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Abstract
The article raised a user-friendly interactive approach-Attraction Propagation (AP) in seg-

mentation of colorectal polyps. Compared with other interactive approaches, the AP relied

on only one foreground seed to get different shapes of polyps, and it can be compatible with

pre-processing stage of Computer-Aided Diagnosis (CAD) under the systematically proce-

dure of Optical Colonoscopy (OC). The experimental design was based on challenging dis-

tinct datasets that totally includes 1691 OC images, and the results demonstrated that no

matter in accuracy or calculating speed, the AP performed better than the state-of-the-art.

Introduction
The colorectal cancer now has been certified as the third most common cancer throughout the
world. There will be close to 2 million new cases annually, and as the Top 4 disease mortality,
in each year, around 600 thousands of people died from it [1, 2]. According to statistics, most
cases of colorectal cancer are pathological changed from colorectal polyp, therefore, to identify
the types of colorectal polyp at early stage and to target it to solve the problem may reduce the
death rate, and even cure patients [3, 4]. Colonoscopy as the golden standard method has been
widely used in screening and colorectal polyp diagnosis [5]. However, even a well-trained expe-
rienced medical staff still needs to spend tremendous time on suffering the optical colonoscopy
(OC) images and colorectal polyp analysis. So to combine the Computer-Aided Diagnosis
(CAD) system into the screening and colorectal polyp diagnosis could alleviate the burden of
medical staffs’ routing works.

Generally, a CAD system based on OC image consists of several procedures: image prepro-
cessing, segmentation, feature selection, and classification. Among those procedures, image
segmentation is a key procedure in the CAD system. Accurate segmentation of abnormal
regions can improve the performance of the CAD system significantly [6]. Because current
diagnoses based on endoscope have no calibration and are more operator-dependent than
other diagnoses(such as X-ray or MRI), we may encounter a high inter-observer variation
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among different clinicians as shown in Fig 1. The variation and uncertainty makes the segmen-
tation of OC images become a challenging task.

Numerous methods have been proposed for automatic segmentation, such as Fuzzy C-
means [7], Mean Shift [8], Spectral Clustering [9], Quick Shift [10], and Entropy-rate cluster-
ing (ERC) [11]. These methods do not require the guidance from users to specify the seg-
mented regions and they select an appropriate set of features according to different criteria.
These features are helpful for merging regions with the same property and for identifying
regions with different properties. Although these automatic methods produce some satisfactory
segmentation results for OC images (as shown in Section 3), they are still impacted on by some
factors producing an inaccurate segmentation, such as blood vessels, bubbles, and excreta, and
the various categories of polyps, which can be flat, protruded, or depressed in shape [12–16].
To solve the problems above, Gross et al. [17] use a template matching approach which exploits
the ellipse boundary shape to segment polyps in OC images. But the restriction to the type of
the template produces some unsatisfactory segmentations. Breieret al. [18] apply the Chan-
Vese-Segmentation for extracting the boundary of polyps in OC images. Although their
method can offer the flexibility to adapt to shape variation well without using edge informa-
tion, the time cost is huge because of the involvement of a large amount of iterations. Bernal
et al. [12] propose a method based on the depth of valleys image to realize the OC image seg-
mentation effectively. However, in some cases, a fixed parameter is not available that works
well for all OC images. Cong et al. [19] gives a super-pixel segmentation method for endoscopy
images, while it suffers from over-segmentation with less robustness.

In recent years, interactive/semi-automatic methods for image segmentation have attracted
much attention and they have become quite mature. In contrast to automatic segmentation
methods, interactive methods require that some foreground and background pixels are marked
manually (these marked pixels are known as seed points), before completing the segmentation
of the remaining regions according to the seed points. Several popular interactive segmentation
methods are available, including Active Contours (AC) [20–24], Lazy Snapping [25], Level Set
(LS) [26–29], Graph Cuts (GC) [30, 31], GrabCut [32], RandomWalks (RW) [33–35], and
Shortest Paths (SP) [36]. Among these methods, the weighted graph method (such as GC, RW,
SP) is a powerful tool for the interactive image segmentation. Previous studies [35, 37, 38] have
demonstrated that this method can identify multiple objects simultaneously and performs well
with different seeding strategies (such as equidistant seeds or strongly asymmetric seeds).
Moreover, it is robust with high computational speed.

Fig 1. Optical colonoscopy (OC) images with polyp.

doi:10.1371/journal.pone.0155371.g001
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Although weighted graph method is valid for various types of image segmentation, it
encounters small cut problems during image segmentation, especially when low numbers of
foreground and background seeds are marked. The underlying cause of these problems lies in
that the weighted graph or diffusion distance [37] is calculated only from adjacent information
(such as Laplacian matrix) as solving the optimal problem of graph cuts, and the transition
probabilities are difficult to propagate to the region far from the seeds. These existing problems
greatly reduce the accuracy and quality of image segmentation. In recent years, the traditional
weighted graph method has been extended to some new versions [37, 38]. In particular, Cou-
prie et al. [37] suggest a unified framework for GC, RW, SP andWatersheds. By combining the
RW with the Maximum Spanning Forest, their algorithm produces an improved segmentation
of a higher speed. However, in some cases, this algorithm is also affected by the small cut prob-
lem in the same manner as the RW.

