 
MAF differences. Those accounted for ~ 50% of this dif-
ference in the strength of LD. This implies that genomic 
variance due to DELs in the chicken populations studied 
can be captured by different SNP marker sets as good as 
variance from WGS SNPs, whereas separate SV calling 
might be advisable for DUP, INV, and BND effects.

Material and methods
Data
The study used WGS data of 25 white layers, 25 brown 
layers, and 40 broiler chickens. The raw data was first 
published by Qanbari et  al. [52], which contains more 
information about the samples. Chickens were paired-
end sequenced with a median coverage between 5 and 
17 X, read length of 100  bp (WL + BL) or 126  bp (BR), 
and insert sizes of ~ 400 bp. Basic quality statistics can be 
found in Supplementary file 2 as MultiQC report [73].

Population integrity was controlled using principal 
component analysis in plink 1.9 [74]. The SNPs were first 
LD pruned by setting the –indep-pairwise flag to sliding 
windows of 50 kb, a stepsize of five SNPs and an r2 of 0.5. 
Based on the pruned SNPs, plink extracted then 90 prime 
components. Results for the first four prime components 
and the variance explained can be found in Fig. S18. The 
first two prime components, which in total accounted 
for 33.2% of the total variance, clearly separated broilers, 
white- and brown layers. The two broiler subpopulations 
were only slightly separated by the second prime compo-
nent and clearly by the third, which accounted for 4.5% 
of the total variance. The fourth component started split-
ting one of the broiler populations. We assumed this to 
be sufficiently closely related to consider the two broiler 
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subpopulations as a combined population for further 
analyses.

Variant calling pipeline
Alignment on the reference genome galGal6/ GRGC6a 
and SNP calling were conducted in a previous study [53] 
following GATK best practices pipeline [75]. The SNPs 
needed for this study were then extracted from the old 
callset using bcftools [76] and the duplicate-marked and 
base quality score recalibrated BAM files were used as 
starting point for the SV calling process.

SV calling was conducted following a consensus calling 
approach. SVs were first separately called per individual 
and then genotyped on population-level by running Delly 
0.8.5 [10], Manta 1.6.0 [12], and a combination of Lumpy 
0.2.13 [11] and Svtyper 0.7.0 [77] in parallel on the com-
plete set. The genotyping results of the three calling 
pipelines were then merged using SURVIVOR 1.0.7 [78] 
and allowing for breakpoint differences of 1000 bp. This 
resulted in 95,478 raw SV calls.

Additionally, read depth profiles for all samples in 
100  bp windows were generated using Mosdepth 0.2.9 
[79] and SVs were annotated with Dupholds (version 
0.2.1) [57] flanking fold change (DHFFC) and the SNP 
genotype calls located on the SV.

The merged callset was then filtered based on the fol-
lowing parameters:

1)	 Caller overlap: At least two of the three callers 
needed to support the variant.

2)	 Genotype concordance: The genotype that was sup-
ported by two out of the three callers was considered 
as the consensus genotype. Genotypes without the 
necessary support were set to missing for later re-
imputation. If more than two samples did not have 
the necessary genotype concordance support for an 
SV, the complete SV was removed from the data set.

3)	 Removal of high coverage regions: Local coverage 
was extracted by Mosdepth 0.2.9 [79] in 100 bp win-
dows. If windows exceeded a threshold of twice the 
average coverage across all samples (expected value 
for a fixed DUP) plus two standard deviations, they 
were classified as unusually highly covered. Unusu-
ally highly covered regions were further merged if 
they were less than 1000  bp apart from each other. 
SVs with breakpoint confidence intervals falling in 
such a region were removed from the data set.

4)	 Difference to flanking coverage: DELs and DUPs calls 
were checked for non-consistent coverage changes 
relative to the flanking coverage by evaluating the 
Duphold Flanking Fold Change (DHFFC) [57]. DELs 
were considered as wrong genotypes when heterozy-
gotes were not between 0.1 and 0.9 and homozygous 

DEL genotypes not smaller than 0.25. Heterozygous 
DUPs had to be > 1.1 and homozygous DUPs > 1.5. 
DELs/DUPs with more than one error or more than 
10% wrong genotypes were filtered. Otherwise, the 
putatively wrong DEL/DUP genotypes were set to 
missing for later re-imputation.

