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Abstract

The pre-Columbian Huecoid and Saladoid cultures were agricultural ethnic groups that sup-

plemented their diets by fishing, hunting and scavenging. Archaeological deposits associ-

ated to these cultures contained a variety of faunal osseous remains that hinted at the

cultures’ diets. The present study identified zoonotic parasites that may have infected these

two cultures as a result of their diets. We used metagenomic sequencing and microscopy

data from 540–1,400 year old coprolites as well as the zooarchaeological data to recreate

the possible interactions between zoonotic parasites and their hosts. Microscopy revealed

Diphyllobothrium spp. and Dipylidium caninum eggs along with unidentified cestode and

trematode eggs. DNA sequencing together with functional prediction and phylogenetic infer-

ence identified reads of Cryptosporidium spp., Giardia intestinalis and Schistosoma spp.

The complimentary nature of the molecular, microscopy and zooarchaeology data provided

additional insight into the detected zoonotic parasites’ potential host range. Network model-

ing revealed that rodents and canids living in close proximity to these cultures were most

likely the main source of these zoonotic parasite infections.

Author summary

This communication includes a descriptive analysis of zoonotic parasites infecting Carib-

bean pre-Columbian cultures in Vieques and network modeling of parasite-host interac-

tion. Our conclusions were based on microscopy and DNA reads extracted from

approximately 1,400 to 540 year-old coprolites (un-calibrated years before present). Age

and exposure to taphonomic conditions most likely caused the degradation of a portion of

the organic material preserved in the coprolites, including parasite eggs, cysts and genetic

material. In this study, singleton parasite reads were detected in the metagenomic data.

This was likely the outcome of various factors. For instance, non-targeted metagenomic
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sequencing mainly obtains reads from abundant organisms within the sample, and in the

case of fecal metagenomic datasets, these are commonly overpowered by high numbers of

bacterial cells. In addition to small amounts of detectable parasite DNA in the feces,

ancient DNA damage causes difficulty during sequencing and subsequent alignment of

reads to an extant reference sequence. This along with limited representation of parasite

genomes in curated reference databases limits the prediction of parasite homologue reads

[1]. Furthermore, although contamination and sequencing errors are also a possibility, we

believe that this is not the case as precautions were taken to avoid contamination with

extant DNA. To overcome these challenges, we performed phylogenetic inference of pre-

dicted amino acid homologues to obtain as close as possible to an accurate taxonomic

identification. To complement the inherent limitations of the analyses, some of the con-

clusions presented in this article include intellectual assumptions by the authors based on

established knowledge of the field after analyzing and discussing the data.

Introduction

The Huecoid and Saladoid cultures co-existed at the Sorcé Site in Vieques, Puerto Rico over

1,400 years ago. These cultures originated in South America and migrated to the Caribbean

Antilles in separate migratory waves [2]. Despite migrating to the Antilles, the Huecoid and

Saladoid maintained their ancestral heritage, as evidenced by the unique pottery and semi-pre-

cious stone work [2]. These archaeological artifacts distinguished the cultures origins from the

Andean region presumably from present day Bolivia and Peru (Huecoid) and present day

Venezuela (Saladoid) respectively [2]. The archaeological deposits (described as dumpsites)

contained shattered pottery, faunal remains, lithic and shell tools as well as the coprolites ana-

lyzed in this study [2–3]. In the Sorcé settlement Huecoid and Saladoid housing was estab-

lished on a high plain overlooking the Caribbean Sea. The settlement was composed of three

ascending levels where the individuals built their lodges and used the slope to discard their

waste causing an accumulation of these items over time (Fig 1). A nearby creek slope was also

used as a dumpsite, resulting in sites rich in archaeological artifacts. The sites were culturally

distinguishable based on the characteristic artifacts present at each site. For instance, the Hue-

coid deposits were characterized by plain pottery and an abundance of elaborately carved

semi-precious stones whereas the Saladoid deposits were characterized by red and white

painted pottery and a profusion of carved shell ornaments. Therefore, the excavated osseous

remains and coprolites were categorized by culture according to this criterion.

These groups supplemented their diets by fishing and hunting as well as gathering inverte-

brates such as mollusks and crustaceans [4]. Osseous remains of a variety of birds, reptiles,

fishes, and mammals (including rodents, canids, and other organisms) were obtained from the

archaeological deposits [3–4]. The identified osseous remains were likely part of their diets as a

protein source, with the exception of canids that may have been an occasional food source [3–

4]. Faunal osseous remains provided an opportunity to infer possible zoonotic parasite trans-

mission, as the coexistence and consumption of these animals possibly made the cultures sus-

ceptible to zoonotic infections.