In this study, we propose an interactive segmentation algorithm called attraction propaga-
tion (AP) for OC image segmentation, which compensates for some of the shortcomings of
interactive methods such as AC, LS, GC, and RW. We introduce an attraction scheme based on
a shape probability region and reconstruct an image graph for segmentation. In contrast to
existing interactive methods, this new implementation scheme AP can solve the small cut prob-
lem in an effective manner by boosting the transition probability of pixels in attraction region.
When encountering weak boundary problems, AP also produces more accurate segmentation
results than many other methods such as AC, LS, RW and PW.

Now we summarize the main contributions of this proposed method:

• We provide a feasible strategy for the initialization of only one foreground seed. This strategy
can be very easily integrated into the current clinical diagnosis and OC image acquisition.

• We introduce a shape probability region to offer an attraction region effectively, and propose
a flexible framework for polyp segmentation in OC images.

• We give a fast minimization algorithm for the OC image processing.

• We build an open database of 800 OC images for assessing the performance of segmentation
algorithms.

The remainder of this paper is organized as follows. Section 2 describes the proposed AP
algorithm. Section 3 presents the experimental results obtained after the OC image segmenta-
tion. Section 4 discusses the sensitivity of parameters about our algorithm. In Section 5, we
summarize the proposed algorithm.

Methods
In this section, we firstly give a user-friendly initialization of seed placement, and then intro-
duce related works of weighted graph method. Secondly, we propose the attraction propagation
algorithm with three forms. Finally, we provide some experimental examples to illustrate the
effectiveness of our algorithms.

The initialization of seed placement
To segment OC images through interactive approaches, the primary problem lies in how to
handle the initialization of seed placement. For the conventional initialization of seeds, users
need to provide a large amount of interactive operations, which are laborious, exhausting and
hard to be integrated into the current clinical diagnosis. In this paper, we provide a feasible and
convenient strategy for initializing seeds. A schematic view of this strategy is given in Fig 2. Fig
2B shows a picture with a viewfinder. The polyp can be captured in the frame formed by the
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viewfinder as shown in Fig 2C. AP will detect the contours of polyps according to the seeds in
Fig 2C. Specially, when the polyp is in a fixed position of the image, AP can realize automatic
segmentation.

Related work
Given an image I, the segmentation problem can be formulated on an undirected and con-
nected graph G = (V, E) [39], where vertices (nodes) v 2 V and edges e 2 E� V × V, and the
cardinalities of V and E are |V| and |E|, respectively. An edge that spans two vertices vi and vj is
denoted by eij. A weighted graph assigns a weight to each edge. The weight of an edge, eij, is
denoted by w(eij) or wij, which is nonnegative (i.e., wij � 0). The edge set E comprises pairs of
pixels, which are neighbors in the image. A Gaussian function of the L1 distance is defined
between pixels with different image intensities, for which the weight wij can be defined as

wij ¼ expð�bjgi � gjjÞ; ð1Þ

where gi indicates the image intensity at pixel i and β is a free parameter. In weighted graph sce-
nario, image segmentation is considered on an image domain (for the case with two labels).
Every unlabeled node is given a label according to different energy function. The labels of
nodes decide a segmentation of graph. Among these methods, the RW and PW are two power-
ful and robust tools [34, 37], so we choose them in experiments for discussing and illustrating
the effects of graph methods. Fig 3c and 3d show the segmentation results of RW and PW by
choosing the seeds shown in Fig 3b. Under new strategy for initialization seed (see the previous
subsection), these method may encounter the small cut problem.

To solve the small cut problem, we try to use the shape prior knowledge for enhancing the
segmentation results. Actually, there are already several works discussing how to utilize the
shape prior knowledge to increase the robustness and accuracy of medical image segmentation.
For instance, Aslan et al. [40] use a 3D shape model obtained from a training data set to over-
come any in homogeneity in CT images of bones. Chowdhury et al. [41] apply a probabilistic
variation of the traditional graph cut algorithm and address the problem of segmentation of
cerebral white matter from T1-weighted MRI data. To process cardiac MRI, Grosgeorge et al.
[42] propose a segmentation method based on a statistical shape model obtained with a princi-
pal component analysis. Inspired by those works, we propose a new segmentation scheme
called as AP which uses the linear system to give an optimization solution. By learning the
shape priori-knowledge in OC databases, AP offers to determine attraction region and boost
transition probabilities for nodes in the region. Fig 4 shows a schematic plot of our strategy,
and the concrete attraction mechanics are introduced in the following subsections.

