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Obesity is an ever-growing epidemic where tissue homeostasis is influenced by the differentiation of adipocytes
that function in lipid metabolism, endocrine and inflammatory processes. While this differentiation process has
beenwell-characterized inmice, limited data is available from human cells. Applyingmicroarray expression pro-
filing in the human SGBS pre-adipocyte cell line, we identified geneswith differential expression during differen-
tiation in combination with constraint-based modeling of metabolic pathway activity. Here we describe the
experimental design and quality controls in detail for the gene expression and related results published by
Galhardo et al. in Nucleic Acids Research 2014 associated with the data uploaded to NCBI Gene Expression
Omnibus (GSE41352).

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Experimental design, materials and methods

Cell differentiation and experimental design

Gene expression levels during adipocyte differentiation were
obtained by stimulating the SGBS pre-adipocyte cell line with a mix of
differentiation inducing compounds and collecting RNA samples at 0,
4, 8 and 12 h and on days 1, 3 and 12 of adipogenesis for hybridization
on Illumina HT-12 microarrays. Triplicate samples were prepared
following the differentiation protocol modified from [2] (exception is
12 h time point that has only duplicate samples) as shown in Table 1.
SGBS cells differentiatewithin 10–12 days as determined bymicroscop-
ic analysis (Oil red O staining). At this time point the cells are filled with
small sized lipid droplets and are most responsive, whereas at later
time points (20 days) the lipid droplets fuse and cells are less active
(personal communication, Dr. Martin Wabitsch).

Specifically, SGBS cells were cultured in Dulbecco's modified Eagle's
medium (DMEM)/Nutrient Mix F12 (Gibco) containing 8 mg/L biotin,
4 mg/L pantothenate, 0.1 mg/mg streptomycin and 100 U/mL penicillin
(OF medium) supplemented with 10% FBS in a humidified 95% air/5%
CO2 incubator. The cells were seeded into 10 cm plates, which were
coated with a solution of 10 μL/mL fibronectin and 0.05% gelatine in
phosphate-buffered saline. Confluent cells were cultured in serum-
free OF medium for 2 days followed by stimulation to differentiate
with OF media supplemented with 0.01 mg/mL human transferrin,
200 nM T3, 100 nM cortisol, 20 nM insulin, 500 μM IBMX and 100 nM
rosiglitazone (Cayman Chemicals). After day 4, the differentiating cells
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Table 1
Microarray sample description from the SGBS pre-adipocyte differentiation experiment
(GSE41578). GEO sample identifiers are presented for the 20 samples prepared, as well
as their differentiation time point and replicate number.

Sample name GSM identifier Title Time Replicate

Sample 1 GSM1015366 SGBS_day0_1 0 h 1
Sample 2 GSM1015367 SGBS_day0_2 0 h 2
Sample 3 GSM1015368 SGBS_day0_3 0 h 3
Sample 4 GSM1015369 SGBS_4h_1 4 h 1
Sample 5 GSM1015370 SGBS_4h_2 4 h 2
Sample 6 GSM1015371 SGBS_4h_3 4 h 3
Sample 7 GSM1015372 SGBS_8h_1 8 h 1
Sample 8 GSM1015373 SGBS_8h_2 8 h 2
Sample 9 GSM1015374 SGBS_8h_3 8 h 3
Sample 10 GSM1015375 SGBS_12h_1 12 h 1
Sample 11 GSM1015376 SGBS_12h_2 12 h 2
Sample 12 GSM1015377 SGBS_day1_1 Day 1 1
Sample 13 GSM1015378 SGBS_day1_2 Day 1 2
Sample 14 GSM1015379 SGBS_day1_3 Day 1 3
Sample 15 GSM1015380 SGBS_day3_1 Day 3 1
Sample 16 GSM1015381 SGBS_day3_2 Day 3 2
Sample 17 GSM1015382 SGBS_day3_3 Day 3 3
Sample 18 GSM1015383 SGBS_day12_1 Day 12 1
Sample 19 GSM1015384 SGBS_day12_2 Day 12 2
Sample 20 GSM1015385 SGBS_day12_3 Day 12 3 B

A

Fig. 1. Probe intensity plots for the 20 SGBS differentiation samples in GSE41578. A) Box
plots of raw probe intensities. B) Box plots of normalized probe intensities indicate the
absence of outliers and comparable data mean intensities.

Fig. 2.Hierarchical clustering of the SGBS differentiationmicroarray samples. The dendro-
gram shows high similarity between replicates and grouping based on differentiation time
progression.

247M. Galhardo et al. / Genomics Data 2 (2014) 246–248
were kept in OF media supplemented with 0.01 mg/mL human
transferrin, 100 nM cortisol and 20 nM insulin.

Gene expression analysis

Total RNAwas extracted using TriSure (Bioline). 1 mL of TriSure was
added per a confluent 10 cm dish to lyse the cells. RNA was extracted
with 200 μL chloroform and precipitated from the aqueous phase with
400 μL isopropanol by incubating at −20 °C overnight. The longer
isopropanol incubation allowed the precipitation of microRNAs and
other small RNAs from the same samples. The total RNA samples were
processed according to the manufacturer instructions to prepare cDNA
that was hybridized on microarrays (Turku Centre for Biotechnology,
Microarray and Sequencing Facility, Turku, Finland). Total RNA integrity
was confirmed using an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA).