The Huecoids and Saladoids co-existed in the settlement. The dwellings were separated by

a short distance (15–150 meters) [3,5]. According to Barret et al. [6], small and diffuse groups

of individuals could not support a large number of infectious agents. In theory, parasite diver-

sity increased with the establishment of permanent settlements, that included the domestica-

tion of animals and an increase in agricultural practices facilitating transmission of both
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anthroponotic and zoonotic parasites [6–9]. Based on this knowledge, we suspect that zoonotic

and human-specific parasites were potentially sustainable in the settlement. As with other cul-

tures [10–11], the Huecoids and Saladoids were susceptible to zoonotic infections brought

about by interacting with infected animals or consuming the parasite-infected host.

The present study combined Next-Generation Sequencing data with microscopy and

zooarchaeological data to elucidate the interactions between zoonotic parasites and hosts in

the Sorcé settlement. Using microscopy and shotgun metagenomics, parasite eggs and DNA

were detected revealing zoonotic infections present in the inhabitants. Zooarchaeological data

supplemented evidence of potential animal hosts and modes of transmission of the detected

zoonotic parasites. The data was examined using network modeling to interpret zoonotic para-

site-host interactions.

Methods

Archaeological analyses

Excavations at the Sorcé site (18˚05’ 56” Latitude North and 65˚29’ 34” Longitude West) in the

Island of Vieques, Puerto Rico from 1977 to 1984 recovered faunal osseous remains from

deposits Z and YTA-2, while the coprolites were recovered from deposits Z, ZT, YTA-1 and

YTA-2 (Fig 1). No permits were required, the excavations took place in a private property

(Sorcé, Vieques) and the owner’s consent was provided for the excavations by the

Fig 1. Topological map of the Sorcé settlement demonstrating the Huecoid (gray) and Saladoid (black) deposits. Each archaeological deposit was separated by a

distance of 5–150 meters. Faunal osseous remains were retrieved from Z and YTA-2 deposits. The coprolites were retrieved from Z, ZT, YTA-1 and YTA-2 deposits. A

stream is seen at the edge of the topology map, labeled as “Rio Urbano”. Reprinted from [2] under a CC BY license, with permission from [Museum of History,

Anthropology and Art, University of Puerto Rico], original copyright [2005].

https://doi.org/10.1371/journal.pone.0227810.g001
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Archaeological Research Center at the University of Puerto Rico, which complied with all rele-

vant regulations. Coprolites ages (Table 1) were determined by radiocarbon dating of material

associated with the samples [2]. Faunal osseous remains were identified by Narganes-Storde

[3] via comparative analysis with a synoptic collection from the Zooarchaeology Laboratory of

the Florida State Museum and the Center for Archaeological Research of the University of

Puerto Rico (S2 Table). The coprolites and faunal osseous remains belong to an archaeological

collection and they are permanently deposited in the Center for Archaeological Research of

the University of Puerto Rico.

Microscopy

Portions of the coprolites (n = 20) were processed for microscopy using traditional flotation

methods which allowed for the systematic observation of helminth eggs (S1 Table) [12].

Briefly, one gram of each sample was rehydrated in 14ml of 0.5% trisodium phosphate for 72

hours [13], shaken vigorously and filtered (1500μm mesh) to eliminate debris. Subsequently,

1ml of 10% acetic formalin solution was added per 10g of filtrate [14]. The samples were

allowed to settle for 72 hours [15], and ten microscope slides were prepared using 50μl of sedi-

ment mixed with a drop of glycerin. Each slide was covered with a 20x20 cover slip and

scanned microscopically in a serpentine fashion [16].