The attraction propagation (AP)
In this subsection, we propose the attraction propagation (AP) to segment the input images.

The attraction propagation term
X

vi2A
Dðai; xci ; tci Þ is introduced in the weighted graph

Fig 2. Overview of AP algorithm designed for CAD system. (A) Display screen of endoscopic diagnosis.
(B) Display screen after starting the CAD system. (C) The seed placement automatic initialization base on
white viewfinder in (B). (D) The segmentation result of AP.

doi:10.1371/journal.pone.0155371.g002
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method to control the transition probability. The new segmentation model is as

argminxf
X

vi2A
Dðai; xci ; tci Þ þ

X
eij2E

wijðxci � xcj Þ2g; ð2Þ

where the xci is the transition probability of category c and c represents the category. In our
problem c = f or c = b, where f and b represent the foreground and the background respectively.
A is a set of vertices in the attraction region (AR). We will give a detailed description on how
to obtain the attraction region in the next subsection. In our model, ai; t

c
i and wij are three

adaptive parameters. The summand in the attraction propagation term can choose several
forms according to various problem-specific domains. In this paper, we give three basic forms

Pearson distance [43]:

DPðai; xci ; tciÞ ¼ aiðxci � tciÞ2=2tci ; ð3Þ

Inner product:

DInðai; xci ; tci Þ ¼ aix
c
i t

c
i ; ð4Þ

Fig 3. (a) original images; (b) seeds of foreground and background; (c) random walks’output; (d) power
watershed’s output; (e) contour plot of transition probability of foreground obtained by random walks; (f) 3d
representation of the greyscale OC image.

doi:10.1371/journal.pone.0155371.g003

Fig 4. A schematic plot of the attraction propagation (AP).

doi:10.1371/journal.pone.0155371.g004
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L2 norm square:

DL2ðai; xci ; tciÞ ¼ aiðxci � tciÞ2: ð5Þ

Basing on the AP model (2), we can compute the transition probability xci , and assign a
label to every unlabeled node for getting the final segmentation. By expanding the attraction
propagation and the weighted graph terms, we rewrite them in the matrix forms

DPðA; x; tÞ ¼
X

vi2A
DPðai; xci ; tci Þ ¼

1

2
xTðAt�1

I
T � IÞx � xTðAt�1

I
T � IÞtþ 1

2
tTðAt�1

I
T � IÞt;ð6Þ

DInðA; x; tÞ ¼
X

vi2A
DInðai; xci ; tciÞ ¼ xTAt; ð7Þ

DL2ðA; x; tÞ ¼
X

vi2A
DL2ðai; xci ; tci Þ ¼ xTAx � 2xTAtþ tTAt; ð8Þ

GðW; xÞ ¼
X

eij2E
wijðxci � xcj Þ2 ¼ ðKxÞTWðKxÞ ¼ xTLx; ð9Þ

where ⋅ denotes an element-by-element multiplication and τ−1 is an element-by-element recip-
rocal of a column vector τ. I is a column vector where each element is one.

The attraction region and some details of AP
In this subsection, we first illustrate how to obtain the attraction regionA from the shape
prior. And then we give the detailed description of formulas (6)–(9). A flow chart of the attrac-
tion region is shown in Fig 5a and a detailed procedure is given as follows:

Step 1. Select a subset in the OC ground truth image database for generating the attraction
region.

Step 2. Calculate the centroids of ground truth images and calibrate these centroids to the cen-
tre position.

Step 3. Count the number Fr(m, n) of pixels in the overlapping regions of calibrated images.
Normalize the number Fr(m, n) by

SPðm; nÞ ¼ Frðm; nÞ
Ns

; ð10Þ

Wherem and n represent the coordinates, Ns is the number of ground truth images. We call
SP(m, n) as the shape probability matrix (see Fig 4).

Step 4. Choose a threshold matrix by

Tðm; nÞ ¼ SPðm; nÞ if SPðm; nÞ � G;

0 otherwise;

(
ð11Þ

where Γ is a threshold and 0� Γ� 1. We use the non-zero region in the threshold matrix
as the shape prior region (see Fig 4). An illustrative example of generating the shape proba-
bility matrix is shown in Fig 5b for Ns = 3.
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Now we illustrate concrete definitions of symbols in formulas (6)–(8). Given one fore-
ground seed, we introduce an attraction region A generated by shifting the shape prior region
onto the seed such that the position of seed is same as the centroid of the region (see Fig 4).

