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SUMMARY

Central to plant microRNA (miRNA) biology is the identification of functional miRNA-target interactions

(MTIs). However, the complementarity basis of bioinformatic target prediction results in mostly false posi-

tives, and the degree of complementarity does not equate with regulation. Here, we develop a bioinformatic

workflow named TRUEE (Targets Ranked Using Experimental Evidence) that ranks MTIs on the extent to

which they are subjected to miRNA-mediated cleavage. It sorts predicted targets into high (HE) and low evi-

dence (LE) groupings based on the frequency and strength of miRNA-guided cleavage degradome signals

across multiple degradome experiments. From this, each target is assigned a numerical value, termed a Cat-

egory Score, ranking the extent to which it is subjected to miRNA-mediated cleavage. As a proof-of-

concept, the 428 Arabidopsis miRNAs annotated in miRBase were processed through the TRUEE pipeline to

determine the miRNA ‘targetome’. The majority of high-ranking Category Score targets corresponded to

highly conserved MTIs, validating the workflow. Very few Arabidopsis-specific, Brassicaceae-specific, or

Conserved-passenger miRNAs had HE targets with high Category Scores. In total, only several hundred

MTIs were found to have Category Scores characteristic of currently known physiologically significance

MTIs. Although non-exhaustive, clearly the number of functional MTIs is much narrower than many studies

claim. Therefore, using TRUEE to numerically rank targets directly on experimental evidence has given

insights into the scope of the functional miRNA targetome of Arabidopsis.

Keywords: microRNA, microRNA-target interaction, bioinformatics, degradome, target prediction, Ara-

bidopsis thaliana.

INTRODUCTION

MicroRNAs (miRNAs) are short non-coding RNAs of

approximately 20–22 nt in length, which guide the RNA

Induced Silencing Complex to repress target mRNAs via

transcript cleavage and/or translational repression. Given

that a high degree of complementarity between a plant

miRNA-target pair is necessary for a strong repression (Liu

et al., 2014; Schwab et al., 2005), numerous bioinformatic

target prediction programs based on mismatch scoring

schemas have been developed (Bonnet et al., 2010; Dai &

Zhao, 2011; Sun et al., 2011). These scoring schemas con-

sider the positions of mismatches, weightings for different

mismatches (G:U pairs) and potential miRNA-binding site

accessibility (Allen et al., 2005; Bonnet et al., 2010; Dai &

Zhao, 2011; Mallory et al., 2004; Schwab et al., 2005; Sun

et al., 2011). As further studies experimentally identified

miRNA-target pairs with complementarity that would not

be detected by these initial scoring schemas (Brousse et

al., 2014; Zheng et al., 2012), this has justified relaxing

complementarity requirements of the bioinformatic predic-

tion of miRNA targets. For example, in an updated version

of the most widely cited miRNA-target prediction tool,

psRNATarget (version 2), the default parameter relating to

complementarity (expectation score) was relaxed from 3 to

5 (Dai et al., 2018). Although this improved the prediction

(or recall) of 143 of 147 experimentally validated Arabidop-

sis targets, there were almost 10 000 predicted targets in

the bioinformatic output (Dai et al., 2018). Therefore, the

output is overwhelmed with likely false positives.

It has also become evident that miRNA-target comple-

mentarity does not correlate with a functional miRNA-

mediated regulatory outcome. For example, of a family of

seven Arabidopsis GAMYB-like genes that contained analo-

gous conserved miR159-binding sites, only two genes were

found to be strongly miR159-regulated (Allen et al., 2007;

Zheng et al., 2017). This, with the myriad of potential false

positives, and the inability to rank targets on complementar-

ity, highlights the limitations of identifying the cohort of

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License,
which permits use, distribution and reproduction in any medium, provided the original work is properly cited and

is not used for commercial purposes.

1476

The Plant Journal (2022) 110, 1476–1492 doi: 10.1111/tpj.15751

https://orcid.org/0000-0002-6668-1326
https://orcid.org/0000-0002-6668-1326
https://orcid.org/0000-0002-6668-1326
mailto:tony.millar@anu.edu.au
http://creativecommons.org/licenses/by-nc/4.0/


functional plant miRNA-target genes using bioinformatics

alone, and the need to develop a miRNA-target prediction

scoring schema independent of miRNA-target binding site

complementarity.

