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Abstract
Background: Modeling and simulation of cellular signaling and metabolic pathways as networks of
biochemical reactions yields sets of non-linear ordinary differential equations. These models usually
depend on several parameters and initial conditions. If these parameters are unknown, results from
simulation studies can be misleading. Such a scenario can be avoided by fitting the model to
experimental data before analyzing the system. This involves parameter estimation which is usually
performed by minimizing a cost function which quantifies the difference between model predictions
and measurements. Mathematically, this is formulated as a non-linear optimization problem which
often results to be multi-modal (non-convex), rendering local optimization methods detrimental.

Results: In this work we propose a new hybrid global method, based on the combination of an
evolutionary search strategy with a local multiple-shooting approach, which offers a reliable and
efficient alternative for the solution of large scale parameter estimation problems.

Conclusion: The presented new hybrid strategy offers two main advantages over previous
approaches: First, it is equipped with a switching strategy which allows the systematic
determination of the transition from the local to global search. This avoids computationally
expensive tests in advance. Second, using multiple-shooting as the local search procedure reduces
the multi-modality of the non-linear optimization problem significantly. Because multiple-shooting
avoids possible spurious solutions in the vicinity of the global optimum it often outperforms the
frequently used initial value approach (single-shooting). Thereby, the use of multiple-shooting yields
an enhanced robustness of the hybrid approach.

Background
The goal of systems biology is to shed light onto the func-
tionality of living cells and how they can be influenced to
achieve a certain behavior. Systems Biology therefore aims
to provide a holistic view of the interaction and the

dynamical relation between various intracellular bio-
chemical pathways. Often, such pathways are qualita-
tively known which serves as a starting point for deriving
a mathematical model. In these models, however, most of
the parameters are generally unknown, which thus ham-
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pers the possibility for performing quantitative predic-
tions. Modern experimental techniques can be used to
obtain time-series data of the biological system under
consideration from which unknown parameters values
can be estimated. Since these data are often sparsely sam-
pled, parameter estimation is still an important challenge
in these systems. On the other hand, the use of model-
based (in silico) experimentation can greatly reduce the
effort and cost of biological experiments, and simultane-
ously facilitates the understanding of complex biological
systems. In particular, the modeling and simulation of cel-
lular signaling pathways as networks of biochemical reac-
tions has recently received major attention [1]. These
models depend on several parameters such as kinetic con-
stants or molecular diffusion constants which are in many
cases not accessible to experimental determination. There-
fore, it is necessary to solve the so-called inverse problem
which consists of estimating unknown parameters by fit-
ting the model to experimental data, i.e., by solving the
model calibration or parameter estimation problem.

Parameter estimation is usually performed by minimizing
a cost function which quantifies the differences between
model predictions and measured data. In general, this is
mathematically formulated as a non-linear optimization
problem which often results to be multi-modal (non-con-
vex). Most of the currently available optimization algo-
rithms, specially local deterministic methods, may lead to
suboptimal solutions if multiple local optima are present,
as shown in [2,3]. This is particularly important in the
case of parameter estimation for biological systems, since
in most cases no clear intuition even about the order of
magnitude exists. Finding the correct solution (global
optimum) of the model calibration problem is thus an
integral part of the analysis of dynamic biological systems.
Consequently, there has been a growing interest in devel-
oping procedures which attempt to locate the global opti-
mum. In this concern, the use of deterministic [4-9] and
stochastic global optimization methods [10-12] have
been suggested. For deterministic global optimization
routines the convergence to the global optimum is guar-
anteed but this approach is only feasible for a considera-
bly small number of parameters. Stochastic global
optimizers on the other side converges rapidly to the
vicinity of the global solution, although further refine-
ments are typically costly. In other words, finding the
location of the optimum is computationally expensive,
especially for large systems as found in systems biology.
Alternatively, Rodriguez-Fernandez et al. [2] propose a
hybrid method to exploit the advantages of combining
global with local strategies. That is, robustness in finding
the vicinity of the solution using the global optimization
procedure and the fast convergence to solution by the
local optimization procedure. At a certain point the search
is switched from using the global optimizer to the local

optimization routine by this hybrid strategy. The determi-
nation of the so called switching point is done on the
basis of exhaustive numerical simulations prior to the
actual optimization run.

