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Abstract
Background The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of amino-
glycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of
resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in
other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treat-
ment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP).

Methods A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four
murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of
EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was
studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP.

Findings EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic
variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the
apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or
amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse
infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indi-
cated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin.

Interpretation This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar effi-
cacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety mar-
gin and a wider therapeutic window in the treatment of cUTI/API.
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Research in context

Evidence before this study

Renal drug clearance results in high transient drug con-
centrations in the kidney and in urine, which is valuable
in attaining therapeutic exposure in the kidney and uri-
nary tract, but may as well translate into an increased
risk of nephrotoxicity. Aminoglycoside antibiotics are
mainly excreted by glomerular filtration, resulting in
very high transient drug exposures of the urinary tract
including kidneys, and have therefore been successfully
used as antibacterial therapeutics in complicated uri-
nary tract infections and acute pyelonephritis (cUTI/AP).
High exposure to aminoglycosides, however, has also
been associated with a risk of nephrotoxic adverse
effects, in particular in cases of high trough levels and
renal drug accumulation over time. The clinical utility of
an antibiotic used in the treatment of cUTI/AP is there-
fore inevitably determined by its therapeutic window,
the safety margin between highly efficacious and toxic
drug exposures.

The aminoglycoside apramycin, currently in clinical
development for the treatment of Gram-negative sys-
temic infections, has demonstrated superior in-vitro
activity against highly drug-resistant Gram-negative
bacterial pathogens, higher efficacy in preclinical pneu-
monia models, and lower cochlear toxicity when com-
pared to other aminoglycoside antibiotics. However, its
potential efficacy in the treatment of urinary tract and
kidney infections, and its potential nephrotoxicity, had
not been studied.

Added value of this study

This study provides preclinical evidence for the thera-
peutic potential of apramycin in the treatment of cUTI/
AP. Comparison to current standard-of-care aminogly-
cosides not only suggests better coverage of drug-resis-
tant bacterial pathogens, but also a more robust
therapeutic window of higher tolerance towards lower
pH values, as commonly encountered in urine but also
other host microenvironments of infection.

Implications of all the available evidence

The collective evidence implies that antimicrobial sus-
ceptibility testing performed at pH 7.4 may not always
be fully predictive of the antibacterial potency at the
site of infection, that changes in pH may alter the ability
of a drug to penetrate bacterial cell walls, and that the
specific host environment needs to be considered
when extrapolating from laboratory testing results to
therapeutic potency in selecting the most appropriate
treatment. Conversely, a drug molecule’s physicochemi-
cal properties in a given environment and their impact
on the therapeutic window of that drug may provide
for additional clues in the rational design and medicinal
chemistry of novel therapeutics.
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1. Introduction
Urinary tract infections (UTI) are reported with a preva-
lence of more than 10% for women in the USA and are
estimated to affect 150 million people worldwide each
year [1,2]. As such UTI is recognized as one of the most
common bacterial infections encountered by physicians
[3,4]). Complicated UTI (cUTI) is defined by the pres-
ence of at least one of a number of complicating factors
such as pregnancy, diabetes, functional or anatomic
abnormalities, immune-compromised conditions, or a
drug-resistant infection that withstands standard antibi-
otic treatment [5,6]. The majority of uropathogens are
Gram-negative bacteria of the order Enterobacterales
with Escherichia coli estimated to account for more than
80% of these [4,6]. Pseudomonas aeruginosa represents
another problematic and often multidrug-resistant
(MDR) uropathogen. Multiple scientific reports point to
an overall increase in drug-resistant cUTI in recent
years with extended-spectrum b-lactamase (ESBL)-posi-
tive Enterobacterales now commonly encountered [5−7].
In the SENTRY surveillance program (2007-2009),
resistance to carbapenems occurred at a rate of 1.8-2.4%
in uropathogenic isolates, a number that is widely
assumed to have risen since and is expected to further
increase, thus limiting antibacterial treatment options
in the future [6,8].

Treatment guidelines for cUTI and pyelonephritis
caused by ESBL- or carbapenemase-producing Entero-
bacterales and P. aeruginosa demand parenteral therapy
with broad-spectrum antibiotics typically including a
b-lactam/b-lactamase-inhibitor combination, plus either
a fluoroquinolone or an aminoglycoside [6,9]. More
recently, however, fluoroquinolones are increasingly
avoided for their potential risk of long-term neurotoxic
adverse effects [10]. Aminoglycosides, colistin, and tige-
cycline are alternatives recommended as antipseudomo-
nal drugs in MDR infection and in case of limited
treatment options for highly drug-resistant Enterobacter-
ales infections. The standard-of-care aminoglycosides in
the treatment of cUTI are gentamicin, tobramycin and
amikacin with the choice varying as a function of local
resistance patterns [5].

Renal clearance of aminoglycoside antibiotics results
in very high transient drug concentrations in urine. Sin-
gle-dose parenteral aminoglycoside as UTI monother-
apy has proven a highly effective treatment in a
systematic review of 13 studies representing 13 804
patients [11]. However, the antibacterial potency of gen-
tamicin and other antibiotics may at the same time be
compromised by the slightly acidic pH typically found
in urine [12−14]. E. coli UTI infections have been shown
to decrease the naturally acidic urinary pH further to
5.5-6.5 in both adult and paediatric patients [15,16].