Preparation, DNA extraction and sequencing

Extraction and sequencing of ancient DNA (aDNA) was performed as described by Rivera-

Perez et al. [17]. Briefly, nine coprolites, namely Huecoid (n = 5) and Saladoid (n = 4) were

selected for shotgun metagenomic sequencing. Coprolites were processed in a reserved area of

the laboratory for ancient DNA to avoid contamination. The coprolites were processed sepa-

rately in a class II biosafety cabinet that was routinely disinfected with 70% ethanol and exposed

to UV light for at least 30 minutes before and after use. All instruments were autoclaved and

baked overnight at>100˚C to denature any extraneous DNA. To reduce the presence of soil

microbiota, the exterior layer was removed and the core of each coprolite was used. The cores

were grounded separately using a sterile mortar and pestle. Ancient DNA was isolated using a

PowerSoil DNA Extraction Kit (Mo Bio Laboratories, Carlsbad, CA) according to manufactur-

er’s instructions. All samples were hydrated overnight in sterile C1 buffer at 4˚C prior to extrac-

tion. Using standard glycogen precipitation, 10ul of aDNA were pooled according to ethnic

group (MixS1 and MixH1) to compensate for low concentrations of aDNA. The concentration

of aDNA was assessed using a Qubit1 dsDNA HS Assay Kit (Life Technologies) and sequenced

Table 1. Description of the coprolites used in the molecular analysis.

Registration Culture Deposit Quadrant Depth Radiocarbon Date

5.2003.0002 Huecoid Z Z—37 0.20–0.40 cm. 470 A.D.

5.2003.0006 Huecoid Z Z—L 0.70 cm. Circa 385 A.D.

5.2003.0007 Huecoid Z Z—M 1.20 mt. Circa 450 A.D.

5.2003.0010 Huecoid Z Z—W 1.80 mt. Circa 245 A.D.

5.2003.0011 Huecoid Z Z—W 2.00 mt. 215–220 A.D.

5.2003.0012 Huecoid Z Z—X 0.60 cm. 470–600 A.D.

5.2003.0014 Saladoid YTA-2 J—22 0.80 cm. 270–385 A.D.

5.2003.0015 Saladoid YTA-2 H—21 1.20 mt. 230–385 A.D.

5.2003.0016 Saladoid YTA-2 M—25 0.40 cm. 230–385 A.D.

5.2003.0019 Saladoid YTA-1 I—5 0.60 cm. 335–395 A.D.

https://doi.org/10.1371/journal.pone.0227810.t001
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at a commercial facility (MR DNA Research lab in Shallowater, TX). REPLI-g Midi kit (Qiagen)

was used for non-targeted whole genome amplification (WGA) followed by Nextera library

preparation kit and sequencing with Illumina MiSeq system.

Putative parasite sequences and phylogenetic assignment

Fastq files produced by Illumina MiSeq were assessed through MG-RAST [18] for quality con-

trol and read length exclusion based on default parameters. Amino acid predictions of the

metagenomic datasets were conducted using BLASTX [19] against a non-redundant protein

NCBI database (National Center for Biotechnology Information). To address the damage pres-

ent in aDNA [20], the cut-off value for functional identification was set at an E-value of<-15.

Sequences with specific functions and high alignment scores to parasite reference reads were

verified using MEGA 7 [21] for accurate taxonomic identification of BLASTX homologous

results. BLAST hits were downloaded from NCBI and concatenated into fasta files with the

putative parasite read extracted from the metagenomic dataset. The fasta file were imported to

MEGA 7 for multiple sequence alignment using MUSCLE [22]. Substitution model was

selected using Find Best DNA/Protein Models. The suggested model was then used to create a

pairwise distance matrix and construct maximum likelihood phylogenetic tree using 1000

bootstrap iterations (see Supplementary Material).

Modeling parasite-host interaction

HelminthR [23] and rglobi (global biotic interactions) [24] curated databases for host-parasite

interactions were used to verify zooarchaeological data as potential hosts for the identified par-

asites. Parasite-host interactions were reconstructed by generating a directional dataset of the

identified parasites (detected by microscopy or molecular analysis) and general descriptions of

potential host detected from the zooarchaeological data. Parasite-host interactions were mod-

eled using the network graphical R package ‘igraph’ [25].

Supplementary materials

Parasite sequences are available in S1 Data. HelminthR and rglobi search results are

available in S2 & S3 Data. The generated dataset and Rscript used in this study are included

in S4 & S5 Data. BLAST homology of putative reads of the consumed animal are included in

S6 & S7 Data.