In this work a refined hybrid strategy is proposed which
offers two main advantages over previous alternatives [2]:
First, we employ a multiple-shooting method which
enhances the stability of the local search strategy. Second,
we propose a systematic and robust determination of the
switching point. Since the calculation of the switching
point can be done during the parameter estimation itself,
computationally expensive simulations are no longer
needed.

Parameter estimation in dynamical systems
Generally, the parameter estimation problem can be
stated as follows. Suppose that a dynamical system is
given by the d-dimensional state variable x(t) ∈ �d at time
t ∈ I = [t0, tf], which is the unique and differentiable solu-
tion of the initial value problem

The right-hand side of the ODE depends in addition on

some parameters . It is further assumed that f is

continuously differentiable with respect to the state x and
parameters p. Let Yij denote the data of measurement i = 1,

..., n and of observable j = 1, ..., N, whereas n represents
the total amount of data and N is the number of observa-
bles. Moreover, the data Yij satisfies the observation equa-

tion

Yij = gj(x(ti), p) + σijεij  i = 1,...,n, (2)

for some observation function g : �d → �N, d ≥ N, σij > 0,
where εi's are independent and standard Gaussian distrib-
uted random variables. The sample points ti are ordered
such that t0 ≤ t1 < � <tn ≤ tf and the observation function g
is again continuously differentiable in both variables. Eqs.
(1) and (2) define an single-experiment design. If several
experiments are available, possibly under different exper-
imental conditions, Eq. (2) depends on each experiment
and must be modified in the following manner

Yijk = gj(x(ti), p) + σijkεijk  k = 1, ..., nexp. (3)

Certain parameters may be different for each experiment,
but the treatment of these local parameters and the differ-
ent experiments requires only obvious modifications of
the described procedures and therefore only the single-
experiment design nexp = 1 is discussed in the following for
sake of clarity.

x t f x t t p x t x( ) ( ( ), , ) ( ) .= =0 0 (1)

p np∈R
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On the basis of the measurements (Yi)i = 1,...,n the task is
now to estimate the initial state x0 and the parameters p.
The principle of maximum-likelihood yields an appropri-
ate cost function which has to be minimized with respect
to the decision variables x0 and p. Defining x(ti; x0, p) as
being the trajectory at time ti, the cost function is then
given by

In general, minimizing  is a formidable task, which
requires advanced numerical techniques.

Methods
Mathematical modeling in systems biology rely on quan-
titative information of biological components and their
reaction kinetics. Due to paucity of quantitative data, var-
ious numerical optimization techniques have been
employed to estimate parameters of such biological sys-
tems. Employed optimization techniques include local,
deterministic approaches like Levenberg-Marquardt algo-
rithm, Sequential Quadratic Programming, and stochastic
approaches like Simulated Annealing, Genetic Algorithms
and Evolutionary Algorithms (see for example, [10,13]).
Most commonly, local methods optimize the cost func-
tion, Eq. (4), directly with respect to initial values x0 and
parameters p. This optimization scheme is called initial
value approach or alternatively single-shooting. Huge dif-
ferences in the performance can be observed if either local
or global optimization methods are used. Due to the pres-
ence of multiple minima in Eq. (4), convergence of local
optimization methods to the global minimum is in most
cases limited to a rather small domain in search space, see,
e.g., [2,3]. In contrast, global methods have generally a
substantially larger convergence domain but the compu-
tational cost increases drastically.