Bacterial resistance to aminoglycoside antibiotics is
conferred by a variety of mechanisms including the
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expression of aminoglycoside-modifying enzymes
(AME), which inactivate the drug by catalysing alter-
ation of their chemical structures, thus lowering their
affinity for the bacterial ribosome [17,18]. Methylation of
16S-ribosomal RNA nucleotide G1405 by ribosome
methyltransferases (RMT) results in high-level resis-
tance to all aminoglycoside antibiotics of clinical rele-
vance including the most recent addition plazomicin,
and has therefore been termed “pan-aminoglycoside
resistance” [9,17−20].

The quest for an improved aminoglycoside antibiotic
has identified apramycin as an interesting candidate
that naturally overcomes a large majority of all amino-
glycoside resistance mechanisms. Indeed, apramycin
has been proposed as a next-generation aminoglycoside
and is currently undergoing clinical trials as a drug can-
didate for systemic Gram-negative infections, an effort
supported by the European Gram-negative Antibacterial
Engine (ENABLE) which is funded by the Innovative
Medicines Initiative (IMI) [21]. Apramycin differs from
other aminoglycosides by its chemical structure that
contains a unique octadiose core, and enables it to evade
all circulating RMT-mediated resistance and almost all
AMEs. Consequently, the crystalline free base of apra-
mycin under development, designated EBL-1003, has
shown promising in-vitro and in-vivo activity against a
broad spectrum of aminoglycoside- and carbapenem-
resistant (CR) A. baumannii, Enterobacterales, and other
critical pathogens [18,22−28]. In the case of A. bauman-
nii, EBL-1003 has shown encouraging efficacy in mouse
thigh and lung infection models [24,26]. However, addi-
tional reports on the preclinical evidence for other sites
of infection and other bacterial pathogens has thus far
been scarce.

In the present study, we explored the preclinical pro-
file of EBL-1003 against uropathogenic clinical isolates
and its therapeutic potential in four mouse UTI infec-
tion models. Time-kill analysis was applied to further
explore the pH-dependent potency of EBL-1003. Drug
concentrations in urine, accumulation in kidneys over
repeat dosing, and nephrotoxic effects were studied in
mouse and rat models to assess the therapeutic window
of EBL-1003 in comparison to that of gentamicin.
2. Methods

2.1. NDARO database analysis
A genotypic assessment of the antimicrobial susceptibil-
ities of all uropathogenic bacterial isolates deposited in
the NCBI National Database of Antibiotic Resistant
Organisms (NDARO) was conducted as previously
described for other subsets of isolates [26,29]. Resis-
tance gene annotations were downloaded on 16th

August 2021, covering clinical isolates from 2012 to
2021, and comprising 12 956 uropathogenic Gram-neg-
ative clinical isolates as identified by the following
www.thelancet.com Vol xx Month xx, 2021
filters. Host: human, homo sapiens, patient; isolation
type: clinical; isolation source: urine, urethra, patient
with UTI. This filter setting returned a total of 13689
Gram-negative clinical isolates including an unusual
high number of 733 Salmonella enterica, which are more
likely fecal contaminants than true uropathogens. The
S. enterica isolates have therefore not been included in
the subsequent downstream analysis of uropathogens.
Aminoglycoside- and carbapenem-resistant genotypes
were identified by screening the remaining 12956 gene
annotations for any of the relevant resistance genes
listed in the NCBI Pathogen Detection Reference Gene
Catalogue, as summarized in Table S2. A bioinformatic
tool has been programmed to accelerate the analysis of
the data sets and the code has been deposited in GitLab
(https://gitlab.com) for public access.
2.2. Antimicrobial susceptibility testing
Minimal inhibitory concentrations (MIC) and time-kill
kinetics were determined according to CLSI standards
and as previously described [18,26]. Contemporary clini-
cal isolates of bacterial uropathogens with a non-suscep-
tibility to at least one standard-of-care antibiotic were
collected between 2019 and 2020 at the University of
Zurich’s Institute of Medical Microbiology (n = 57).
MICs and time-kill kinetics were also determined for
additional bacterial strains used either as a quality con-
trol or in the animal infection studies, listed in Table S3.
Susceptibility testing and time-kill experiments over a
range of defined pH values followed the same protocols
using cation-adjusted M€uller-Hinton broth (CAMHB)
with pH adjusted and buffered at pH 7.4 with 20 mM
MOPS, and pH 6 and pH 5 each with 100 mM MES.
Buffer concentrations were selected by titration of the
minimal tonicity that provided stable pH during bacte-
rial growth for 24 hours (data not shown).
2.3. Cellular uptake studies
Bacteria were grown overnight in pH-adjusted and buff-
ered CAMHB at pH 5.0, 6.0 and 7.4 as described above.
The cells were suspended in media to an OD600 of 0.1
and grown to an OD600 of 0.8. After bacterial growth
the pH values of the cultures were again measured and
determined as pH5.72, pH6.49, and pH7.31, respec-
tively, at the time the antibiotics were added to the cul-
tures. After 10 minutes of incubation at a final
antibiotic concentration of 100 mM (n = 3 biological rep-
licates for each drug and each pH), subcellular fraction-
ation was performed as previously described by
Prochnow et al. [30]. In brief, the periplasm was har-
vested after a cold osmotic shock. Subsequently, cyto-
plasm and membrane fractions were separated via high-
speed centrifugation. Each of the three fractions was
then treated as followed: prior to LC analysis, a protein
precipitation step was applied using an ice-cold H2O/
ACN/MeOH (40/30/30%) mixture, followed by a low-
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speed centrifugation in a 96-well microtitre plate. The
supernatant was dried completely followed by resuspen-
sion in 40 ml of MS-buffer (95% H2O/5%ACN) contain-
ing kanamycin as an internal standard. LC/MS/MS-
analysis was carried out using an Agilent Infinity II
1290 HPLC (Agilent Technologies, Santa Clara, CA,
USA) coupled to an AB Sciex QTrap 6500 triple quadru-
pole mass spectrometer (AB Sciex Germany GmbH,
Darmstadt, Germany). Following an injection of 5 ml of
sample, the compounds were separated using a Shodex
HILICpak VC-50 2D column equipped with a VC-50G
2A pre-column (both: Showa Denko, K.K., Japan) at a
constant flowrate of 0.3 ml/min using a linear gradient
of solvents A (ACN, 0.1% HCOOH) and B (H2O, 1.5%
NH3). The linear gradient started at 70% solvent B and
reached 90% B at 4.5 min. The compounds were ion-
ized in the positive mode using electrospray ionization.
The amount of compound was determined using stan-
dard curves for quantification, which were obtained by
peak area integration of specific Q3 fragments gener-
ated by collision of Q1-filtered molecular masses for
each compound in the respective matrix (m/z: apramy-
cin = 540/217, 540/378; gentamicin = 450/322, 450/
160, 464/322, 464/160, 478/157, 478/322; amika-
cin = 586/163, 586/425; kanamycin = 484/163, 484/
324).
2.4. Mouse efficacy studies
The mouse urinary tract infection model with E. coli
strain J96 (ATCC 7000336) isolated from a human
pyelonephritis patient was subcontracted to Pharmacol-
ogy Discovery Services (PDS) Taiwan. The efficacy of
pH-adjusted aqueous solutions of crystalline apramycin
free base (EBL-1003) versus gentamicin sulphate
(Sigma Cat# G-3632) was assessed in female C3H/HeJ
mice infected by transurethral injection of 9.13 £ 108