Data processing and normalization

The raw data files were processed and quality controlled using the
R/Bioconductor lumi package. Raw and normalized expression values
are available via GEO (GSE41352). Control probe data was included
and used to background correct the signal values with the lumiB
“bgAdjust” method. We provide this data and sample data in a format
that is directly compatible with the lumi analysis package through our
web resource at http://systemsbiology.uni.lu/idare.html. The data was
then transformed with the “vst” method and normalized with robust
spline normalization (rsn) method. The probe intensity value distribu-
tion and sample relation are plotted in Figs. 1 and 2, with sample nam-
ing described in Table 1. No outliers were detected based on data value
range at this step and the samples clustered according to the biological
sample group. The code that can be used to download processed data
from GEO or to process them from the files that we provide through
our website is available (see Additional Data File 1).

Statistical analysis

The negative probe signals were used to filter non-expressed genes.
Only genes that had a detection p-value b 0.05 within all samples of at
least one time point were selected for statistical analysis, resulting in a
total of 12756 detected probes. The statistical analysis was performed
using the R/Bioconductor limma package. The F-test was used to assess
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significance of overall dynamic response over the differentiationwhile a
two-tailed t-test was performed to compare specific time points to day
0 undifferentiated cells. In both analyses Benjamini–Hochberg adjusted
p-value b 0.01 was considered statistically significant. In total, 1936
Refseq transcripts changed their expression more than 2-fold up or
down during the differentiation time series. The code that can be used
to filter non-expressed genes and to perform the statistical analysis is
available (see Additional Data File 1).

Several of these genes were metabolic genes, represented by 2-fold
more differentially expressed genes compared to other gene categories
with similar numbers of genes (extracted from the GO Online SQL
Environment, as of 12th of August 2013: cell projection, envelope,
locomotion and receptor activity).

Analysis of metabolic genes in Recon1

The annotation data from Recon1was obtained and checked against
the current EntrezGene and Refseq annotations (hg19 Refseq; Feb 02
2012). The reaction to gene mappings were updated with current
gene IDs (see Table S1). Withdrawn IDs and pseudogenes present a dif-
ficulty in the Recon1annotation. As therewere only few such genes (see
Table S1), they were left out from visualizations and assigned expres-
sion level 0 in modeling. LPIN1 was missing and due to its central role
in adipocytes, it was added to the triacylglycerol pathway reaction
catalyzed by Phosphatidic Acid Phosphatase (PPAP).

The expression profiles of metabolic genes (from Recon 1 [3]) or TFs
(from [4]) were clustered for visualization using self-organizing maps
(GEDI software [5]) and AutoSOME [6] as instructed in the tool docu-
mentation. The settings to reproduce the results presented in [1] were
the following: GEDI grid size was adjusted based on input gene number
and settings were tuned in order to minimize data missing grid points
(gene density map) (see Table S2). AutoSOME GUI was used following
the description in the manual without data filtering. Clustering was
done for columns (samples) on “precision”mode, with the “Fuzzy Clus-
ter Network” option and network visualization with Cytoscape [7].
Enriched pathways of the human metabolic reconstruction [3] were
determined using a hypergeometric test.

A consistent version of the generic human metabolic model Recon1
[3] was used as modeling platform for prediction of network activity
distributions. The Recon1 model was downloaded from the BiGG data-
base [8] (04.11.11) and the consistent version was derived using the
function “reduceModel” from the COBRA toolbox 2.0 [9], which resulted
in the exclusion of 1273 reactions (34%) of the initial model (Table S3).
To include the microarray data as soft-constraints for reaction activity
prediction, the probes were mapped to Entrez Gene IDs. First, continu-
ous log2 normalized expression values for the probes were discretized
into three categories: lowly expressed (−1), moderately expressed
(0) and highly expressed (1) based on the mean expression ± 0.5
∗ standard deviation cutoffs across all arrays. Then, one unique
discretized value per gene was selected taking the rounded discretized
mean of all probes for a gene. Each gene was then assigned to the
Recon1 reaction based on gene–protein-reaction associations.
Discussion

Herewe describe a time series dataset of human SGBS pre-adipocyte
differentiation. This dataset is comprised of whole transcriptome gene
expression profiling data derived using the Illumina BeadArrays. We
demonstrated differential expression that was particularly prevalent
among metabolic genes. Moreover, discretization of the metabolic
gene expression levels allowed using them as soft-constrains for meta-
bolic activitymodeling. Further, this dataset is part of a GEO SuperSeries
(GSE41578) and we have used it in combination with next-generation
sequencing data andmicroRNA expression profiles to associate putative
regulators to themetabolic genes in [1]. To further analyze thedata in an
integrative manner, we introduced genemetanodes and theweb portal
IDARE (Integrated Data Nodes or Regulation) in [1] for interactive data
exploration of various data typeswithin themetabolic network context,
available at http://systemsbiology.uni.lu/idare.html, including a de-
tailed user guide. The data could be similarly analyzed to interrogate
the regulation of other pathways. Results from the data have increased
our understanding of human adipogenesis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.07.004.
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