Degradome sequencing has been used to complement

bioinformatics approaches experimentally (Addo-Quaye

et al., 2008; German et al., 2008). As miRNA guides the tar-

get cleavage precisely between the 10th and 11th nucleo-

tide of the miRNA-binding site, sequencing and then

mapping of the 50 ends of degraded transcripts can accu-

rately identify miRNA-guided cleavage products. Mapping

of these degradome reads to individual transcripts form

target-plots (T-plots), in which the relative abundance of

reads mapping precisely to the cleavage site of a potential

miRNA target (cleavage tag) can be compared with all other

reads on the transcript (Addo-Quaye et al., 2008; German et

al., 2008). Based on the frequency of the cleavage tag rela-

tive to the other reads in a transcript, these T-plots can then

be placed into four categories [Category (Cat) 1–4], indicat-
ing the most confident (Cat 1) to least confidence (Cat 4) of

a target being subjected to miRNA-guided cleavage (Addo-

Quaye et al., 2008). Most canonical miRNA targets are Cat 1

targets (the cleavage tag being the most abundant read),

and this is considered a hallmark of a validated target (Ger-

man et al., 2008). There has now been extensive degra-

dome analysis done in many plant species, and these data

are available to determine which predicted miRNA targets

have degradome signatures. For example, the Whole-

degradome-based Plant MicroRNA-target Interaction Analy-

sis Server (WPMIAS) makes data from numerous publicly

available degradome libraries across diverse species easily

accessible (Fei et al., 2020). However, detection of a degra-

dome signal will be reliant on isolating RNA from a tissue

in which both the miRNA and target mRNA are present, so

any one single degradome library will only reflect miRNA-

target interactions (MTIs) in these tissues, or in plants

grown under those specific conditions. Moreover, degra-

dome analysis only detects miRNA-mediated cleavage, but

not other mechanisms, such as translational repression.

Furthermore, as this is a biochemical signature, detection

of a degradome signature does not necessarily equate to a

MTI of physiological significance, nor can there be an arbi-

trary cut-off implying that any one particular degradome

signature defines that gene as a ‘real’ miRNA target.

Adding to this uncertainty, is the identification of bona

fide miRNAs themselves. Currently, miRBase is the go-to

repository of experimentally identified miRNAs, with the

latest release (v22) detailing 1000s of different miRNA

sequences that have been reported across many diverse

plant species (Kozomara et al., 2019). However, many pub-

lications have queried the quality and validity of these

miRNA entries, which are mostly user-submitted, and have

suggested the greater majority of entries are potentially

false positives (Axtell & Meyers, 2018; Taylor et al., 2014).

Identifying high evidence (HE) miRNA targets for these

miRNAs would help determine whether these miRNAs are

genuine or potentially mis-annotated small RNAs (sRNAs).

This study develops a bioinformatic workflow that

attempts to address the limitations outlined above. Long

lists of putative targets from complementary-based predic-

tions (psRNATarget), are filtered using an online server

(WPMIAS) in which multiple degradome libraries can be

searched for corresponding cleavage tags. The workflow

then assesses the frequency and strength of the degra-

dome signatures for each predicted target, which can then

be arbitrarily sorted into HE and LE targets, as well as the

non-arbitrarily ranking score based on the frequency and

strength of degradome signatures for each predicted tar-

get. Using Arabidopsis as a proof-of-concept, this work-

flow was applied to gain a better understanding of the

functional scope of a plant miRNome, by obtaining an

accurate estimate of the total number of MTIs that have

degradome signatures characteristic of known physiologi-

cally significant MTIs (i.e. MTIs that when manipulated can

alter a trait). We call the collection of targets the ‘miRNA

targetome’, which estimates the number of MTIs that have

degradome characteristics of physiologically relevant

MTIs.

RESULTS

Bioinformatic workflow to facilitate the identification of

HE miRNA targets

A workflow was developed that sorts predicted miRNA tar-

gets into groups of either HE or low evidence (LE) targets,

and then ranks the HE targets on the strength and fre-

quency of their T-plots across degradome experiments.