CFU. Starting six days prior to infection, diuresis was
induced by administering 5% glucose in drinking water.
Starting 3 days (96 hours) post infection, EBL-1003 or
gentamicin were administered subcutaneously twice
daily (BID; q12h) for three consecutive days. One control
group of mice (n = 5) was sacrificed at the start of treat-
ment to determine baseline bacterial counts. Mice from
all other dosing groups (n = 5 per group) including the
vehicle control were sacrificed 7 days (168 h) after infec-
tion and bladder and kidney tissue was aseptically
removed for bacterial enumeration.
2.5. Mouse pharmacokinetic studies
The plasma pharmacokinetics of apramycin in mice has
been studied previously [31]. To determine the drug con-
centration in mouse urine, female NMRI mice (n = 4
mice per dose group) received single subcutaneous
doses of 0.8, 3.2, or 10 mg/kg of apramycin (Huve-
pharma, BM8900001, diluted in physiologic saline).
Urine samples were collected at 1, 2, 3, 4, 6, and 24 h
post administration. Drug concentrations in urine were
determined by liquid chromatography tandem mass-
spectrometry (LC-MS/MS). In short, protein precipita-
tion was achieved by adding 20 mL of 20% TCA and
470 mL of aqueous solution of 0.01% HFBA and 0.01%
propionic acid to 10 mL of urine. Samples were centri-
fuged for 10 min at 11000£ g and 1 mL of each superna-
tant was injected into the LC-MS/MS system (Waters
XEVO-TQ-S).
2.6. Mass Spectrometry Imaging
Kidney tissue samples were collected from control ani-
mals (CD-1 mice, Envigo) and animals sacrificed at 1 h,
2 h, and 4 h post administration of 100 mg/kg EBL-
1003 and immediately frozen and stored at -80�C. Kid-
ney samples were cut in sagittal sections using a cryo-
stat-microtome (Leica CM1900; Leica Microsystems,
Wetzlar, Germany) at a thickness of 12 mm, thaw-
mounted onto conductive indium tin oxide (ITO) glass
slides (Bruker Daltonics, Bremen, Germany), and fur-
ther stored at -80�C until matrix-assisted laser desorp-
tion ionization (MALDI)-mass spectrometry imaging
(MSI) analysis. On the day of analysis, tissue samples
were transported on dry ice and then brought to room
temperature in a vacuum desiccator. After drying for
30 min the slide was scanned on a flatbed scanner
(Epson perfection V500). Both the internal standard
solution (2.5 mg of kanamycin in 6 ml 50% MeOH)
and the MALDI matrix 2,5-dihydroxybenzoic acid
(DHB) (35 mg/ml in 50% acetonitrile, 0.2% trifluoro-
acetic acid) was applied to the slide in 6 passes using
the TM-sprayer (HTX Imaging, Chapel Hill, NC, USA)
with the following parameters: temperature 95�C, flow
rate 70 mL/min, nozzle velocity 1100 mm/min, track
spacing 2.0 mm, and N2 pressure was set to 6 psi.
MALDI-MSI experiments were performed on a MALDI
Fourier-transform ion cyclotron resonance (FTICR)
mass spectrometer (solariX 7T-2v, Bruker Daltonics).
Prior to analysis, the method was calibrated using red
phosphorus. Online calibration was performed using a
DHB matrix peak at m/z 273.0394. Data was collected
in positive ionization mode in the mass range of m/z
150−1000 and Q1 mass was set to m/z 250. Transient
size 2M and 2v was used resulting in a mass resolution
of 260,000 at m/z 369. Time-of-flight value was set to
0.600 ms and transfer optics frequency was 4 MHz.
The small laser size setting was used and spectra were
collected from 100 shots per pixel. Data were collected
at 100 mm and 30 mm lateral resolution. Fleximaging
5.0 (Bruker Daltonics) was used for data visualization
and image extraction. Following MSI analysis the
MALDI matrix was removed by submerging the slide in
95% ethanol for 30 s and then the tissue sections were
stained by haematoxylin and eosin. The H&E images
were imported to FlexImaging and overlaid with the
MSI data acquired at 30 mm lateral resolution.
www.thelancet.com Vol xx Month xx, 2021
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2.7. Rat pharmacokinetic and toxicity studies
Drug concentrations in rat kidneys were analysed in
male 16-week-old Sprague Dawley rats after subcutane-
ous administrations of EBL-1003 at doses of 25, 50 or
100 mg/kg or gentamicin at a dose of 3 mg/kg (KRKA,
Slovenia, external batch number A62904). One cohort
of animals (n = 3 per dose) was dosed once daily with
EBL-1003 or gentamicin for five consecutive days
(receiving 5 doses) and another group of animals (n = 5
per dose) was dosed once daily for 8 consecutive days
(receiving 8 doses). Animals were humanely sacrificed
two hours after injection of the last dose and drug con-
centrations in kidney tissue were measured by LC-MS/
MS analysis.