Results

Microscopy analysis revealed Diphyllobothrium spp. and Dipylidium caninum eggs along with

unidentified cestode and trematode eggs. One unidentified cestode egg was presumed to be of

a hymenolepidid tapeworm (Table 2[12]. Parasite host ranges differ between species, therefore

parasite DNA would need to be identified to the species level to determine its specific host

range; this would require strict alignment parameters (E-value 0.0 and Percentage of Identity

>98%). However, it is unlikely to achieve high alignment scores with highly degraded aDNA

[26]. In each DNA alignment, statistical evaluation with phylogenetic associations was carried

out to eliminate potential false assignments of BLAST hits and obtain an accurate taxonomic

identification [27–29]. BLASTX predictions identified putative reads of important parasites of

animal hosts, such as Cryptosporidium spp., Eimeria necatrix, Giardia intestinalis, Perkinsus
marinus, Toxoplasma gondii,Hymenolepis microstoma, and Schistosoma mansoni. After

BLASTX prediction, one read produced sole homology to a glutamate dehydrogenase of Giar-
dia intestinalis (disambiguous), thus there was no need for subsequent phylogenetic analysis
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(S7 Table). Cryptosporidium spp. and Schistosoma spp. reads were confirmed by phylogenetic

analysis. However, phylogenetic inference excluded H.microstoma and T. gondii as potential

zoonotic infections, as their corresponding reads resulted in a best match to Ascomycota (S11

and S12 Figs). BLASTX prediction for E. necatrix and P.marinus produced inconsistent results

in pairwise distance matrix and maximum likelihood phylogenetic inference, and were there-

fore excluded from the network modeling.

Network modeling was used to recreate parasite-host interactions. Eigen values and degrees

of connectivity were used to measure the importance of a node in the network. The human

node was assigned a higher degree of connectivity (n = 5) and Eigen value (n = 1.00) (Fig 2B

and S3 Table), reflecting the modeling of zoonotic infection and the use of human coprolites.

This was further supported by the identification of human-specific parasites by microscopy,

including Ascaris lumbricoides, Ancylostomatidae and Trichuris trichiura [12]. Ancyclostoma-

tidae was later identified as Necator americanus by molecular analysis (S17 Table and S7 Fig).

The second highest Eigen value (n = 0.89) was assigned to G. intestinalis (Fig 2B and S3 Table),

the parasite has a wide host range in the network directly infecting humans, rodents, canids

and reptiles via fecal oral transmission (Fig 2A and Table 3). The third highest degree of con-

nectivity (n = 3) and Eigen value (n = 0.64) was assigned to rodents and canids (Fig 2B and S3

Table), reflecting a crucial role of these hosts in the transmission of zoonotic parasites in the

settlement. Furthermore, the modeled network has several nodes that are highly connected

and representative of a real network (S1 Fig).

Discussion

Results of ancient DNA and microscopy analyses of Huecoid and Saladoid coprolites were

inconsistent depending on the method used (Table 2). Firstly, protozoa detected via sequenc-

ing and phylogenetic inference were not detected by microscopy. It is possible that the compo-

sition of protozoan cyst may undergo morphological changes as a result of the taphonomic

processes that preserved these coprolites, and the small size (4–12 micrometers) makes them

difficult to identify using light microscopy [30]. Previously protozoan cysts were successfully

detected in ancient biological artifacts by immunofluorescence [1]. It is clear that different

cysts may be refractory to degradation for different lengths of time and likely the resistance of

the cyst walls determines the protection of the nucleic acids. Second, Diphyllobothrium, D.

caninum and presumed hymenolepidid eggs were identified by microscopy [12], but no DNA

sequences were assigned homology to these tapeworms. However, this tendency was observed

before by Côte et al. [31]. When comparing microscopy to PCR-based genotyping of human

Table 2. Potential zoonotic parasites identified by microscopy and sequence from the metagenomic datasets. The amount of unidentified cestode eggs detected in the

Huecoid (n = 111) and Saladoid coprolites (n = 147), respectively. A total of 26 unidentified trematode eggs were detected in the Saladoid coprolites via microscopy.

Microscopy images of parasite eggs are available as supplementary material (S13 Fig).

Predicted Parasite Genera Total Reads Eggs Detected by Microscopy

Huecoid Saladoid

Cryptosporidium - 1 ND

Giardia intestinalis - 1 ND

Diphyllobothrium - - A total of 26 eggs were detected in one Saladoid coprolite.

Dipylidium caninum - - A total of 30 eggs were detected in one Saladoid coprolite.

Hymenolepis - - One cestode egg presumed to be a Hymenolepid.