One of the simplest global methods is a multistart
method. Here, a large amount of initial guesses are drawn
from a distribution and subjected to a parameter estima-
tion algorithm based on a local optimization approach.
The smallest minimum is then regarded as being the glo-
bal optimum. In practice, however, there is no guarantee
of arriving to the global solution and the computational
effort can be quite large. These difficulties are arising
because it is a-priori not clear how many random initial
guesses are necessary. Over the last decade more suitable
techniques for the solution of multi-modal optimization
problems have been developed (see, e.g., [14] for a
review). Several recent works propose the application of
global deterministic methods for model calibration in the
context of chemical processes, biochemical processes,
metabolic pathways, and signaling pathways [4-6,8,9].

Global deterministic methods in general take advantage
of the problem's structure and even guarantee conver-
gence within a preselected level of accuracy. Although very
promising and powerful, there are still limitations to their
application, manly due to rapid increase of computa-
tional cost with the size of the considered system and the
number of its parameters. As opposed to deterministic
approaches, global stochastic methods do not require any
assumptions about the problem's structure. Stochastic
global optimization algorithms are making use of pseudo-
random sequences to determine search directions toward
the global optimum. This leads to an increasing probabil-
ity of finding the global optimum during the runtime of
the algorithm. The main advantage of these methods is
that they rapidly arrive to the proximity of the solution.
Examples of global stochastic methods are: pure random
search algorithms, evolutionary strategies, genetic algo-
rithms, scatter search and clustering methods. Some of
these strategies have been successfully applied to parame-
ter estimation problems in the context of systems biology,
see [10,11,15].

In [2] a combination of global stochastic methods with
local methods has been proposed. This, so called hybrid
approach, utilizes the property of the global search strat-
egy to arrive quickly to the vicinity of the solution. At a
certain point in the proximity of the solution the opti-
mizer is switched from the global stochastic to the local
deterministic search method. It has been shown that this
strategy saves a huge amount of computational effort and
provides an efficient and robust alternative for model cal-
ibration. Therefore, the hybrid method takes advantage of
the complementary strengths of both optimization strate-
gies: global convergence properties in the case of the sto-
chastic method, and fast local convergence in the case of
the deterministic approach. Speed and the stability, how-
ever, of the resulting hybrid approach also depends on the
performance of the used local approach. For this reason
we choose the method of multiple-shooting rather than
the initial value approach in order to refine the hybrid
optimization strategy as described in [2]. As shown below
multiple-shooting has in general a larger domain of con-
vergence to the global optimum while only a small por-
tion of additional computational load has to be taken into
account compared to single shooting. A brief outline of
the multiple-shooting method is given below.

Multiple-shooting

Detailed discussion and some applications to measured
data of the method can be found, e.g., in [16-22]. Here, we
will concentrate on the main principles of multiple-shoot-
ing in order to construct a new hybrid approach. The basic
idea of multiple-shooting is to subdivide the time interval
I = [t0, tf] into nms <n subintervals Ik such that each interval

( , )
( ( ( ; , ), ))
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contains at least one measurement. Each of the intervals
are assigned to an individual experiment having its own

initial values  but sharing the same parame-

ters p. Suppose that x(ti; , p) for all k = 1, ..., nms denotes

the trajectory within an interval. Since the total trajectory

for each t ∈ I = I1 ∪ ... ∪  is usually discontinuous at

the joins of the subintervals, smoothness as anticipated by
the solution of Eq. (1) is not fulfilled. To enforce smooth-
ness, the optimization is constrained such that all discon-
tinuities are removed at convergence. This leads to a
constrained non-linear optimisation problem, which has
in addition the advantage that further equality and ine-
quality constraints can easily be implemented. Note that
if the integration between two time points is numerically
unfeasible, the segment where this problem occurs can be
removed. This, however, leads to a split trajectory which
parts can be treated using a multiple-experiment fit.

For each k = 1, ... nms let  and

θk = ( , p) the optimization problem can then be formu-

lated in the following manner:

where the continuity constraints are given at the first row
of the constraints-part, followed by optional constraints

. Cost function (θ1, ... ) is equivalent to Eq.