This workflow has been designated the ‘Targets Ranked

Using Experimental Evidence’ (TRUEE), and combines

miRBase to retrieve miRNA sequences (Kozomara

et al., 2019), psRNATarget to predict miRNA targets (Dai

et al., 2018), which are then subsequently used as input

into WPMIAS (Fei et al., 2020) to retrieve all corresponding

degradome data (Figure 1). Both psRNATarget and

WPMIAS were chosen, as they are highly accessible via

user-friendly webservers, and for psRNATarget, it is the

most used and cited miRNA target prediction tool. Parame-

ters are then implemented, filtering the degradome data to

distinguish HE from LE targets of miRNA-mediated regula-

tion, and then a simple formula for ranking HE targets.

Below is the description of the input parameters and the

rationale for developing the TRUEE workflow.

An experimentally validated set of Arabidopsis miRNA

targets to benchmark TRUEE parameters

To develop this workflow, the input parameters were

benchmarked against a compiled set of 106 experimentally

validated sRNA targets from Arabidopsis based on the
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literature that we have termed the ‘Validated Arabidopsis

Target (VAT)’ set. It is composed of targets of 28 miRNA

families and one trans-acting siRNA (tasiRNA) family (the

TAS3 phasing products, tasiARFs) and includes both

widely and narrowly conserved MTIs (Table S1). To qualify

as a validated target in this set, at least two independent

lines of evidence from commonly used experimental

approaches to identifying miRNA targets were required.

This includes genetic evidence (altered mRNA/protein

expression in mirna loss-of-function or miRNA overexpres-

sion plants, or expression of a miRNA-resistant target

gene) or molecular evidence (degradome analysis, 50-RACE
cleavage assays or correlation of miRNA/target mRNA

levels). The requirement of two independent lines of evi-

dence to qualify for this list has resulted in a lower number

of genes than other comparable lists in the literature (Dai

et al., 2018; Folkes et al., 2012; Ma et al., 2018; Srivastava

et al., 2014; Zheng et al., 2012).

Input parameters of TRUEE workflow

There are four parameters to consider: (a) psRNATarget

Expectation Score; (b) Cleavage Tag Abundance (the num-

ber of degradome sequencing reads that coincide with the

predicted cleavage site); (c) Target Category (correspond-

ing to the Cat 1–4 categories of the T-Plots); and (d) Library

% Cut-off [corresponding to the percentage of degradome

libraries in which a predicted target occurs with the

defined (a), (b), and (c) parameters]. The optimal cut-offs

for these parameters were determined via analysis of 61

Arabidopsis degradome libraries available on WPMIAS (Fei

et al., 2020), from which identified targets were bench-

marked against the VAT. The aim was to maximize the

number of VAT targets identified, while minimizing addi-

tional targets that may represent either newly discovered

targets or false positives (henceforth, potential targets).

(a) psRNATarget expectation score. The first parameter

considered for TRUEE was the psRNATarget expectation

score, a penalty score weighted on the number and posi-

tion of mismatches between an miRNA and a predicted tar-

get gene (Dai et al., 2018). Using an expectation score too

low will result in false negatives, while an expectation

score too high will generate a multitude of false positives.

The most recent version of psRNATarget (v2) has a default

expectation score of 5, as some canonical target genes

have expectation scores higher than 4 (Dai et al., 2018). As

such, the expectation scores that were analysed ranged

from 0 to 5. Using an expectation score of ≤5.0 predicted

2977 targets for the 29 miRNA/siRNA families, a >28-fold
increase compared with the 106 targets of the VAT set.

