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ABSTRACT
Loss of large mammalian carnivores may allow smaller mesopredators to become
abundant and threaten other community members. There is considerable debate
about mesopredator release and the role that other potential factors such as land-
scape variables and human alterations to land cover lead to increased mesopredator
abundance. We used camera traps to detect four mesopredators (tayra, Eira barbara;
white-nosed coati, Nasua narica; northern raccoon, Procyon lotor; and common
opossum, Didelphis opossum) in a biological corridor in Costa Rica to estimate habi-
tat covariates that influenced the species’ detection and occurrence. We selected
these mesopredators because as semi-arboreal species they might be common nest
predators, posing a serious threat to resident and migratory songbirds. Pineapple
production had a pronounced positive effect on the detectability of tayras, while
forest cover had a negative effect on the detection of coatis. This suggests that abun-
dance might be elevated due to the availability of agricultural food resources and
foraging activities are concentrated in forest fragments and pineapple edge habitats.
Raccoon and opossum models exhibited little influence on detection from habitat
covariates. Occurrence models did not suggest any significant factors influencing site
use by nest predators, revealing that all four species are habitat generalists adapted
to co-existing in human altered landscapes. Furthermore, fragmentation and land
cover changes may predispose nesting birds, herpetofauna, and small mammals to
heightened predation risk by mesopredators in the Neotropics.

Subjects Biodiversity, Biogeography, Conservation Biology, Ecology, Zoology
Keywords Camera traps, Carnivores, Coati, Fragmentation, Mesopredator release, Neotropics,
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INTRODUCTION
Large carnivores receive substantial attention from the scientific community due to their

charismatic status, their importance as keystone species in maintaining community

structure, and their susceptibility to extirpation from habitat loss (Morrison et al., 2007).

Due to the loss of large carnivores from many systems, medium-sized carnivores and
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carnivorous marsupials (collectively known as mesopredators) have recently gained more

attention (Roemer, Gompper & Van Valkengurgh, 2009) because of their potential threat to

migratory song birds (Crooks & Soulé, 1999; Donovan et al., 1997; Elmhagen & Rushton,

2007; Garrott, White & Vanderbilt White, 1993). The most commonly cited hypothesis

for the increased abundance of mesopredators is the Mesopredator Release Hypothesis

(MRH; Crooks & Soulé, 1999), but there is much debate that remains over the process

of mesopredator release (Cove et al., 2012a; Gehrt & Clark, 2003; Elmhagen & Rushton,

2007). The MRH has support within some families, most notably the Canidae, where larger

canids drive the population dynamics and habitat associations of smaller canids (Donadio

& Buskirk, 2006; Gehrt & Clark, 2003). However, interspecific killing and interference

competition are less common among different families (Donadio & Buskirk, 2006).

The top predators in Central America are jaguars (Panthera onca), pumas (Puma

concolor), and, coyotes (Canis latrans; Cove et al., 2012b; Wainwright, 2007). All three

predators partake in interspecific killing and may affect the distribution and habitat

associations of smaller mesopredators (Donadio & Buskirk, 2006; Palomares & Caro, 1999).

The large cats are often hunted due to cattle depredation and are rare. Coyotes are recent

invaders and, because they prefer disturbed open habitat, are seemingly rare in many intact

forested areas. Mesopredators are common in Central America which may result from the

rarity of the top predators, thus, supporting the MRH and a “top down” view of their re-

lease. Another plausible explanation is that mesopredators are better adapted to coexisting

with humans in disturbed habitats and, as omnivores, are able to supplement their diets

with agricultural resources via a “bottom up” release (Elmhagen & Rushton, 2007; Garrott,

White & Vanderbilt White, 1993; Roemer, Gompper & Van Valkengurgh, 2009).