For nephrotoxic assessment of apramycin relative to
gentamicin, adult 14-18-week-old male Sprague Dawley
rats were dosed once daily for 21 days with 12.5, 25, 50,
or 100 mg/kg of subcutaneous apramycin (Biovet,
Huvepharma, Bulgaria); or 3, 10, or 30 mg/kg of subcu-
taneous gentamicin for injections (KRKA) (n = 5 ani-
mals per dose group). For pharmacokinetic analysis,
blood samples were obtained from the 100 mg/kg apra-
mycin dosing group at selected time points (15, 30, 60,
120, 240 min post injection) on day 1, day 7 and day 14
of treatment. Apramycin concentrations in plasma and
kidney tissue were analysed by LC-MS/MS. Compound
accumulation was assessed in kidney tissue after
14 days of treatment. Recovery after the regimen was
determined by monitoring of BUN, creatinine in
plasma, and KIM-1 secretion in urine up to day 35. For-
malin-fixed kidneys were stained with haematoxylin-
eosin and histopathology evaluated by light microscope.
2.8. Ethics
All aspects of this work, including housing, experimen-
tation, and disposal of animals were performed in gen-
eral accordance with the Guide for the Care and Use of
Laboratory Animals (National Academy Press, Wash-
ington, D. C., 2011). The murine efficacy studies were
performed in an AAALAC accredited ABSL2 laboratory
with animal care and use protocols approved by the
Institutional Animal Care and Use Committee (IACUC)
at Eurofins Panlabs Taiwan (Fig. 2); by the National
Committee of Animal Ethics, Ministry of Environment
and Food of Denmark (Fig. S2); or by the IACUC of the
University of Texas Medical Branch (Fig. S3). Pharma-
cokinetic and toxicology studies in mice and rats were
performed under international and local laws and poli-
cies and were approved by either the Latvian Animal
Protection Ethical Committee, Food and Veterinary Ser-
vice, Riga, Latvia (Fig. 4a, 4c-h, S5, S6, and S7) or by the
Swedish national ethical license S7-15 (Fig. 4b).
2.9. Statistics
One-way ANOVA followed by Dunnett’s comparison
test was employed to assess significance of difference
www.thelancet.com Vol xx Month xx, 2021
between efficacy treatment and control groups.
Student’s t-test was used in the comparison of drug
exposure in infected vs. non-infected mice.
2.10. Role of the funding source
The funding sources played no role in the study design,
data collection, data analysis, interpretation, writing of
the report, and the decision of paper submission.
3. Results

3.1. Genotypic antibiotic resistance of uropathogenic
isolates deposited in the National Database of
Antibiotic-Resistant Organisms (NDARO)
First, we identified the number and aetiology of clinical
isolates of uropathogenic origin deposited in the
NDARO. We found Enterobacterales to be the predomi-
nant group of Gram-negative uropathogens, with 5456
(42.1%) Klebsiella pneumoniae and 5049 (39.0%) E. coli
isolates deposited in the NDARO at the time of analysis.
Other bacterial species of urinary origin in the NDARO
were Pseudomonas aeruginosa (n = 672, 5.2%), Entero-
bacter spp. (n = 488, 3.8%), and other Enterobacterales
(collectively n = 565, 4.4%). The relative prevalence of
individual bacterial species deposited in the NDARO as
potential uropathogens resembles that of previous cUTI
surveillance studies (Table S1), apart from an apparent
over-representation of K. pneumonia in the NDARO, a
data base with an intrinsic bias of collecting data on
drug-resistance isolates only.