Schistosoma - 2 ND

�ND = None Detected

https://doi.org/10.1371/journal.pone.0227810.t002
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gastrointestinal parasites Côte et al. [31] observed a high proportion of helminth eggs but

DNA sequences were not detected for Trichuris spp., Ascaris spp. nor Taenia spp. These obser-

vations could have been due to degradation of the genetic material, primer-based variability if

the eggs belonged to animal-borne parasites or even to larvae exiting the egg after defecation

[31]. Although in our analysis we did not use conserved primers, arguably, the absence of para-

site DNA accompanied with the positive identification of the eggs in our data could have

resulted from degradation of genetic material or a reflection of the limited variance of hel-

minth genomes in curated reference databases [1].

Network modeling is a flexible and useful manner to represent the subjects of a dataset and

their relationships. Network analysis also allows for further interpretation on how diets and

life styles influence the transmission of zoonotic infections. In this study, network modeling

was used to recreate parasite-host interactions in Sorcé. The subjects in the network were the

identified parasites (through microscopy or phylogenetically inferred sequences) and the

potential hosts of the pre-Columbian settlements (as evidenced by the osseous remains).

Although small organisms with fragile exoskeletons were not found in the zooarchaeological

data, they were included in the network. This exception was made for copepods and arthro-

pods (such as beetles and fleas) since they are ubiquitous in the environment and are essential

for the development of some parasites at certain stages of their life cycles. For instance, Diphyl-
lobothrium, D. caninum, and Hymenolepis spp. rely on intermediate hosts with fragile exoskel-

etons to complete their life-cycles. Overall, the detected parasites did not share a similar host

range (Table 3), each parasite requires a specific host and mode of transmission to achieve its

full development (Fig 2A).

Fig 2. Directional network modeling: (A) edges describing the parasite-host transmission and (B) nodes size reflecting the Eigen vector centrality (refer to S3 Table for

Eigen values). The model reflects the relationship types as edges (arrows) and the subjects as nodes (circles). Network modeling evaluates the relationship or interaction

between the parasite and the host. Eigen vector centrality is reflected by the node size and the Eigen value measures the influence of a node in the network. A high Eigen

value means that a node is connected to many nodes which themselves have a high scores.

https://doi.org/10.1371/journal.pone.0227810.g002
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Fecal-oral transmission

Giardia intestinalis is a zoonotic protozoan parasite with a wide host range transmitted by the

fecal-oral route [32]. Cryptosporidium spp. and Giardia spp. life cycles are direct and develop

to completion within one host [32–33]. Ortega and Bonavia [30] detected Giardia spp. and

Cryptosporidium spp. in pre-Columbian Peruvian coprolites, although co-infection was not

observed in the samples. Giardia spp. and Cryptosporidium spp. were identified in our metage-

nomic datasets. However, Cryptosporidium was not identified to the species level and therefore

was not included in the network analysis as each of its species has a varied host range [32]. In

our study G. intestinalis was assigned the highest Eigen value of the parasite nodes in the pre-

dicted network model, indicating that G. intestinalis could have been the most easily transmit-

ted zoonotic parasite in the settlement.

Consuming raw or undercooked infected animal hosts

Eimeria spp. and Perkinsus marinus are regarded as epizootic diseases that are easily transmit-

ted to hosts that live in close proximity, particularly livestock [34–35]. Neither are zoonotic

infections, for instance, birds are the definitive hosts of E. necatrix whereas bivalves (Crassos-
trea andMya) are the definitive host for P.marinus, and there is no evidence of Eimeria spp.

and P.marinus being pathogenic to humans [36–37]. Bird bones were extracted from the Hue-

coid (n = 1,185) and Saladoid (n = 1,727) archaeological deposits. Most of these osseous

remains were identified as Columbidae in Huecoid (n = 748) and Saladoid (n = 306) deposits.

Other bird bones were detected in both deposits, including Rallidae, Pelicanidae, Ardeidae,

Anatidae, Phoenicopteridae and Psittacidae among others (S2 Table). Few Psittacidae (Hue-

coid n = 1 and Saladoid n = 13) remains were found, though they were occasionally consumed,

the cultures most likely kept Parrots and Parakeets as pets because of their colorful plumage

[4].

Eimeria oocysts have been identified in prehistoric ruminant coprolites from Brazil [38].

Clearly Eimeria spp. was present in pre-Columbian America, unlike Perkinsus marinus which

to the best of our knowledge has not been detected in pre-Columbian America samples. Per-
kinsus marinus is highly seasonal, transmission is influence by warmer climates [35]. A variety

Table 3. General information of parasites detected in Huecoid and Saladoid cultures. The table supplements and summarizes the information depicted in Fig 2A.