5)	 Support by SNP calls on DELs: SNP calls need to 
be homozygous on heterozygous DELs and missing 
on homozygous DELs. We, therefore, calculated for 
each DEL genotype the relative number of wrong 
SNP genotypes (e.g. one error by five total SNPs on 
the DEL = 0.1). If the sum of those error rates across 
samples exceeded two or 50% of the number of sam-
ples that were at least heterozygous for the DEL, the 
DEL was filtered. Otherwise, the putatively wrong 
DEL genotypes were set to missing for later re-impu-
tation.

This resulted in 5,600 SVs (4,831 DELs; 253 DUPs; 
346 INVs; 170 BNDs; 94.1% filtered). No INS remained, 
as Lumpy does not call INS and there was no over-
lap between Delly and Manta. Samplot 1.0.19 [54] was 
then used to generate quality control plots for each SV 
that passed the previous filtering step. The quality plots 
were visually screened by two separate observers com-
parable to the workflow implemented in SV-plaudit [80], 
but implemented locally by using image-sorter2 (https://​
github.​com/​Nesta​k2/​image-​sorte​r2). The SVs needed to 
be scored as ‘pass’ by each of the two observers to be fur-
ther used (Supplementary file 3). By this, a further 6.9% 
of the SVs (3.5% of DEL, 11.1% of DUP, 36.0% of INV, and 
30.8% of BND) were removed. The removed SVs were 
mainly in regions with complex mapping patterns.

The final SV callset (4,301 DEL, 224 DUP, 218 INV, 117 
BND) was then merged with the SNP callset (12,294,329 
bivariate autosomal SNPs). The samples were phased 
and missing genotypes were imputed by beagle 5.0 [81] 
with default settings besides reducing ‘ne’ to 10,000 [82]. 
Functional consequences were annotated by ensembl-vep 
[55] using the release 100 GRGC6a annotation files.

Estimation of LD
LD between two loci with a maximum distance of 100 kb 
was initially estimated from phased haplotypes as follows:

where pA and pB account for the alternative allele 
frequencies at the two loci and pAB for the according 
haplotype frequency. To control for allele frequency devi-
ations that influence the maximum possible r2 , we fur-
ther scaled r2 by the maximum possible r2 given �MAF 

r2AB =
(pAB − pApB)

2

pApB(1− pA)(1− pB)

https://github.com/Nestak2/image-sorter2
https://github.com/Nestak2/image-sorter2
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( r2S = r2/r2max|�MAF ) where r2max|�MAF was derived as 
described by VanLiere and Rosenberg [20]. As we real-
ized a problem with calling of homozygous DUP, we addi-
tionally estimated LD as squared Pearson Correlation 
between 0/1/2 coded SNP genotypes and the Duphold 
Flanking Fold Change (DHFFC) [57] as a measure for the 
relative reference genome coverage at DEL and DUP (due 
to possible confounding only part of Supplementary file 
1). LD decay was then summarized in means of 500  bp 
bins between the variants.

Bonferroni corrected bootstrap confidence intervals 
for the LD decay were estimated by resampling the r2 
values within each bin 100,000 times with replacement. 
As tests showed confidence intervals for SNP—SNP LD 
being < 0.001 due to the huge number of underlying val-
ues, we decided to skip estimation of confidence intervals 
for bins with > 1 M r2 values.

A tag SNP was defined as the SNP with the highest r2 to 
the variant of interest within a certain distance ( r2tag) . The 
taggability of variant classes was then investigated by com-
paring means of r2tag and shares of variants with r2tag > 0.75 . 
Additionally to the taggability by WGS SNPs, we compared 
the taggability by SNPs of four commercially available SNP 
arrays. The 600  k Affymetrix Axiom chicken genotyping 
array [58], a 60 k Illumina Bead Chip [59], a 55 k Affym-
etrix genotyping array [60], and the IMAGE_001 multispe-
cies array, which contains 10 k chicken-specific SNPs on an 
Affymetrix genotyping array [61]. The annotation files were 
lifted over to the reference genome galGal6/GRGC6a by 
the UCSC [83] liftOver tool under usage of the according 
chain files and the overlaps with the variable WGS SNPs 
were defined as pools of potential Array tag SNPs.

Workflow
The complete pipeline was set up in snakemake 5.3.0 [84] 
and the according scripts including the snakefile with all 
used parameters as well as the dependency analytics graph 
(DAG) and the rulegraph of the pipeline can be found on 
Zenodo (https://​doi.​org/​10.​5281/​zenodo.​57703​48).
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