The matrix A is a diagonal |V| × |V| attraction propagation incidence matrix and defined as
follows

Aði; jÞ ¼ ai if i ¼ j and vi 2 A ;

0 otherwise:

(
ð12Þ

The attraction factor ai is used to adjust the attraction intensity of pixels in the A. In this
work, the attraction factor ai = exp(−|gi − gs|), where gs is the image intensity of seed and s is a
foreground seed. In formulas (6)–(8), the range base τ in R|V| for controlling the scope of prob-
abilitiesis defined by

tðiÞ ¼

tci ¼ VecðTÞðiÞ if vi 2 A; c ¼ f ;

tci ¼ 1� VecðTÞðiÞ if vi 2 A; c ¼ b;

0 otherwise;

8>>>>>>><
>>>>>>>:

ð13Þ

where T is a matrix with the same size of input image. Fig 6a gives an intuitive example to dem-
onstrate matrix T. It is constructed by shifting the threshold matrix T in formula (11) onto the
foreground seed such that the center coordinate of T is same as the position of seed. Vec(�)
operator stacks the entries of a 2-dimensional matrix into a column vector. We hope to boost
the probabilities of pixels in the attraction region when computing the probabilities in the fore-
ground, and depress those probabilities in the attraction region when considering the transition
probabilities in the background as shown in Fig 6b.

In formula (9), the |E| × |V| edge-node incidence matrix K is defined as

Keij ;vk
¼

þ1

�1

0

if i ¼ k;

if j ¼ k;

otherwise;

8>>><
>>>:

ð14Þ

Fig 5. (a) A flow chart of the shape prior region; (b) Illustration of generating the shape probability matrix.

doi:10.1371/journal.pone.0155371.g005
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and the |E| × |E| matrixW is a constitutive diagonal matrix with the square weights of each
edge along the diagonal. Furthermore, the Laplacian matrix L of the graph is defined as follows

Lði; jÞ ¼

P
k wik if i ¼ j;

�wij if vi and vj are adjacent nodes;

0 otherwise:

8><
>: ð15Þ

Now we give the detailed description of formulas (6)–(9).
Pearson distance:

DPðA; x; tÞ þ GðW; xÞ ¼ xT
1

2
At�1

I
T � I

� �
x � xTðAt�1

I
T � IÞtþ tT

1

2
At�1

I
T � I

� �
tþ xTLx

¼ xTM xTU
� � PM B

BT
PU

" #
xM

xU

" #
� xTM xTU
� � 2AM 0

0 2AU

" #
tM

tU

" #
þ tTMt

T
U

� � AM 0

0 AU

" #
tM

tU

" #

¼ xTMPMxM þ 2xTUB
TxM þ xTUPUxU � 2xTMAMtM � 2xTUAUtU þ tTMAMtM þ tTUAUtU :

ð16Þ

We denote A ¼ 1
2
At�1

I
T � I and Lþ A as P, which is partitioned into marked (seed nodes)

and unmarked (unseeded nodes) blocks.

P ¼ PM B

BT
PU

" #
: ð17Þ

Inner product:

DInðA; x; tÞ þ GðW; xÞ ¼ xTAtþ xTLx ¼ xTM xTU
� � AM 0

0 AU

" #
tM

tU

" #
þ xTM xTU
� � LM B

BT LU

" #
xM

xU

" #

¼ xTMLMxM þ 2xTUB
TxM þ xTULUxU þ xTMAMtM þ xTUAUtU :

ð18Þ

Fig 6. (a) An intuitive example to demonstrate matrix T. (b) the schematic plot of computing the probability of
foreground and background. Red represents seeds of the foreground and the centroid of the attraction
region.

doi:10.1371/journal.pone.0155371.g006
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L2 norm square:

DL2ðA; x; tÞ þ GðW; xÞ ¼ xTAx � 2xTAtþ tTAtþ xTLx ¼ xTðLþ AÞx � 2xTAtþ tTAt

¼ xTM xTU
� � SM B

BT
SU

" #
xM

xU

" #
� 2 xTM xTU

� � AM 0

0 AU

" #
tM

tU

" #
þ tTMt

T
U

� � AM 0

0 AU

" #
tM

tU

" #

¼ xTMSMxM þ 2xTUB
TxM þ xTUSUxU � 2xTMAMtM � 2xTUAUtU þ tTMAMtM þ tTUAUtU :

ð19Þ

We denote L + A as S, which is partitioned into marked (seed nodes) and unmarked
(unseeded nodes) blocks.

S ¼ SM B

BT
SU

" #
: ð20Þ

For eachcategory c, we define the set of labels for the seed points as a function Q(vj) = c for
any vj 2 VM. Furthermore, we define a |VM| × 1 vector (where |�| denotes cardinality) for each
category c at node vj 2 VM as

mc
j ¼

1 if QðvjÞ ¼ c;

0 if QðvjÞ 6¼ c:

8><
>: ð21Þ

The minimization of (16), (18), (19) with respect to xcU is given by the linear system:
Pearson distance:

PUx
c
U ¼ �BTmc þ AU ; ð22Þ

Inner product:

LUx
c
U ¼ �BTmc þ AUt

c
U ; ð23Þ

L2 norm square:

SUx
c
U ¼ �BTmc þ AUt

c
U ; ð24Þ

for one label, or

PUX ¼ �BTM þ AU ; ð25Þ

LUX ¼ �BTM þ AUT ; ð26Þ

SUX ¼ �BTM þ AUT ; ð27Þ

for all labels, where the matrix X has K (in our problem, K = 2) columns for each xcU , whereM
has columns for eachmc and T has columns for each tcU Therefore, we solve the probabilities
matrix X using K sparse linear systems. The overall segmentation scheme is described in
Table 1.