Description:

Related to

Human

Infection

Ingestion of

contaminated food

or water source,

including infection

through fomites.

There is no

evidence of

Eimeria being

hazards to

humans.

Ingestion of

contaminated

food or water

source, including

infection through

fomites.

There is no

evidence of P.

marinus
being hazards

to humans.

Ingestion of raw

or under cooked

infected fish.

Human are

accidental host

acquire the

parasitosis by

ingesting the flea

vector.

Ingestion of

cysticercoid-

infected

arthropod.

Infective

cercariae

swims and

penetrates the

skin of the

human host.

Transmission Fecal-Oral

Transmission

Fecal-Oral

Transmission

Fecal-Oral

Transmission

Diffusion of

Parasite in

Water

Ingestion of

Infected

Secondary

Intermediate Host

Ingestion of

Infected

Arthropod

Ingestion of

Infected

Arthropod

Free

Swimming

Cercariae

Penetrate Skin

Second

Intermediate

- - - - Fish - - -

First

Intermediate

- - - - Copepods Flea Vector:

Ctenocephalides
spp.

Arthropods Gastropods

Definitive - Birds Wide Host Range Bivalves:

Crassostrea or

Mya

Mammals Canids Mammals Mammals

Parasites

Detected

Cryptosporidium Eimeria Giardia
intestinalis

Perkinsus
marinus

Diphyllobothrium Dipylidium
caninum

Hymenolepid Schistosoma

https://doi.org/10.1371/journal.pone.0227810.t003
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of bivalve shells were isolated from the deposits, including Crassostrea. Huecoid and Saladoid

cultures scavenged beach shorelines for bivalves and other forms of small marine life [3].

Eimeria spp. and P.marinus putative reads detected in the metagenomic dataset may be the

result of consumption of raw or undercooked infected hosts and thus their presence in the

feces may be transient Finding Eimeria spp. and P.marinus in human coprolites provided

additional evidence that birds and bivalves were part of their diet.

Diphyllobothrium spp. infects fish-eating mammals (definitive host). Diphyllobothrium eggs

were previously detected in human and canid pre-Columbian coprolites from Peru and Chile

[39–40]. Recently Diphyllobothrium spp. has been recognized as Dibothriocephalus spp., thus

Diphyllobothrium spp. is a synonymized name. The parasite has two successive intermediate

hosts; the first is a copepod and the second a freshwater or marine fish [41–42]. Diphyllobo-

thriidea infection is associated with the ingestion of its raw or undercooked secondary inter-

mediate host [41–42]. In the case of Diphyllobothriidea, cooking the fish kills the plerocercoid

larvae in the muscle tissue [41–42], thus the detection of Diphyllobothrium spp. eggs could

only have occurred by ingesting raw or under cooked infected fish. The Sorcé settlement was

70 meters from the sea, and a variety of marine fish osseous remains were extracted from the

Huecoid (n = 1,941) and Saladoid (n = 43,660) archaeological deposits, suggesting both cul-

tures supplemented their diets by fishing [4].

Transmission by ingestion of intermediate hosts

Canids are the definitive hosts for Dipylidium caninum, subsequently canids are reservoirs for

the double-pored dog tapeworm. A total of 107 and 168 Canis familiaris bones were extracted

from the Huecoid and Saladoid deposits (S2 Table), four whole canid remains were found laid

out in a burial disposition suggesting endearment towards an animal companion, while scat-

tered canids osseous remains without anatomical context were also dispersed throughout the

deposits suggesting canids as occasional food source [4]. Thus far, there is no evidence of D.

caninum human infections associated to the ingestion of infected canids, rather human infec-

tions are currently associated with accidental ingestion of its flea vector Ctenocephalides spp.

[43]. Theoretically, prehistoric cultures may have controlled lice infections by ingesting them

while grooming [44–46]. Similar infections have been described in pre-Columbian America in

1,400 year-old coprolites found in Mexico where Dipylidium spp. and Hymenolepis spp. eggs

were detected [10].

Hymenolepis spp. sequences were not detected in the metagenomic dataset, however,

microscopy suggested the presence of hymenolepidids. Hymenolepididae associated with

human infections can also infect rodents, for instance, H. nana frequently infects humans

whereasH. diminuta infections are uncommon in human hosts [47]. In the case ofH.micro-
stoma, the mouse bile duct tapeworm is questioned as whether to be regarded as a potential

zoonotic parasite to humans [48]. Some rodent hymenolepidids are of health interest to

humans, since they can cause infections in immunosuppressed individuals [49].