Several studies in the United States attempted to model relative abundance of

mesopredators as functions of landscape and local habitat variables and predict predation

risk for forest-nesting birds (Crooks & Soulé, 1999; Dijack & Thompson, 2000; Donovan et

al., 1997). These studies determined that mesopredator abundance, activities, and hence

nest predation increased in fragmented areas and within forest edge habitats, particularly

surrounding agricultural lands. However, no similar studies have examined mesopredator

occurrence in Central America.

This study integrated data collected from camera traps and the occupancy modeling

framework developed by MacKenzie et al. (2005) and MacKenzie et al. (2006) in order

to examine habitat associations of four common mesopredators from three different

families in a fragmented biological corridor in Costa Rica. We selected tayra (Eira barbara),

white-nosed coati (Nasua narica), northern raccoon (Procyon lotor), and common

opossum (Didelphis opossum) as the species of interest because they are common, adapted

to human presence, and are important nest predators due to their semi-arboreal nature.

METHODS
Study site
The San Juan–La Selva Biological Corridor is the northernmost portion of the Mesoamer-

ican Biological Corridor in Costa Rica linking the Indio-Maı́z Biological Reserve of
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Figure 1 Map of camera trap survey locations and the forest cover (including primary, secondary, and
tree plantations) within the San Juan – La Selva Biological Corridor and its relative location in Costa
Rica. Sites located outside of the corridor were located in isolated forest fragments except the furthest
south, which was located in Braulio Carillo National Park. The inset diagram shows the relationship that
we examined of the effects of land cover change on nest predators and the apparent relationships to large
predators and Neotropical birds.

southeastern Nicaragua to the Braulio Carrillo National Park of central Costa Rica. At

its northern extent, the corridor also contains the proposed Maquenque National Park,

which is the least fragmented area in the region. Although deforestation of primary

forest still occurs within the corridor, government incentives (Forestry Law no. 7575) have

encouraged reforestation and tree plantations (Morse et al., 2009). Most of the land within

the corridor is privately owned with some reserves and lodges established to mitigate small

scale agriculture, yet large scale pineapple plantations and cattle operations continue to

expand in the corridor and surrounding landscape, particularly in the southern region

(Fagen et al., 2013). We selected 16 survey sites to be representative of the land cover in

and around the corridor; selection was loosely based on accessibility, forest patch size, and

coverage along the entire corridor (Fig. 1). All forest sites were located on eco-lodge forest

reserves, tree plantations, cattle ranches and agricultural plantations. In an effort to ensure

independence among forest sites, we selected sites a minimum of 2 km apart.

Camera trapping
We surveyed fourteen forest sites over two field seasons (July–August 2009 and

June–August 2010), while two additional sites were surveyed from October–November

2009. Information was lost from one of these sites and was excluded from further analysis.
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To avoid the pitfalls of using a single camera as a defined “site” representative of an entire

forest (Efford & Dawson, 2012), we decided to aggregate several traps in arrays at each

site. Arrays consisted of a central camera station and three additional camera stations

surrounding the central station spaced at >250 m apart, for a total of four cameras in

the 2009 surveys. Cameras were arranged in an array of six spaced >250 m apart in the

2010 surveys. Previous research suggested that although this resulted in variable trapnights

among sites, there were no strong differences in detection as result of the varying numbers

of cameras (Cove et al., 2013). Each camera station consisted of a remotely triggered

infrared camera (Scout Guard SG550; HCO Outdoor Products, Norcross, GA, USA) or

a remotely triggered flash camera (Stealth Cam Sniper Pro Camera 57983; Stealth Cam,

LLC, Grand Prairie, TX, USA) secured to a sturdy tree 0.25–0.5 m off the ground. The

camera was directed at an opposing tree, 3–4 m away, baited with a secured can of sardines

1–1.5 m off the ground. Although other camera trap studies set cameras along human

trails and roads (Tobler et al., 2008), we avoided areas of high human use due to threat of

theft focusing on animal game trails. Trail cameras were left at each site for 24–38 days and

checked weekly for rebaiting and battery changes.