(4) if the continuity constraints are satisfied; hence

We solved the non-linear programming problem defined
by Eq. (5) iteratively by employing a generalized-quasi-
Newton method [23,24]. With the current guess

, the update step

 for the l-th iteration is obtained by

solving the resulting linearly constrained least squares
problem:

where dθ denotes the derivative with respect to the param-
eters θ of the corresponding function. Setting θl = θl-1 + Δθl

and repeating Eq. (7) until Δθl ≈ 0, yields the desired
parameter estimates under the condition that all parame-
ters itself are identifiable and the constraints are not con-
tradictory. These extra assumptions are necessary to fulfil
the so called Kuhn-Tucker conditions for the solvability of
constrained, non-linear optimization problems [23,25].

In combination with multiple-shooting the generalized-
quasi-Newton approach has three major advantages: first,
the optimization is sub-quadratically convergent. Second,
a transformation of Eqs. (7) can be found such that the
transformed equations are numerically equivalent to the
initial value approach. Third, due to the linearization of
the continuity constraints, they do not have to be fulfilled
exactly after each iteration, but only at convergence. This
allows discontinuous trajectories during the optimization
process, reducing the problem of local minima. The first
two properties yield the desired speed of convergence
whereas the third property is mainly responsible for the
stability of multiple-shooting. This is gained by the possi-
bility that the algorithm can circumvent local minima by
allowing for discontinuous trajectories while searching
the global minimum. Whereas, the main disadvantage is
due to the linearization of the cost function. It can easily

happen that despite the update step Δθl is pointing in the
direction of decreasing  the proposed step is too large.
Such an overshooting is common to any simple optimiza-
tion procedures based on the local approximation of the
cost function. A suitable approach to cure this deficiency

is realized by relaxing the update step; hence θl = θl-1 +

λlΔθl for some λl ∈ (0, 1]. This procedure is referred to as
damping and provides the bases of the determination of
the switching point which we propose in the following.

A new hybrid method
Besides the choice of the global and local optimization
procedure, the determination of the switching point is
vital for the robustness of the hybrid approach, as dis-
cussed in [26]. This is supported by the results presented
in [2] where it is shown that different switching points
may lead to different solutions and that careful investiga-
tions and computationally expensive empirical tests must
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be consulted in order to determine an appropriate switch-
ing strategy. In order to avoid such time consuming tests,
we propose a systematic determination of the switching
point in the following. All calculations needed to com-
pute the switching point are carried out during the optimi-
zation which reduces the computational effort
significantly. As global stochastic optimization methods
we decide to use evolutionary approaches such as Stochas-
tic Ranking Evolutionary Search (SRES) [27] or Differen-
tial Evolution (DE) [28]. The local search method is – as
already stated above – multiple-shooting.

Calculation of the switching point
The multiple-shooting method is equipped with a relaxa-
tion algorithm to prevent overshooting of the update step.
This overshooting is due to the quadratic approximation
of the likelihood function in Eq. (7) which is often too
crude for points far away of the minimum. For these
points the calculated update step tends to be too long and
might result in a step leading to an increased value of the
cost function. The relaxation method, also called damping
method, selects some λl ∈ (0, 1] such that the update step
θl = θl-1 + λlΔθl is descendant. For this some level function
has to be used. Such a level function must share the same
monotony properties of the cost function close to the glo-
bal minimum. Here, the objective to judge whether the
proposed step at θl-1 is descendant is given by the follow-
ing level function [17,22,23]:

T(λ) = ||G(θl-1)Ra(θl-1 + λΔθl)||2,

where Ra is the n × N-dimensional vector with compo-

nents  in Eq. (6) and G is the generalized inverse of

Eq. (7), satisfying Δθl = G(θl-1)Ra(θl-1). Based on T(λ) a
very efficient corrector-predictor scheme is given in