Throughout history, some rodent species have lived as commensals in human settlements

[50]. Spanish historians reported that indigenous cultures raised rodents in small corrals [51]

to ensure a constant supply of the animal for dietary purposes [4]. Examples include Isolobo-
don portoricensis commonly known as the Puerto Rican Hutia (Huecoid n = 1 and Saladoid

n = 323) and the Spiny Rat known asHeteropsomys insulans (Huecoid n = 47 and Saladoid

n = 19), whose osseous remains were identified in the archaeological deposit (S2 Table).

Numerous unidentified rodents bones were also accounted for in Huecoid (n = 151) and Sala-

doid (n = 50) deposits. It is likely that the rodents that lived in close proximity or within the

settlement influenced the transmission of zoonotic infections such as hymenolepidids.
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Animal osseous remains found in Sorcé suggest the cultures possible diets, likewise detect-

ing animal and plant aDNA in the gastrointestinal tract (GI) of these individuals is suggestive

of their consumption. DNA-based methods have been applied to extant feces to assess the

diets of herbivores, carnivorous and omnivorous animals [52–55]. As the ingested tissue passes

through the GI tract, DNA from the prey species is substantially degraded [52]. Putative

homologous sequences of canids, rodents and fish were observed in the metagenomic datasets

(S5 Data). Several putative sequences resulted in a significantly low quality alignment to an

animal reference reads which was possibly due to DNA damage inflicted by taphonomical pro-

cesses [20] and the digestive process of the ingested tissue [52]. A similar study performed

metagenomic sequencing of calcified dental plaque of medieval human skeletons, BLASTN

alignment to a chloroplast and mitochondrial database revealed putative plant and animal

reads [56]. Confirming the putative reads, microscopy examination detected conserved dietary

microfossils fragments (such as plant fibers, starch granules, and animal connective tissue) in

the dental calculus and zooarchaeological analysis of the medieval site confirmed the presence

of animal osseous remains (Suidae, Caprinae, cattle and equids) as the potential protein food

source [56]. Detecting putative sequences of animal and plant in the GI tract of ancient cul-

tures via shotgun sequencing is suggestive and must be validated using diverse methods.

Schistosomatidae

Schistosoma spp. has two free-swimming stages that penetrates the intermediate and definitive

host skin (Fig 2A and Table 3) [57]. Phylogenetic inference clustered the sequences to Schisto-

somatidae group. The sequences may correspond to S.mansoni since the eggs are excreted in

the host feces. However, it is possible the sequences may also be associated to another member

of the digenean taxon, for example Trichobilarzia spp. since it was a close second to Schisto-
soma spp. in a pairwise distance matrix (S11 Table). Trichobilarzia spp. definitive hosts are

waterfowl, infections have been reported worldwide as migratory waterfowl (such as Anatidae)

facilitate the spread of avian schistosomiasis [58–60]. Consequently Anatidae osseous remains

were identified in the deposits. Trichobilarzia spp. does not mature in humans (accidental

host) and instead causes an allergic skin reaction [60–62]. If the cultures ingested the infected

tissue of waterfowls, theoretically the parasite would pass through the human GI tract without

causing infection. If the sequence is related to Trichobilarzia spp., this would consequently

alter the network model making canids the principal source of zoonotic infections in the settle-

ment (S4 Table). Trematode eggs were detected by microscopy in a Saladoid coprolite, but

could not be identified to the genus level.

Schistosoma spp. were not discarded as a potential pathogen. This parasite requires slow-

flowing or a still water source for its life cycle to progress and a stream ran near the settlement

(Fig 1). Therefore, inhabitants could have potentially acquired the Schistosomatidae and other

fresh water related parasites while engaged in activities in the mentioned stream. Low preva-

lence in wild small mammals (such as rodents) were reported as reservoirs of zoonotic schisto-

somiasis in West Africa, namely S.mansoni, S. bovis and S. haematobium [63]. If supported,

then it could be argued that rodents inhabiting the Sorcé settlement could have been reservoirs

for both zoonotic schistosomiasis and Hymenolepid tapeworms. Thus far, ancient Schistosoma
spp. have mainly been detected in mummies from Egypt and China [14]. To the best of our

knowledge Schistosoma spp. infections have not been described in pre-Columbian America.