Second, we assessed the genotypic resistance profile
of uropathogenic Enterobacterales and P. aeruginosa iso-
lates deposited in the NDARO based on their annotated
resistance genes. The analysis of 12 956 deposited uro-
pathogenic, Gram-negative genomes revealed that geno-
typic susceptibility to apramycin was generally high
among Enterobacterales (97.4%) and P. aeruginosa
(100%) isolates (Fig. 1a). In contrast, isolates of all spe-
cies, and in particular K. pneumoniae, showed reduced
genotypic susceptibility to gentamicin, tobramycin and
amikacin. Carbapenem resistance genes were annotated
in 34.4% of uropathogenic Enterobacterales overall but
occurred with a considerably high prevalence in urinary
K. pneumoniae isolates (56.8%). A particularly low geno-
typic susceptibility to standard-of-care drugs was
observed for these carbapenem-resistant populations of
Enterobacterales and P. aeruginosa isolates. In contrast,
apramycin susceptibility was retained in the vast major-
ity of CR uropathogenic isolates of all species.
3.2. In-vitro activity of EBL-1003 against
uropathogenic isolates
Next, we investigated the in-vitro activity of apramycin in
comparison to standard-of-care drugs against a panel of
contemporary uropathogenic Enterobacterales and
5



Fig. 1. Genotypic and phenotypic antimicrobial susceptibility of uropathogenic isolates. (a) Genotypic aminoglycoside susceptibility of
11 558 urinary Gram-negative isolates deposited in the National Database of Antibiotic Resistant Organisms (NDARO). Genotypic
susceptibility was defined by the absence of resistance gene annotations known to affect the susceptibility to a specific drug. The
Enterobacterales group comprised E. coli/Shigella, Klebsiella spp., Enterobacter spp., Citrobacter freundii, Morganella morganii, Serratia
marcescens, and Providencia alcalifaciens. Genetic resistance determinants applied in the analysis are listed in Table S2. APR, apramy-
cin; AMI, amikacin; GEN, gentamicin; TOB, tobramycin; CR, carbapenem resistance. (b) Phenotypic antimicrobial susceptibility of a
panel of 57 contemporary non-susceptible uropathogenic isolates comprising E. coli (n = 20), K. pneumoniae (n = 10), K. oxytoca
(n = 5), E. cloacae (n = 5), P. mirabilis (n = 8), and P. aeruginosa (n = 9). EUCAST 2021 interpretative criteria for Enterobacterales and P.
aeruginosa were applied to the minimal inhibitory concentrations (MICs) listed in Table S4. For apramycin, epidemiologic cutoff-val-
ues (ECOFFs) of 16 mg/L for Enterobacterales and 32 mg/L for P. aeruginosa were used as interpretative criteria. MIC distributions are
plotted in Fig. S1.
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P. aeruginosa collected at the University of Zurich diag-
nostic laboratories. Broth microdilution assays with 57
isolates indicated a modal MIC of 2 mg/L
(K. pneumoniae) to 8 mg/L (P. aeruginosa) for apramycin
depending on species. The resistance phenotypes are
summarized in Fig. 1b, MIC distributions of apramycin
in comparison to amikacin, tobramycin, gentamicin,
piperacillin/tazobactam, cefotaxime, and meropenem
are plotted in Fig. S1, and the individual MICs for each
strain are summarized in Table S4. Susceptibility to
apramycin was generally high including RMTase-posi-
tive pan-aminoglycoside resistant E. coli, K. pneumoniae
and Proteus mirabilis isolates.

ESBL and resistance to third-generation cephalospor-
ins (3-GC) was of high prevalence in the tested panel of
UTI isolates with a non-susceptibility rate of 94.7% for
cefotaxime and 73.7% for piperacillin/tazobactam. Car-
bapenem resistance occurred in 24.6% of isolates as
identified by non-susceptibility to meropenem. Apramy-
cin showed the lowest resistance rate (3.5%) among the
www.thelancet.com Vol xx Month xx, 2021