The above attraction scheme AP has many advantages and properties, such as high compu-
tational speed and robust segmentation. AP is formulated on a general graph with priori-
knowledge shape, which can represent any dimension or topology, and it holds the segmenta-
tion accuracy of the abnormal region and reduces the estimates of the background region. An
example of the results obtained by the AP is shown in the last three rows of Fig 7. Even when
only one seed point is selected in the foreground region, the AP can improve the segmentation
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accuracy more effectively than other weighted graph methods. More numerical results are
shown in the following Section.

Experiments and Results
To the best of our knowledge, there are no literatures offering a large-scale analysis and valida-
tion the performance of the automatic and interactive segmentation algorithms for OC image.
It is still largely unknown about whether interactive/semi-automatic methods perform better

Table 1. Algorithm 1.

Input: Input image I and a set of foreground and background seeds

Output: The segmentation results.

Step1: Compute edge weights according to exp(−β|gi − gj|).

Step2: Compute the Laplacian matrix with formula (15), the attraction propagation incidence matrix with
formula (12) and the range base with formula (13).

Step3: Decompose the Re-built Laplacian matrix and compute the transition probability by solving the
sparse linear system:

HðXÞ ¼
PUX ¼ �BTM þ AU ; ðPEA� APÞ
LUX ¼ �BTM þ AUT; ðINN � APÞ
SUX ¼ �BTM þ AUT; ðL2� APÞ

8><
>:

Step4: For any node vi, classify it as belonging to segment k (k represents the classify label) if xkU > xk0
U for

all k0 6¼ k.

Fast Segmentation scheme with the AP

doi:10.1371/journal.pone.0155371.t001

Fig 7. Illustration of the RW, PW and AP. The top row: seeds of foreground and background. The second
row: Segmentation results obtained by the RW [34]. The third row: Segmentation results obtained by the PW
[37]. The last three rows: Segmentation results obtained by the PEA-AP, L2-AP and INN-AP.

doi:10.1371/journal.pone.0155371.g007
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than automatic methods or vice versa. And then, almost all of the interactive method can real-
ize automation, where the polyp was present in the center of the image (or fixed position in the
image). So in this section, we present a comprehensive performance evaluation using some
well-known segmentation algorithms (including automatic and interactive segmentation algo-
rithms) for 1691 OC images with abnormal regions. In total, these images are derived from the
three databases. Further details about the three different datasets are given below.

1. Database I: Database I [12] consists of 358 images, which is an open database for compre-
hensive assessment of polyp detection and segmentation. In this database, the ROIs define
the whole area covering the polyp and they are implemented as binary images, with white
masks over a black background. It is available on the website via the following link: http://
mv.cvc.uab.es/projects/colon-qa/.

2. Database II: Database II [5] is a good common database that can be used to evaluate the per-
formance of the different methods. It is made up of 533 OC images extracted from colonos-
copy videos (The original dataset consists of 612 images but 79 images in them are
damaged). The ground truth for the polyps consists of a mask corresponding to the region
covered by the polyp in the image. This database is obtained via the following link: http://
www.polyp2015.com/wp/?page_id=141.

3. Database III: Database III is obtained from the open NNUC database: http://math.nenu.
edu.cn/nnucdb/, where the ground truth data are manually annotated and segmented by
experts. It covers numerous types of polyp appearances, which can be used to test the per-
formance of different segmentation methods.

In this study, the foreground seed is single and the backgroud seeds form a frame as shown
in Section 2.1. And for each OC image, the same seed placement is employed by all the interac-
tive segmentation methods. The performance of these algorithms is measured by annotated
area covered (AAC) and Dice similarity coefficient (DICE) [44].

AAC ¼ Oa=Aa; ð28Þ

DICE ¼ 2Oa=ðSa þ AaÞ; ð29Þ
where Sa is the resulting from algorithm annotation and Aa is an image section resulting from
manual annotation. Oa is the number of common pixels between Sa and Aa.

In our simulation, we split the data into two parts. One is for training the attraction region
(AR) and the other is for testing the performance of our algorithm. Specifically, for testing
Database I, we randomly choose 10% samples from Database II and Database III to compute
the AR. Similarly, for testing Database II, we choose samples from Database I and Database III.
And for testing Database III, we choose samples from Database I and Database II.