[17,23] to determine the optimal damping parameter λ.
Furthermore, it can be shown that whenever the method
enters the region of local convergence, the method con-

verges to a full step procedure and thus λ → 1 [17,22,23].
This feature of the damping strategy can be utilized to
detect the region of local convergence and provides a suit-
able criterion for determining the switching point. Calcu-

lating λ during the global optimization and successively

checking whether λ = 1 yields the desired information
about the switching point. For stability reasons we pro-
pose to switch to the local method only after a certain

number, say n1, of consecutive λ = 1 is achieved. After the

initialization of the method a number of iterations n0 is

performed using the global method without checking the
switching point criterion in order to decrease the compu-
tational load, note that a minimum of around 15 itera-

tions will be usually needed, this number may be
increases if the size of the search space also increases. For
the simulations presented in this study n1 = 2. Since the

corrector-predictor scheme can be implemented very effi-

ciently, calculation of the damping parameter λ is compu-
tationally inexpensive.

Results and Discussion
In order to demonstrate the performance of the method
we have chosen two examples: the STAT5 signaling path-
way [29] and Goodwin's model [30] for a feedback con-
trol system showing a Hopf bifurcation. In both cases we
simulated data having a noise-to-signal ratio of either 0%
or 10% and evaluated the performance of the proposed
hybrid method in comparison to local and global search
strategies.

STAT5 signaling pathway
The JAK/STAT (Janus kinase/Signal Transducer and Acti-
vator of Transcription) signaling cascade is a well studied
pathway stimulating cell proliferation, differentiation,
cell migration and apoptosis [31]. A mathematical model
of the JAK/STAT5 pathway is, e.g., presented in [29]. Here,
the binding of the ligand to the erythropoietin receptor
(EpoR) located at the cell membrane results in an activa-
tion of the receptor (via cross-phosphorylation of the JAK
proteins) and leads to a subsequent phosphorylation of
the STAT5 molecule. Two phosphorylated STAT5 proteins
form a homodimer which enters the cell nucleus, where it
stimulates transcription of target genes. Then the mole-
cules are dedimerized and dephosphorylated and relo-
cated back to the cytoplasm. This process is modeled by
the following system of non-linear delay differential equa-
tions:

where k1, k2 are rate constants and τ is a delay parameter.
The cytoplasmic unphosphorylated STAT5 is represented
by x1, whereas x2 denotes the phosphorylated STAT5.
Moreover, x3 describes the dimer and x4 is the nuclear
STAT5. The receptor activity is denoted by EpoRA(t) and
the delay τ represents the time the STAT5 proteins reside
in the nucleus. Delay differential equation exhibit a rich
dynamic, which make them a difficult candidate for
parameter estimation [32,33]. We approximate the delay
in Eq. (8) by a linear chain of length N:
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Here, in(t) is the input and out(t) the output of the delay
chain. We set in(t) = x3(t), out(t) = x3(t - τ), and N = 8. This
provides a reasonable approximation of the time delay
[32]. Two different sets of data were obtained by numeri-
cal simulations with a noise to signal ratio of 0% and
10%, respectively. As observed quantities we choose the
total amount of activated STAT5, y1 = s1(x2 + x3), and the
total amount of STAT5 in the cytoplasm, y2 = s2(x1 + x2 +
x3), where s1 and s2 are scaling parameters introduced to
deal with the fact that only relative protein amounts are
measured. Initial conditions and the kinetic parameters
were chosen to be: x1(0) = 3.71, xi(0) = 0, (i = 2,...,4), k1 =
2.12, k2 = 0.109, τ = 5.2, s1 = 0.33 and s2 = 0.26. From the
simulated data we aim to estimate the rate constants k1, k2,
the delay parameter τ and the initial concentration of
unphosphorylated STAT5 x1(0). In case of local optimiza-
tion methods – single and multiple-shooting – we used
multistarts, where the initial guess of each restart is ran-
domly chosen from the intervals [0, 5] (Box 5), [0, 10]
(Box 10), and [0, 100] (Box 100), respectively, using a
uniform distribution. For each box size 100 restarts are
chosen. Note that the delay parameter τ has to be
restricted to Δt <τ < (tf - t0), where Δt denotes the sampling
rate of the data. This follows from the fact that no infor-
mation is contained in the data about delays smaller than
τt and larger than the total measurement time tf - t0.