Fig. 2. In-vivo efficacy of EBL-1003 (apramycin) in comparison to gentamicin in a murine cUTI model infected with the uropathogen
E. coli J96. Female C3H/HeJ mice were infected with 9.13£ 108 CFU/mouse by transurethral injection in the bladder and treated sub-
cutaneously with twice daily doses of EBL-1003 (MIC = 4 mg/mL) or gentamicin (GEN, MIC = 0.5−1 mg/mL) for three days starting 96
h post infection. (a) Dose-response multi-log CFU reduction in the kidney. One-way ANOVA and Dunnett’s test of CFU reduction rel-
ative to start of treatment resulted in p< 0.05 for doses ≥0.8 mg/kg BID of EBL-1003 or gentamicin. (b) Dose-response multi-log CFU
reduction in the bladder. One-way ANOVA and Dunnett’s test of CFU reduction relative to start of treatment resulted in p< 0.05 for
doses ≥0.2 mg/kg BID of EBL-1003 or gentamicin. Data blotted as mean § SEM CFU reduction in n = 5 mice per dose group.
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tested aminoglycosides in this panel followed by amika-
cin (19.3%). The bactericidal activity of apramycin was
also confirmed in time-kill assays with a drug-suscepti-
ble uropathogen, showing 4-8-fold lower potency than
gentamicin at neutral pH, a finding that corresponded
well to the difference in MICs between apramycin
(4 mg/L) and gentamicin (0.5-1 mg/L) (Fig. S4).
3.3. In vivo efficacy of EBL-1003 in murine urinary
tract infection models
We further assessed the drug-candidate EBL-1003 (apra-
mycin for injection) in comparison to gentamicin in a
murine model of cUTI infection with the uropathogenic
E. coli J96 strain. Here, apramycin induced a higher
than tenfold reduction in CFU counts in bladder and
kidney at a dose of 0.8 mg/kg, BID, q12h. The highest
dose of 51.2 mg/kg apramycin resulted in an almost
4-log10 reduction in CFU counts in both organs. This
dose in an 18 g mouse is predicted to result in the same
drug exposure as a dose of 3.6 mg/kg in a 70 kg human
based on allometric scaling principles [31]. The potency
of EBL-1003 was comparable to that of gentamicin,
which induced a similar log10 CFU reduction at dose of
0.8 mg/kg in this UTI infection model (Fig. 2).

The in vivo efficacy of EBL-1003 was also confirmed
in two additional infection models, one with a pan-ami-
noglycoside resistant E. coli rmtB isolate (strain
EN0591), and another with an E. coli isolate with an
MIC corresponding to the MIC90 of 8 mg/L (strain
EN0335) (Fig. S2). Additionally, apramycin proved effi-
cacious in a diabetic murine model for cUTI infection
with the fluoroquinolone-resistant uropathogen E. coli
M072. Here, the drug-candidate induced a significant
www.thelancet.com Vol xx Month xx, 2021
reduction of CFU counts in kidney and bladder for
doses of 1 mg/kg and higher (Fig. S3).
3.4. Antibacterial potency at acidic pH
The efficacious potency of EBL-1003 in the murine
cUTI model relative to gentamicin was somewhat unex-
pected considering a 4-8-fold difference in MIC for
E. coli J96. We therefore decided to further study the
susceptibility of E. coli J96 in vitro at varying culture
conditions.

Antimicrobial susceptibility testing of E. coli J96 in
cation-adjusted M€uller-Hinton broth (CAMHB) at neu-
tral pH confirmed an apramycin MIC that was 4- to 8-
fold higher than that of gentamicin and about twofold
higher than that of amikacin. Interestingly, lowering
the pH raised the MIC of all three aminoglycosides, but
not to the same extent for each. As a result, the differ-
ence in antibacterial potency between the three amino-
glycosides appeared to be less pronounced at slightly
acidic conditions (Fig. 3a). We next repeated antimicro-
bial susceptibility testing in urine instead of CAMHB
and found an even more pronounced increase in MIC
with decreasing pH for all drugs (Table S5). The
improved relative potency of apramycin at acidic pH
when compared to gentamicin and amikacin was also
observed in time-kill assays with E. coli J96 (Fig. 3d−f
and Fig. S4).

We hypothesized that pH-dependent uptake might
play a role in improved relative potency of EBL-1003 at
urinary pH. To investigate this, drug-uptake into bacte-
rial cells was quantified using a protocol that couples
bacterial fractionation to a mass spectrometry-based
readout [30]. The major amount of all aminoglycosides
7



Fig. 3. The effect of pH on the antibacterial activity, positive charge, drug uptake, and time-kill kinetics of apramycin, gentamicin, and
amikacin in the uropathogen E. coli J96. (a) MICs for E. coli J96 at pH7.4, pH6.0, and pH5.0. (b) Net positive charge of apramycin, gen-
tamicin, and amikacin when applying the Henderson-Hasselbalch equation to the pKa values of individual amines published previ-
ously. (c) Cytoplasmic uptake of apramycin, gentamicin and amikacin by E. coli J96 cells at pH 5.7, pH 6.5, and pH 7.3 quantified by
LC/MS/MS following cellular fractionation of 3.9 £ 109 cells. Data blotted as mean § SD of n = 4 replicates. (d-f) Time-kill kinetics of
apramycin (d), gentamicin (e), and amikacin (f) against E. coli J96 at a drug concentration of eight times the MIC at neutral pH: 32
mg/mL apramycin, 4 mg/mL gentamicin, and 16 mg/mL amikacin, respectively.
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was found in the cytoplasm, where the ribosomal target
is localized. While lowering the pH from 7.3 to 5.7
resulted in an 11% decrease in cytoplasmic uptake of
apramycin, the amounts of gentamicin and amikacin
were reduced by 62% and 51%, respectively (Fig. 3c).
3.5. Pharmacokinetics and nephrotoxicity of EBL-
1003 in comparison to gentamicin
The promising in-vitro and in-vivo activity of EBL-1003
motivated us to also explore the main pharmacokinetic
characteristics of this compound. The plasma PK of
apramycin in mice has previously been described to fol-
low classical aminoglycoside characteristics [31]. Renal
clearance resulted in high transient drug concentrations
in mouse urine of 302−1458 mg/mL one hour post
administration of 0.8-10 mg/kg (Fig. 4a) and was thus
comparable to gentamicin (Fig. S5c). No metabolites of
the compound were detected.