Colonoscopy image segmentation on database I
The database I is a comprehensive data set applied in the field of colonoscopy image detection
and we use it to test the proposed approaches. This database comprises 358 OC images, each of
which contains 500 × 574 pixels. Fifteen related approaches are used for comparison: Active
Contours for Colonoscopy (ACC) [20], Chan-Vese-Segmentation (CV) [18], Distance Regular-
ized Level Set Evolution (DRLSE) [28], Entropy Rate Clustering (ERC) [11], Fuzzy C Means
(FCM) [7], Mean Shift (MS) [8], Normalized Cuts (NC) [9], Quick Shift (QS) [10], Power
watershed (PW) [37], RandomWalks (RW) [34], Sector Accumulation-Depth Of Valleys Accu-
mulation (SA-DOVA) [12], Template Matching (TM) [17] and our method. Fig 8 shows an
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example of the output from each method using the database I. Our method (Fig 8a) identifies
the polyp edges better than other methods shown in Fig 8. The underlying reason of this result
is that the attraction strategy can take advantage of the structural properties of polyp (such as
geometry symmetry and local swell) to improve the precision. The output of ACC (Fig 8b)
appears to be too conservative because it has high precision but it fails to identify a larger num-
ber of polyp pixels. The output of CV (Fig 8c) does not retain the shape of the original polyp.
The output of DRLSE (Fig 8d) is a suitable fit for OC image segmentation but the method is too
slow to be used for real-time segmentation. The output of ERC (Fig 8e) is an effective method
for OC images. However, a fixed parameter is not available that works well for all OC images.
The output of NC (Fig 8h) is not a bad fit in our example, but it consumes a large volume of
memory. Specially, the result of PW (Fig 8i) is very well in this example, but PW is unstable and
may fail in other cases, which causes a weak performance result as shown in Table 2. SA-DOVA
(Fig 8l) obtains a high AAC but this method could also decrease the precision. Weak boundary
of polyp is a major factor that leads to the invalidation of SA-DOVA. The other algorithms
(FCM, MS, QS and RW) have various deficiencies in this case and we do not discuss them here.

Table 2 shows the performance of twelve algorithms on the database I according to two dif-
ferent measures: AAC and DICE, where the bold numbers show the top three results for each
measure. In this experiment, we choose fixed parameters for our method (β = 310, Γ = 0.8; β =
340, Γ = 0.6). For algorithm ACC, CV, DRLSE, ERC, FCM, MS, NC, QS and TM, it is difficult
to choose a group of fixed optimal parameters for all OC images. So we select optimal parame-
ters for each image in order to improve the performance of these algorithms. In Table 2,
DRLSE and PW get a low AAC and DICE. This result may be caused by the low quality of OC
images in the database. For sparse foreground seeds, RW encounters small cut problems which
cause the low values of its AAC and DICE. Algorithms FCM, MS, SA-DOVA and TM are
affected by weak boundary and types of abnormal regions. Algorithms ERC, NC and AP have
relatively high AAC and DICE.

Colonoscopy image segmentation on database II
The database II comprises 533 OC images of resolution 288× 384. Fourteen approaches are used
for comparison and related results are shown in the Table 3. Compared to database I, most

Fig 8. Comparison of segmentation results. (a) PEA-AP (b) ACC; (c) CV (d) DRLSE; (e) ERC; (f) FCM; (g)
MS; (h) NC; (i) PW; (j) QS; (k) RW and (l) SA-DOVA.

doi:10.1371/journal.pone.0155371.g008
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algorithms perform better on database II for the AAC and DICE since database I contains many
low quality images. Most of the algorithms keep a similar rank ordering on performance as
Table 2. As shown in Table 3, both AAC and DICE for PEA-AP are in the top three. Specially,
the AAC of AP is 47% better than RW, which illustrates the importance of adding the attraction
propagation term since the larger AAC value means more retrieval polyp pixels. As shown in
Tables 2 and 3, the DICE of general segmentation methods (such as MS, ERC and NC) is close
to the SA-DOVA, ACC or TM, which are exclusively used in OC images. And the interactive
methods (such as DRLSE, PW and RW) are no better than automatic methods (ERC and NC).
So we intend to provide a further measure and analysis in the following Section.

Table 3. Comparison results of methods on database II.

Method AAC(%) DICE(%)

ACC[20] 74.68 52.03

CV[18] 75.88 48.26

DRLSE[28] 68.11 68.73

ERC[11] 82.26 74.09

FCM[7] 65.90 42.85

MS[8] 67.07 41.59

NC[9] 76.06 76.18

PW (q = 2)[37] 62.25 69.74

QS[10] 55.06 51.48

RW (β = 260)[34] 33.29 41.30

TM[17] 73.65 54.34

PEA-AP (β = 310, Γ = 0.8) 80.54 80.22

L2-AP (β = 310, Γ = 0.8) 80.13 80.10

INN-AP (β = 230, Γ = 0.6) 84.06 75.02

doi:10.1371/journal.pone.0155371.t003

Table 2. Comparison results of methods on database I.