The results are given in Figure a showing the percentage of
convergence to the global minimum, local minima or fail-
ure of Box 5, Box 10, and Box 100, respectively. In the
rather artificial case of zero noise shown in Figure a mul-
tiple-shooting performs reasonably well while already a
significant fraction of the single shooting trials converge
to a local mimimum. Figure b presents the results
obtained using data with 10% noise to signal ratio. Add-
ing noise deteriorates the performance of both
approaches, which can be seen by comparing Figure a and
Figure b. As anticipated, multiple-shooting outperforms
single shooting, since it reduces the multimodality of the
problem. However, multiple-shooting tends to fail more
often than single-shooting for large box sizes. Even for this
rather simple example the chance of getting trapped in a
local solution or to fail is quite significant and increases
with increasing noise to signal ratio. The corresponding
total computational costs for both methods are summa-
rized in Table 1. Since different platforms are used for our
study all CPU times are transformed to a Pentium (178

MFlops) using Linpack benchmark tables. Table 1 exem-
plifies the trade-off between robustness (multiple-shoot-
ing) and speed (single shooting).

In contrast to the local methods, both, the global search
strategy SRES and the hybrid approach, converged in all
cases to the global optimum which emphasises the
strength of global methods. Note that results obtained by
DE are comparable to SRES and are therefore omitted. The
power of the hybrid strategy can be appreciated consider-
ing the average computational cost as shown in Table 1.
Using the hybrid reduces the computational load signifi-
cantly by a factor of four. Due to the systematic switching
point calculation no further adjustments were necessary
to obtain this significant emendation.

Oscillatory feedback control system: Goodwin's model
Parameter estimation for oscillating systems is usually
more involved than for systems showing a transient
behavior. A well known model describing oscillations in
enzyme kinetics is the model suggested by Goodwin [30].
It consists of the following set of ordinary differential
equations:

Here, x represents an enzyme concentration whose rate of
synthesis is regulated by feedback control via a metabolite
z. The intermediate product y regulates the synthesis of z.
Oscillatory behaviour is not a necessary characteristic of
this set of equations. Different values for the parameters
may result in limit cycle oscillations, damped oscillations
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The CPU time is normalized using the Linpack benchmark table 
and is in case of the multistarts of the single shooting (SS) and 
multiple-shooting (MS) method the sum over all restarts. 
Increased robustness of MS results in substantially higher compu-
tational cost compared to SS. The hybrid is about 3–4 times 
faster than SRES manifesting the advantage of the proposed 
method.

Table 1: Computational costs in the STAT5 case study (in 
seconds) for 0% and 10% noise to signal ratio, respectively. 

Simulated data with 0%/10% noise

Box Size SS MS SRES Hybrid

5 65/80 140/155 30/46 9/10
10 86/90 317/453 34/55 10/11
100 141/170 950/1095 58/80 17/22
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or monotonic convergence to a steady state. In fact, only a
restricted range of parameter values result in oscillations.
The following values have been used here x(0) = 0.3617,
y(0) = 0.9137, z(0) = 1.3934, for the initial conditions and
a = 3.4884, A = 2.1500, b = 0.0969, α = 0.0969, β =
0.0581, γ = 0.0969, σ = 10, and δ = 0.0775, for the model
parameters, resulting in oscillatory behavior.