MALDI-MS imaging of apramycin in the kidneys of
treated mice confirmed the renal clearance, distribution
of apramycin across renal tissue, and decreasing apra-
mycin concentrations over time (Fig. 4b). High
resolution imaging (30 mm) and histologic analysis (HE
stain) visualized localization of the drug particularly to
the cortex at 2 h after administration when the highest
transient concentration in the medulla and papillae had
cleared. The concentration of apramycin in renal tissue
was dose-dependent and achieved higher concentrations
in infected versus non-infected animals (Fig. S5a).
Repeated twice daily administration resulted in drug
accumulation as indicated by higher apramycin concen-
trations of up to 150 mg/g kidney tissue after six doses
(Fig. S5b) when compared to just 60 mg/mL after the
first dose (Fig. S5a), and the accumulation was again
found to be more pronounced in infected mice than in
uninfected animals.

In 4- and 7-day dosing regimens of EBL-1003 versus
gentamicin in the Sprague Dawley (SD) adult rat model,
accumulation of apramycin in the kidney tissue
appeared to be considerably lower than for gentamicin
when set into relation to the administered doses
(Fig. 4c). The urinary secretion of KIM-1, a sensitive
marker for damage in proximal tubular cells [32,33], was
found to be the most sensitive of the tested biomarkers
for kidney injury (Fig. 4d), followed by 2-microglobulin,
www.thelancet.com Vol xx Month xx, 2021



Fig. 4. Drug exposure in urine and kidney and nephrotoxicity of EBL-1003 (apramycin) in comparison to gentamicin. (a) Concentration
of apramycin in mouse urine up to 6 h after administration of EBL-1003. Data blotted as mean § SD of n = 4 animals. (b) EBL-1003
distribution in mouse kidney at different time points post administration. i−iv, Ion distribution images of apramycin (m/z 540.29) in
kidney sections from control (i), 1 h (ii), 2 h (iii), and 4 h (iv) post administration. v-vi, ion distribution of apramycin (m/z 540.29) over-
laid on the H&E-stained analysed section from a kidney tissue section 1 h post administration (v) and 2 h post administration (vi)
Images were acquired at a lateral resolution of 100 mm (i−iv) and 30 mm (v, vi). Data is normalized to internal standard (kanamycin
m/z 485.24). Data are shown using a rainbow scale scaled to 0-60% of max intensity. (c) Accumulation of apramycin in rat kidneys
after repeated dosing of EBL-1003 over 5 to 8 days in comparison to gentamicin (GEN). Tissue concentration was determined 2 h
after the final dose. Data blotted as mean § SD of n = 3 rats receiving five doses each, and n = 5 rats receiving eight doses each. (d
KIM-1 concentration in rat urine after 14 days of repeat dosing. Data blotted as mean § SD of n = 5 replicates. (e) Adult rat kidney
histopathology scoring after 14 days of repeat dosing of gentamicin or EBL-1003. A score of zero is equivalent to “no finding”; 1
minimal; 2, slight; 3, moderate; 4, marked; 5, severe. (f−h) Histopathological cross sections of kidney cortex of adult rats treated
with vehicle (f), 30 mg/kg gentamicin showing marked tubular necrosis and regeneration (g), or 50 mg/kg of EBL-1003 showing
minimal tubular necrosis and regeneration (h). Tubular necrosis was characterized by cytoplasmic eosinophilia, nuclear pyknosis or
karyorrhexis, and sloughing of affected epithelium into tubular lumina with attenuation of the tubular epithelial layer. Tubular
regeneration was observed as basophilic lower epithelium with mitotic activity. Scale bar indicates 100 mm.
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clusterin, and albumin (Fig. S6). Treatment with EBL-
1003 consistently required higher dose levels than gen-
tamicin to trigger comparable nephrotoxic effects.
Changes in BUN and creatinine were less pronounced
in comparison for both EBL-1003 and gentamicin (data
not shown).

Histologic analyses by a trained pathologist showed
that a gentamicin dose of 10 mg/kg induced nephrotoxi-
city scores comparable to those induced by 50 mg/kg of
EBL-1003 (Fig. 4e-h). Rats treated with high doses of
gentamicin did not survive treatment for more than 5 to
10 days (Fig. S7). High doses of apramycin, however,
were tolerated for a full 21-day regimen followed by
rapid kidney recovery after the end of treatment
(Fig. S7).
4. Discussion
This study presents first proof-of-concept in animals of
the efficacy of drug candidate EBL-1003 in urinary tract
infections and a first quantitative assessment of its
nephrotoxicity. The efficacious potency of EBL-1003
against the uropathogen E. coli J96 was found to be sim-
ilar to that of gentamicin, whereas its nephrotoxicity in
adult rats was found to be significantly lower than that
of gentamicin. This suggests a wider therapeutic win-
dow for EBL-1003 than for gentamicin in the treatment
of urinary tract infections.

An in silico database screening indicated a very low
prevalence of apramycin resistance genes in Enterobac-
terales including difficult-to-treat CR isolates, which is
in agreement with the overall low prevalence of the aac
(3)-IV resistance gene reported previously [29]. The 3-N-
acetyltransferase AAC(3)-IV has been shown to be the
only clinically relevant resistance mechanism against
apramycin, and was recently reported to be less preva-
lent than all other aminoglycoside-inactivating enzymes
including RMTases [29].