Method AAC(%) DICE(%)

ACC[20] 63.48 54.67

CV[18] 72.80 35.34

DRLSE[28] 59.68 59.24

ERC[11] 78.46 61.27

FCM[7] 62.80 34.38

MS[8] 65.31 33.25

NC[9] 72.64 65.78

PW (q = 2)[37] 47.62 54.97

QS[10] 53.80 54.77

RW (β = 260)[34] 22.61 31.18

SA-DOVA (DVT = 0.6)[12] 61.91 55.33

SA-DOVA (DVT = 0.7)[12] 70.29 44.60

SA-DOVA (DVT = 0.8)[12] 75.79 36.44

TM[17] 35.75 34.89

PEA-AP (β = 310, Γ = 0.8) 69.06 74.48

L2-AP (β = 310, Γ = 0.8) 68.49 74.20

INN-AP (β = 340, Γ = 0.6) 77.46 75.98

doi:10.1371/journal.pone.0155371.t002
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Colonoscopy image segmentation on database III
To promote the development of the colonoscopy image recognition field, we produce a rich
set of images for researchers to analyze, i.e., an open database called the Northeast Normal
University Colonoscopy (NNUC) dataset, which contains 800 OC images that cover more
abnormal region types than databases I and II. The images in NNUC are derived from colo-
noscopy images of 400 patients, where experts print the screen after identifying potentially
cancerous areas during operations. Fig 9 shows the different types of polyp appearances
found in the dataset. The size of the OC images varies in different cases due to the diversity of
the recording instruments employed. Thus, the areas of the images are cropped in order to
reduce the effects of irrelevant information on the image segmentation process. After the
cropping process, the images are resized to 408 × 474. Fig 9 shows some of the preprocess
results, where the first row comprises raw images, the second row shows the preprocessing
results, and the third row shows the polyp masks, which are regarded as the ground truth in
the evaluation.

Segmentation by retrieval. To evaluate the performance of different segmentation algo-
rithms for OC image in a more comprehensive and systematic manner, segmentation is
regarded as the retrieval of polyp or non-polyp pixels. All of the segmentation methods return
the designated positions of the polyps in the images as binary masks. Thus, we perform a pixel-
by-pixel comparison of the polyp masks and the resulting masks to evaluate the segmentation
methods. The segmentation methods assign each pixel as a polyp or a non-polyp pixel. Based
on these comparisons, we obtain four possible outcomes: true positive (TP), true negative
(TN), false positive (FP), or false negative (FN). We denote positive as a polyp pixel and nega-
tive as a non-polyp pixel. Thus, rather than using the two standard metrics in the evaluation,
we employ six characteristic values to analyze the impact of the parameters on the segmenta-
tion results obtained with images from the NNUC database. The six characteristic values can

Fig 9. Comparison of preprocessing results. the top row: raw image; the middle row: preprocessing
results; the bottom row polyp masks(the polyp is shown in white).

doi:10.1371/journal.pone.0155371.g009
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be computed as:

Precision ¼ TP= ðTP þ FPÞ; ð30Þ

Recall ¼ TP=ðTP þ FNÞ; ð31Þ

Accuracy ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ; ð32Þ

Specificity ¼ TN=ðTN þ FPÞ; ð33Þ

Fallout ¼ FP=ðTN þ FPÞ; ð34Þ

F2measure ¼ 5� TP=ð5� TP þ 4� FN þ FPÞ: ð35Þ

Comparison of the results obtained with different segmentation algorithms. In this sec-
tion, we compare the quality of the segmentation results obtained by using the methods tested
in our evaluation. Thirteen related approaches are selected for this evaluation: ACC, DRLSE,
ERC, FCM, MS, NC, PW, QS, RW, TM and AP. We apply these methods to all of the 800
images in the database III. Fig 10 shows some results of the output from each method using
image from the database III.

Fig 10. Comparison of segmentation results on the Database III.

doi:10.1371/journal.pone.0155371.g010
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The optimal segmentation results are presented in Table 4, where the bold numbers show
the top three scores for each characteristic. As shown in Table 4, among all the algorithms
tested, our AP method achieves the highest Accuracy, Recall, F2measure, and DICE. It has
seven characteristics in the top three. Although the Precision with AP is less than that with
some other algorithms, the Recall (according to [44], the value of AAC is the same as that of
Recall) is 22% better compared with PW. The DICE of AP is 28% better compared with that of
RW. This demonstrates that our method can find more polyp pixels with small errors, and has
greater flexibility for adapting to variation in the shape of objects.

Comparison of the processing time
We compare the time costs of various algorithms in Fig 11. The experiments are performed by
using Matlab R2009b on an Intel Core(TM)2 Duo CPU with 2.93 GHz and 2 GB memory
except PW (PW uses the available C++ libraries for operations on Linux-OS). As shown in Fig
11, MS is the fastest method, which required 0.02–0.03s, but its performance is fair. The solu-
tion times are slow with ACC and QS, i.e., 4.8–12.9s and 5–7s. The processing time with AP is
close to that with RW, it costs 0.79–2.6s to calculate the solution for each image. This indicates
that our method can be used for online processing.