All of our research was in accordance with the guidelines established by The American

Society of Mammalogists (Gannon & Sikes, 2007). The camera trapping protocol was

approved by the University of Central Missouri Institutional Animal Care and Use

Committee (IACUC–Permit No. 10-3202).

Habitat variables and analysis
Using ArcGIS 10.0 (ESRI, Redlands, CA, USA), we overlaid camera trap locations onto

a digitized land use-land cover map. We created a 1-km radius buffer at each site using

a central point among the cameras to measure landscape covariates. Habitat covariate

selection was based on known ecology of the mesopredators and factors that might affect

their detection and occurrence (Gompper, 1995; Lotze & Anderson, 1979; McManus, 1974;

Presley, 2000; Wainwright, 2007).

We measured the distance to the nearest village, creating an index of human presence

and/or disturbance. Forest cover is the percentage of buffer covered by primary and

secondary forest and tree plantations. Because pineapple plantations are prevalent in the

region, we used a binomial covariate to indicate this land use within each site buffer. The

proposed Maquenque National Park is also within the northern extent of the corridor and

we used a similar binomial covariate to denote sites as within or outside the proposed park

boundaries. The final covariate was the total number of patches within each site buffer,

which is an index of habitat heterogeneity and habitat fragmentation. We standardized

all continuous covariates to z scores for analysis, but performed no other transformations

(Long et al., 2011).

We combined all mesopredator photos from both field seasons to organize and manage

binary detection histories (1 = detected, 0 = not detected). We partitioned detection

histories into five day blocks for a maximum total of seven repeat surveys per species

per site. We used the detection histories and habitat covariates within a single-season
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Table 1 A priori hypotheses regarding detection. Descriptions and expected direction of a priori detection (p) models for mesopredators from
camera trap surveys in the San Juan - La Selva Biological Corridor, Costa Rica, 2009–2010.

Hypothesis Model Model structure Expected result

No habitat covariates affect detection p(.) β0 –

Mesopredator abundance and foraging increase in close proximity to
villages so as distance to village increases detection decreases

p(dist) β0 + β1(dist) β1 < 0

Habitat heterogeneity and fragmentation increase forest edge and
lead to higher foraging and detection

p(tnp) β0 + β1(tnp) β1 > 0

Pineapple production provides food resources and increases
abundance and detection

p(pina) β0 + β1(pina) β1 > 0

Increasing forest cover will have a negative effect on detection
because activities will be less concentrated

p(for) β0 + β1(for) β1 < 0

Distance to village, habitat heterogeneity, pineapple production, and
forest cover all affect detection

p(global) β0 + β1(dist) + β2(tnp)

+ β3(pina) + β4(for)
β1 < 0,β2 > 0,
β3 > 0,β4 < 0

occupancy model in program PRESENCE 2.4 (Hines, 2009). Although the data were

collected over two field seasons, we did not resample any sites. This analysis refers to Ψ

as “site use” as opposed to “occurrence”, so grouping of the field seasons does not violate

any of the assumptions of the modeling process (MacKenzie et al., 2005).

Given our data, we developed six relatively simple a priori models for each species

(Table 1), including a global model, to estimate the influence of habitat covariates on de-

tection probabilities in the individual mesopredator detection models. Although detection

probability is often considered a nuisance parameter, there is an apparent relationship

between detection probability and local abundance because as local abundance increases

the probability of detecting a species will increase making it a parameter of interest in our

study (O’Connell & Bailey, 2011). We did not use a seasonal covariate because all surveys

were conducted during the rainy season. We then used the covariates that contained high

model support and had strong effects on detection as a constant covariate set in the

subsequent occurrence models (Long et al., 2011). For the occurrence models, we used

seven a priori models (Table 2).