Consequently, EBL-1003 (apramycin) demonstrated
the highest susceptibility rates in a phenotypic assess-
ment of uropathogenic bacterial isolates. The antibacte-
rial potency of apramycin in broth microdilution assays
was confirmed to be lower than that of gentamicin,
more closely resembling that of amikacin. It was there-
fore surprising to find the efficacious potency of EBL-
1003 in vivo resembling the dose-response curve of gen-
tamicin. We hypothesized that this could be either a
pharmacokinetic effect or perhaps an effect of the physi-
ologic difference between cation-adjusted M€uller-Hin-
ton broth (CAMHB) and the urethral environment. We
have previously reported the pharmacokinetic of EBL-
1003 to be similar to that of gentamicin [31]. Antimicro-
bial susceptibility testing in standard CAMHB (at neu-
tral pH), versus pH-adjusted CAMHB and urine
provided a first clue that the antibacterial activity of
EBL-1003 is less affected by changes in pH than that of
gentamicin or amikacin. It has long been known that
the antibacterial activity of aminoglycoside antibiotics is
reduced in acidic environments due to reduced drug
uptake [12,14]. We found that apramycin follows this
trend, too, but that drug uptake and susceptibility are
less affected by lower pH than is the case for gentamicin
and amikacin.

Early analyses of aminoglycoside uptake mecha-
nisms have shown that the electric potential (Dc)
across the bacterial membrane plays a crucial role in
the energy-dependent uptake of gentamicin into the
cell, and that an acidic environment lowered the
membrane potential, resulting in reduced drug
uptake [34,35]. While the mechanism behind the dif-
ferential effect of pH on EBL-1003 has yet to be eluci-
dated in detail, it is conceivable that the lower degree
of protonation of the apramycin molecule in acidic
conditions partially compensates for the reduced
membrane potential. Previous pKa studies indicate
that the amino groups of apramycin are generally
less basic than those of gentamicin, amikacin, and
tobramycin meaning that they will be protonated to a
lesser extent at the acidic urine pH [36−39]. Of par-
ticular note are the pKas of the two least basic amino
groups in apramycin (N-3 and N-400), which are only
14% protonated at physiologic pH when applying the
Henderson-Hasselbalch equation, resulting in a net
positive charge of 2.2 for apramycin at pH7.4. In
comparison, the net positive charge of gentamicin
and amikacin at pH7.4 is about twofold higher
(Fig. S3, Table S6). Thus, there is a proportionately
greater increase in the protonation level of apramycin
on going to the more acidic urine at pH6.0, and it is
presumably this greater increase in protonation levels
that allows apramycin to compensate for a decrease
in proton motive force at more acidic conditions.

As we recently reported, the pharmacokinetic param-
eters of apramycin are in line with expectations from
the classical aminoglycoside profile [31]. Rapid clearance
almost exclusively by the renal pathway, resulting in
very high drug concentrations in urine as is well known
for other aminoglycoside antibiotics, is therefore not
surprising. Apramycin concentrations appeared to be
slightly higher than gentamicin concentrations in urine
(at a dose of 10 mg/kg) but this difference alone does
not explain the extent of the higher-than-expected in-
vivo efficacy observed.

We observed a lower level of apramycin accumula-
tion in the kidneys of healthy and infected mice com-
pared to gentamicin and studied the nephrotoxicity
profile of both drugs in direct comparison. Histology
analysis, KIM-1 secretion as a biomarker for proximal
tubular cell (PTC) damage as well as survival studies
consistently supported lower nephrotoxicity of apramy-
cin than gentamicin. The uptake of this drug into PTCs
was indicated by MS imaging as well, by which apramy-
cin was confirmed to localize to the kidney cortex where
PTCs are located.
www.thelancet.com Vol xx Month xx, 2021
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This study presents an interesting case of how the in-
vitro activity of an antibacterial drug candidate may not
always be directly predictive of the efficacy in vivo, for
reasons that may go beyond the pharmacokinetic profile
of a drug candidate. Although we presented a number
of observations that are in support of our hypothesis, it
is currently based on a limited data set for only a single
bacterial pathogen, the UTI/pyelonephritis model
organisms E. coli J96. More research will be required to
probe whether the observations presented here are
transferable to other uropathogens, other antibacterial
therapeutics, and perhaps other sites of infection with
altered pH. Other sites of infection with sub-physiologic
pH may include metabolic or drug-induced acidosis in
sepsis patients [40,41], hypercapnia-driven respiratory
acidosis [42], lysosomal compartments, and the airway
surface liquid in Cystic Fibrosis patients, which has
been suggested to contribute to increased susceptibility
to lung infections, although the debate has remained
controversial [43].

The drug-candidate EBL-1003 is currently in Phase I
clinical development. Based on the promising efficacy
observed in four UTI animal models and its low nephro-
toxicity, EBL-1003 holds promise for a novel best-in-
class aminoglycoside therapeutic. EBL-1003 may be of
particular therapeutic value in complicated and amino-
glycoside-resistant infections, and for those patients
that benefit from a higher safety margin and therefore a
wider therapeutic window.
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