As with the previous case the problem is first approached
using multistarts where either single shooting or multiple-
shooting are employed. The initial guess of each restart is
randomly chosen from the intervals [0, 5] (Box 5), [0, 10]
(Box 10) and [0, 100] (Box 100), respectively, for both the
parameters and initial conditions using a uniform distri-
bution and two values 0% and 10% noise to signal ratio.
The results are summarized in Figure showing the percent-
age of convergence to the global minimum, local minima
or failure for different box sizes. Both local methods
encounter difficulties in finding the global optimum, sin-
gle shooting fastly steps in local minimima or diverges
and only on a reduced percentage of the runs converges to
the global solution, whereas multiple-shooting performs
in all cases better than single shooting at the expense of
higher computational costs. In case of the global
approaches only DE, under the choice of robust thus
slower strategy parameters, was able to find the global
minimum, whereas no convergent fit was obtained using
SRES. This emphasizes the difficulties in finding the opti-
mal solution for oscillatory systems even for global search
strategies. Figure (a: 0% noise to signal ratio, b: 10%
noise-to-signal ratio) shows representative convergence
curves for the DE and the hybrid to the global optimum
of the Goodwin problem given by Eq. (9). The benefit of
the hybrid can be appreciated by comparing the left panel
(DE) with the right panel (hybrid). For box size 10 the

hybrid converges almost ten times faster while for larger
box sizes the asset is even more pronounced. This is also
reflected by the CPU times presented in Table 2. It is
important to note that this advantage has been obtained
without costly adjustment of the switching point as a con-
sequence of the systematic switching strategy employed in
the proposed hybrid method. Note moreover that the
hybrid may use a faster strategy for DE which further
enhances efficiency.

Conclusion
In this study we present a new hybrid strategy as a reliable
method for solving challenging parameter estimation
problems encountered in systems biology. The proposed
method presents two advantages over previous hybrid
methods: First, it is equipped with a switching strategy
which allows the systematic determination of the transi-

The CPU time is normalized using the Linpack benchmark table 
and is in case of the multistarts of the single shooting (SS) and 
multiple-shooting (MS) method the sum over all restarts. As in 
the case of the STAT5 example the improved robustness of mul-
tiple-shooting gives rise to increased computational cost com-
pared to single shooting. The benefit of the hybrid becomes 
evident by the fact that the computational cost of the hybrid is 
about 8 times lower than DE for the Box 5, 60 times lower for the 
Box 10 and around 40 for Box 100.

Table 2: Computational costs in the Goodwin case study (in 
seconds) for 0% and 10% noise to signal ratio, respectively. 

Simulated data with 0%/10% noise

Box Size SS MS DE Hybrid

5 213/409 907/1153 108/104 13/12
10 326/423 1340/1443 972/846 16/14
100 453/472 733/1021 1320/1370 30/26

Comparison of the multistart of the generalized-quasi-New-ton within single and multiple-shooting for the JAK/STAT5 pathwayFigure 1
Comparison of the multistart of the generalized-quasi-New-
ton within single and multiple-shooting for the JAK/STAT5 
pathway. Shown is the percentage of convergence to the glo-
bal minimum, local minima or failure of the optimisation 
method using 100 restarts. The initial guess of each restart is 
randomly chosen from interval [0, 5] (Box 5), [0, 10] (Box 
10), and [0, 100] (Box 100) using a uniform distribution. a) 
Noise-to-signal ratio is zero. As anticipated, multiple-shoot-
ing (right panel) performs better than single shooting (left 
panel). b) Same as in a), but using a noise-to-signal ratio of 
10%.
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tion from the local to global search. This avoids computa-
tionally expensive tests in advance and constitutes a major
benefit of the proposed method. Second, using multiple-
shooting as the local search procedure reduces the multi-
modality of the non-linear optimization problem.
Because multiple-shooting avoids possible spurious solu-
tions in the vicinity of the global optimum it outmatches
the initial value approach (single shooting) yielding an
enhanced robustness of the hybrid.

We analyzed the performance of this new approach using
two examples: the dynamical model of the STAT5 signal-
ing pathway suggested in [29] and the Goodwin model
describing oscillating processes [30]. The hybrid was able
to converge to the global solution in all runs performed
with significant reductions in the computational cost.
Moreover a comparison with other search strategies
reveals that the hybrid results in a better compromise effi-
ciency-robustness. In conclusion the proposed hybrid

provides a robust and convenient method for parameter
estimation problems occurring in systems biology.
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