We determined the best approximating models based on the Akaike Information

Criterion corrected for small sample size (AICc) and Akaike weights (ωi). To evaluate

model fit, we performed 10,000 simulated parametric bootstraps for the global model (all

covariates) to determine if there was evidence of overdispersion (Burnham & Anderson,

2002). We considered all models contained within the 90% CI (


ωi > 0.90) to have

substantial support as the top-ranking models (Burnham & Anderson, 2002).

RESULTS
From 2,286 camera trapnights, we obtained 23 independent photographs of tayras (10.06

photos/1000 trapnights), 33 photos of coati (14.44/1000 trapnights), 7 photos of raccoons

(3.06/1000 trapnights), and 23 photos of opossums (10.06/1000 trapnights). At least one

nest predator species was detected at every site, but only one site had detections of all four
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Table 2 A priori hypotheses regarding occurrence. Descriptions and expected direction of a priori occurrence (Ψ) models for mesopredators from
camera trap surveys in the San Juan - La Selva Biological Corridor, Costa Rica, 2009–2010.

Hypothesis Model Model structure Expected result

No habitat effects on occurrence Ψ(.) β0 –

Negative effect on occurrence within Maquenque National Park Ψ(Maq) β0 + β1(Maq) β1 < 0

Negative effect on occurrence as distance to village increases Ψ(dist) β0 + β1(dist) β1 < 0

Positive effect on occurrence as habitat heterogeneity increases Ψ(tnp) β0 + β1(tnp) β1 > 0

Negative effect on occurrence as forest cover increases and provides
habitat for larger predators

Ψ(for) β0 + β1(for) β1 < 0

Positive effect on occurrence with pineapple production present Ψ(pina) β0 + β1(pina) β1 > 0

Maquenque National Park, distance to village, habitat heterogeneity,
forest cover, and pineapple production all affect occurrence

Ψ(global) β0 + β1(Maq) + β2(dist) +

β3(tnp) + β4(for) + β5(pina)
β1 < 0,β2 < 0,
β3 > 0,β4 > 0, β5 > 0

species. There was no evidence of overdispersion and we evaluated all models by their AICc

and their Akaike weights.

Detection covariates affected each species differently (Table 3). Pineapple production

had high model support (


ωi = 0.75) and a strong positive influence on detection

probability for tayras and was used as the constant detection covariate in subsequent

occurrence models. Forest cover had high model support (


ωi = 0.67) and a negative

influence on detection probabilities for coatis and was used as the constant detection

covariate in coati occurrence models. Raccoon and opossum models contained minimal

support for habitat covariates influencing detection and we used a constant detection

probability in the eventual occurrence models.

From the occurrence models, no covariates that we examined explained significant

changes in mesopredator occurrence at the study sites (Table 4). The top-ranking models

for tayra and raccoon suggested a negative influence of forest cover on both species’

occurrence, but were highly variable. The constant occurrence model was top-ranking

for both coati and opossum.

DISCUSSION
No large cats were photographed during the surveys and only a single coyote was

photographed at one site (Cove et al., 2013). Local interviews and cattle depredation were

evidence that large cats occur in the corridor; however, the sparse records suggest rarity

and precluded the use of these presence/absence data as model covariates. Therefore,

we were unable to assess the impact and influence of these top predators on the four

mesopredator species through trophic interactions, but the observed detection rates in our

surveys are higher than other Neotropical studies with intact top predator communities

(Tobler et al., 2008).

Landscape changes did affect detection parameters for the tayra and coati. Because

camera traps operate 24-hr per day, heightened detection corresponds with increased local

abundance or increased localized activity of mesopredators as influenced by landscape

covariates. Pineapple production had a strong positive influence on the detection
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Table 3 Results for detection. Selected top models and untransformed coefficients of habitat variable effects on detection probability (p) for
mesopredators from camera trap surveys in the San Juan - La Selva Biological Corridor, Costa Rica, 2009–2010.