Although false taxonomical assignment is a possibility regarding aDNA (see Author’s State-

ment), we believe that this is not the case seeing as phylogenetic inference strongly suggested

the Schistosomatidae group. Thus, if further analyses support these data, this would be the first

report of Schistosomatidae in pre-Columbian ethnic groups in America.
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Conclusions

Rodents and canids were probably large contributors of zoonotic infections in pre-Columbian

Vieques based on the analyses degree of connectivity and Eigen vector centrality. It is likely

that rodents and canids were possible reservoirs of zoonotic infection in the Sorcé settlement.

Canids and rodents living in close proximity or inhabiting the settlement could have easily

transmitted zoonotic parasites to humans. Dogs could have likely been an occasional food

source, whereas the extinct rodent species Isolobodon portoricensis (Puerto Rican Hutia) and

Heteropsomys insulans (Spiny Rat) were an important protein food source for the indigenous

cultures on the island. The amount of osseous remains found in these archaeological deposits

also suggest that marine fish and birds were also important protein food sources of these

cultures.

Polyparasitism was evident in Vieques pre-Columbian cultures [12]. Most of the identified

zoonotic parasites could cause gastroenteritis in the infected host. However, some parasites may

have been the result of ingestion of the infected animal rather than an actual infection. The cop-

rolites found in Sorcé were intact and well-formed, suggesting asymptomatic infections or per-

haps commensal associations between the human hosts and some of the parasites detected in

this study. The fact that there were mixed infections present in the coprolites may also indicate

that these parasites may become frank pathogens only under certain circumstances and condi-

tions that were not found in the pre-Columbian Antilles. This has been previously hypothesized

with other present-day human pathogens detected in ancient cultures [64]. For instance, the

Yanomami hunter-gatherer culture in the Amazonian jungle of Venezuela harbor the highest

gastrointestinal microbial diversity detected to date in humans [65]. Similar to other semi-iso-

lated indigenous cultures, the intestinal parasite profile of the Yanomami showed evidence of

polyparasitisim that can be associated with their life style such as their feeding habits and con-

tinued contact with feces contaminated soil [66]. Polyparasitism is frequently associated with

underdeveloped areas with poor access to health care and could lead to severe health issues as is

the case in rural indigenous communities in South America [67–70]. Although the consistency

of fecal samples were not reported in Confalonieri et al. [68] and Verhagen et al. [70], we sug-

gest that in all future studies of this type the fecal sample characteristics should be reported, as it

would be a crucial piece of evidence in the process of determining any asymptomatic parasite

infection of these semi-isolated Amerindian cultures. Hypothetically, the detection of well-

formed excreta that end up as coprolites could indicate that all infections were either transient

(as a result of the ingestion of contaminated food) or that there were indeed commensal poly-

parasitic "infections" in these pre-Columbian ethnic groups.
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Graduate Faculty of the University of Georgia. 1982.
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26. Pääbo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification.

Proc Natl Acad Sci. 1989 Mar 1; 86(6): 1939–43. https://doi.org/10.1073/pnas.86.6.1939 PMID:

2928314

27. Cleeland LM, Reichard MV, Tito RY, Reinhard KJ, Lewis CM. Clarifying Prehistoric Parasitism form a

Complementary Morphological and Molecular Approach. J Archaeol Sci. 2013 Jul 1; 40(7): 3060–6.

https://doi.org/10.1016/j.jas.2013.03.010 PMID: 23645967

28. Munch K, Boomsma W, Huelsenbeck JP, Willerslev E, Nielsen R. Statistical Assignment of DNA

Sequences Using Bayesian Phylogenetics. Syst Biol. 2008 Oct 1; 57(5): 750–7. https://doi.org/10.1080/

10635150802422316 PMID: 18853361

29. Søe MJ, Nejsum P, Fredensborg BL, Kapel CM. DNA typing of ancient parasite eggs from environmen-

tal samples identifies human and animal worm infections in Viking-age settlement. J Parasitol. 2015

Feb; 101(1): 57–64. https://doi.org/10.1645/14-650.1 PMID: 25357228

30. Ortega YR, Bonavia D. Cryptosporidium, Giardia, and Cyclospora in ancient Peruvians. J Parasitol.

2003 Jun; 89(3): 635–7. https://doi.org/10.1645/GE-3083RN PMID: 12880276
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