Discussion
In the proposed method, there are two parameters, a weighted parameter β and a probability
threshold Γ, to control the performance of segmentation algorithms. We discuss the sensitivity
on the two parameters for the proposed method, and use the same initialization strategy for
processing each OC images. The five characteristic values can be used to compare the
robustness of our method. It is because that the Recall is the ratio of correctly detected polyp
pixels to all polyp pixels. High values indicate a high number of pixels available for classifica-
tion of the polyp. The Precision is the number of correctly detected polyp pixels divided by all
polyp pixels. A high value indicates a low number of polyp pixels incorrectly regarded as non-
polyp pixels. The accuracy is the fraction of all pixels which were classified correctly. The speci-
ficity is the number of correctly detected non-polyp pixels divided by all non-polyp pixels. The

Table 4. Comparison results of methods on database III.

Method Accuracy(%) DICE(%) F2measure (%) Fallout Precision (%) Recall/(%) Specificity(%)

ACC[20] 95.52 65.08 66.62 0.0253 67.29 69.26 97.47

DRLSE[28] 95.91 68.58 67.93 0.0272 68.53 81.63 97.28

ERC[11] 96.89 74.44 78.61 0.0209 72.18 84.07 97.91

FCM[7] 79.60 34.02 47.98 0.2052 24.12 74.10 79.48

MS[8] 82.95 34.27 43.37 0.1581 28.35 60.99 84.19

NC[9] 96.53 75.24 75.96 0.0222 77.08 77.59 97.78

PW (q = 2)[37] 96.48 64.56 60.81 0.0096 91.89 60.23 99.04

QS[10] 91.86 30.07 31.53 0.0411 34.64 35.03 95.89

RW (β = 260)[34] 95.38 45.30 39.78 0.0023 97.40 37.45 99.77

TM[17] 96.45 69.21 70.90 0.0139 75.32 73.87 98.61

PEA-AP (β = 310, Γ = 0.8) 97.51 81.44 81.50 0.0108 85.67 83.38 98.92

L2-AP (β = 310, Γ = 0.8) 97.52 81.49 81.28 0.0102 86.19 82.89 98.98

INN-AP (β = 230, Γ = 0.6) 95.69 73.98 79.29 0.0354 72.83 87.82 96.46

doi:10.1371/journal.pone.0155371.t004

Attraction Propagation for Polyp Segmentation in Colonoscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0155371 May 18, 2016 16 / 21

http://dict.youdao.com/w/except/
http://dict.youdao.com/w/robustness/#keyfrom=E2Ctranslation


F2measure is complementary metric on segmentation performance and it combines Precision
and Recall into an only measure.

First, we consider the performance of our algorithms based on various weighted parameter
β. Fig 12 shows quantitative evaluation of the segmentation results with Γ = 0.7 in 5-fold vali-
dation. It can be seen that the Accuracy and the Specificity obtained by PEA-AP and L2-AP are
not sensitive as β increases. Although the AAC is 0.70–0.82 and the F2measure is 0.73–0.79,
the performance of the proposed scheme is acceptable. Also we note that INN-AP is sensitive
as β increases in the Fig 12. This is because that compared to two other algorithms, the
INN-AP only considers the shift operation for boosting or inhibiting the probability. Next, we
vary the parameters β and Γ at the same time. The experiment results on the Precision, Recall,
Accuracy and F2measure are shown in Fig 13. For PEA-AP and L2-AP, the Accuracy is large
than 95%. The average AAC and F2measure are roughly from 0.70 to 0.80. This means that
these two algorithms are robust for parameter selection.

Conclusion
In this study, we propose a flexible framework for interactive image segmentation in OC image
segmentation. Compared with other segmentation methods, our new framework AP provides
an efficient, real-time, robust solution. We introduce the shape probability region and the
attractive strategy, which allow our AP algorithm to start with only one foreground seed, and
automatically detect the contours of polyps. After adjusting the threshold parameter, the AP
algorithm can restrain the transition probabilities of pixels in non-polyp regions without any
pre-processing of the raw OC images. Moreover, it can effectively improve the accuracy of the
segmentation of polyp regions, although they are very noisy with uneven brightness.

In order to evaluate the performance of our segmentation methods, we built an open data-
base of 800 OC images that contained multiple types of abnormal regions. Furthermore, we
use seven characteristics to compare the quality of various algorithms, and we demonstrated

Fig 11. Mean processing time per OC image on each database.

doi:10.1371/journal.pone.0155371.g011
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Fig 12. The average quantitative evaluation of the segmentation results by varying the value of β
in5-fold validation. (a) PEA-AP (b) L2-AP (c) INN-AP.

doi:10.1371/journal.pone.0155371.g012
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the processing efficiency with various database. Our experimental results show that AP algo-
rithm is effective and practical for polyp segmentation in colonoscopy images.
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