Untransformed coefficients of covariates (SE)

Species model Δi ωi K Intercept Pineapple Total number of patches Distance Forest

Tayra

p(pina) 0.00 0.611 3 −2.695 (0.662) 2.211 (0.743) – – –

p(global) 2.97 0.138 6 −3.646 (0.837) 2.626 (0.918) 1.016 (0.423) 0.659 (0.338) −0.303 (0.502)

p(tnp) 3.38 0.113 3 −1.311 (0.465) – 0.701 (0.368) – –

p(.) 3.89 0.087 2 −0.807 (0.355) – – – –

Coati

p(for) 0.00 0.667 3 −0.214 (0.291) – – – −0.784 (0.330)

p(.) 2.93 0.154 2 −0.329 (0.279) – – – –

p(pina) 4.26 0.079 3 −0.705 (0.409) 0.763 (0.567) – – –

p(dist) 4.65 0.065 3 −0.313 (0.279) – – −0.322 (0.271) –

Raccoon

p(.) 0.00 0.383 2 −1.157 (0.599) – – – –

p(tnp) 1.15 0.216 3 −1.793 (0.805) – 0.691 (0.471) – –

p(dist) 2.15 0.131 3 −1.035 (0.570) – – 0.819 (0.747) –

p(pina) 2.46 0.112 3 −0.444 (0.915) −1.007 (1.144) – – –

p(for) 2.55 0.107 3 −2.494 (1.176) – – – −0.780 (0.637)

Opossum

p(.) 0.00 0.545 2 −0.621 (0.324) – – – –

p(pina) 3.08 0.117 3 −0.543 (0.402) −0.207 (0.660) – – –

p(for) 3.12 0.115 3 −0.612 (0.324) – – – 0.080 (0.339)

p(tnp) 3.17 0.112 3 −0.628 (0.335) – −0.025 (0.291) – –

p(dist) 3.17 0.112 3 −0.621 (0.323) – – 0.039 (0.417) –

Notes.
Models presented make up the 95% confidence set, where Δi is AICc difference, ωi is the Akaike weight, and K is the number of model parameters. Model covariates
were used as a constant detection set for occurrence models for species that did not exhibit the p(.) as the top ranking model (tayra and coati).
Covariates: pina, the binomial term to identify large-scale pineapple production within the site buffer; tnp, the total number of patches within the buffer; dist, the linear
distance (km) to the nearest village; for, the total percent of forest cover (primary, secondary, and tree plantations) within the site buffer.

probability of the tayra. This is most likely an effect of the additional food resources

from pineapple production leading to higher local tayra abundance in pineapple-forest

edge habitats. The fruits not only provide direct food resources to tayras but other food

resources may be indirectly provided from pineapple pests including small rodents, insects,

and nesting birds (Presley, 2000). Furthermore this relationship may also be a consequence

of concentrated foraging activities within smaller forest patches that commonly occur

in the fragmented landscapes associated with pineapple plantations (Cove et al., 2013).

Pineapple production also had a positive influence on coati detection, but the effect

was less pronounced. Specifically, this suggests that coati abundance is also influenced

by agricultural food resources, similar to those associated with tayras, provided from

pineapple production. The effect was opposite for raccoons and opossums suggesting that

pineapple production has a negative but weak influence on their detection. This result may

Cove et al. (2014), PeerJ, DOI 10.7717/peerj.464 7/11

https://peerj.com
http://dx.doi.org/10.7717/peerj.464


Table 4 Results for occurrence. Selected top models and untransformed coefficients of habitat variable effects on occurrence models (Ψ) for
mesopredators from camera trap surveys in the San Juan - La Selva Biological Corridor, Costa Rica, 2009–2010.

Untransformed coefficients of covariates (SE)

Species
model

Δi ωi K Intercept Forest Maquenque Total number of
patches

Pineapples Distance

Tayra

Ψ(for) 0.00 0.432 4 1.568 (2.074) −2.874 (2.709) – – – –

Ψ(Maq) 1.96 0.162 4 1.820 (1.333) – −2.875 (1.849) – – –

Ψ(tnp) 2.14 0.148 4 1.485 (1.365) – – 1.507 (1.478) – –

Ψ(pina) 2.83 0.105 4 −0.464 (1.393) – – – 2.313 (1.955) –

Ψ(dist) 3.35 0.081 4 1.905 (1.651) – – – – 0.393 (1.144)

Coati

Ψ(.) 0.00 0.487 3 0.532 (0.569) – – – – –

Ψ(for) 2.63 0.131 4 0.679 (0.676) −0.678 (0.673) – – – –

Ψ(Maq) 2.77 0.122 4 0.055 (0.727) – 1.247 (1.307) – – –

Ψ(tnp) 2.95 0.111 4 0.528 (0.579) – – 0.593 (0.667) – –

Ψ(dist) 3.74 0.075 4 0.544 (0.577) – – – – 0.162 (0.576)

Raccoon

Ψ(for) 0.00 0.623 3 −1.940 (1.218) −2.052 (1.203) – – – –

Ψ(.) 2.52 0.177 2 −1.129 (0.729) – – – – –

Ψ(pina) 4.64 0.061 3 −1.845 (1.115) – – – 1.444 (1.458) –

Ψ(tnp) 4.69 0.060 3 −1.270 (0.789) – – 0.699 (0.718) – –

Opossum

Ψ(.) 0.00 0.456 2 0.276 (0.569) – – – – –

Ψ(tnp) 2.11 0.159 3 0.287 (0.594) – – −0.600 (0.604) – –

Ψ(for) 3.07 0.098 3 0.278 (0.573) −0.198 (0.600) – – – –

Ψ(Maq) 3.08 0.098 3 0.118 (0.757) – 0.349 (1.133) – – –

Ψ(pina) 3.13 0.096 3 0.381 (0.743) – – – −0.258 (1.138) –

Notes.
Models presented make up the 90% confidence set, where Δi is AICc difference, ωi is the Akaike weight, and K is the number of model parameters. Coefficients are in
logit space and relate to standardized covariates.
Covariates: for, the total percent of forest cover (primary, secondary, and tree plantations) within the site buffer; Maq, the binomial term for sites within the proposed
Maquenque National Park; tnp, the total number of patches within the buffer; pina, the binomial term to identify large-scale pineapple production within the site buffer;
dist, the linear distance (km) to the nearest village.

be an artifact of limited raccoon detections or avoidance of areas of high use by tayras and

coatis.

Forest cover had a negative effect on detection probability of coatis. Such an effect

suggests that coatis, which occur in large groups, concentrate their foraging activities in

small forest patches, making them more easily detectable. This relationship was similar

for the detection of tayras and raccoons in the study area. The consequence of such

concentrated foraging activities in small forest patches and forest edges has also been

shown to be responsible for exposing nesting song birds to increased predation risk

(Cove, Niva & Jackson, 2012; Dijack & Thompson, 2000; Donovan et al., 1997). However,

none of the habitat covariates examined in this analysis were significant predictors of

mesopredator occurrence. Although the coefficients for habitat generally agreed with a
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priori expectations that increased forest cover would have a negative but variable influence

on mesopredator occurrence, lack of significant covariate effects suggests that the broad

range of habitats used by these predators could have drastic consequences for nesting song

birds, small mammals, and herpetofauna if fragmentation and forest loss continues.

Although low detections of large predators made it difficult to provide direct support for

the MRH, the rarity of these species most likely plays a role in the distribution and habitat

use by mesopredators. More importantly, the compounding factors of increasing human

presence, decreasing forest cover, and increasing pineapple production play an important

role in mesopredator release and potentially heightened local abundance. Further sampling

of mesopredator communities, as well as large predator-specific surveys and avian point

count surveys, will elucidate trophic interactions and the risk of predation to migratory

and resident song birds.
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