This predicted/validated target fold difference decreased

with decreasing expectation score, although fewer of the

VAT set were captured (Figure 2a). From the analysis, an

expectation score of ≤3 appears optimal, resulting in a

1) miRBase - retrieve miRNA 
sequences

3) WPMIAS  - retrieve T-plots 
for predicted targets across 

degradome libraries

2) psRNATarget - Predict miRNA 
targets

Score predicted target 
based on strength and 

frequency of target 
degradome data

Category Score

Weighted score based on 
Strength & Frequency to rank 

indication as a miRNA target

Low Evidence 
(LE) Target

No

No

Strength

Target Category; must 
be  Cat 1 or Cat 2 target 
in the degradome library

Cleavage Tag Abundance 
must be ≥ 5 TP10M* in a 

degradome library

Frequency
Targets (satisfying 

parameters a & b) must 
occur in ≥ 20% of all 

degradome experiments

d)

High Evidence 
(HE) Target

Yes

Yes

Retrieve predicted targets 
that satisfy psRNATarget

expectation score  

In-house R scriptWeb-based tools

No

5 1 + 2

C1 = number of Cat 1 targets

C2 = number of Cat 2 targets

b = number of degradome 
experiments analysed

b)

c)

a)

Figure 1. Workflow and parameters of TRUEE. Pur-

ple boxes indicate data retrieved from external

web-based tools.

(a)–(d) Blue boxes indicate parameters, which were

used to filter for HE targets and the Category Score

(Cat Score) scoring schema. miRNAs were retrieved

from miRBase (v22) (Kozomara et al., 2019). Poten-

tial miRNA target cleavage sites were then pre-

dicted using psRNATarget (Dai et al., 2018) and

predicted targets with an expectation score ≤3.0 or

≤5.0 were used for further analysis. Degradome

data for these cleavage sites were then retrieved

using WPMIAS (Fei et al., 2020). *TP10M, Transcript

Per 10 Million.
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relatively low-fold difference (3.5-fold), yet still included a

large percentage of targets from the VAT set (89%) (Fig-

ure 2a). In comparison, using an expectation score any

higher than 3 disproportionally increased the number of

predicted targets captured (i.e. potential false positives),

whereas an expectation score ≤2.5 failed to identify many

of the VAT set (i.e. false negatives) (Figure 2b). For miRNAs

with experimentally validated targets with expectation

scores >3 (miR167, miR398, and miR408), the expectation

score threshold was increased to ≤5.

Cleavage tag abundance. This parameter represents the

number of cleavage tag reads for any given RNA, with the

greater the read, the more confidence for miRNA-mediated

regulation. Therefore, targets with a low Cleavage Tag

Abundance may represent fortuitous degradation events

coinciding with the predicted cleavage site and thus repre-

sent a false positive. To determine an optimal value,

TRUEE analysis was performed using a Cleavage Tag

Abundance of ≥1, ≥5, and ≥10 when normalized to tran-

script per 10 million (TP10M), values that have been used

in previous degradome studies (Jeong et al., 2013; Thody

et al., 2020). This indicates that the degradome library for

an RNA is only considered in analysis if the corresponding

cleavage tag has at least 1, 5, or 10 TP10M, respectively.

For this analysis, TRUEE was performed with variable

Library % Cut-offs and Target Categories.

A Cleavage Tag Abundance of ≥1 TP10M identified the

greatest number of the VAT set (Figure 3a–c). At a Library

% Cut-off of 10%, nearly all of the VAT set was identified

(97%). However, the number of potential targets was

almost double the number of the VAT set (Figure 3a). Fur-

thermore, across all Library % Cut-offs, the number of

potential targets was many fold greater compared to when

the Cleavage Tag Abundance was set to ≥5 and ≥10
TP10M (Figure 3a–c).

A Cleavage Tag Abundance of ≥5 TP10M appeared opti-

mal. It identified a greater number of the VAT set compared

with when setting of ≥10 TPM but had a greatly reduced

number of potential targets compared with when the Cleav-

age Tag Abundancewas set to ≥1 TPM (Figure 3a–c). There-
fore, a Cleavage Tag Abundance of ≥5 appeared to

minimize signals from potential random degradation, while

maximizing identification of the VAT set.

Target category. For each predicted target RNA, the read-

out of degradome analyses are T-plots. On WPMIAS, T-

plots are placed into four Target Categories (1–4), with

descending levels of confidence and so only inclusion of

Target Category 1 and 2 targets are recommended and is

set as the default (Fei et al., 2020). However, to identify the

targets with greatest evidence, the stringency of TRUEE

was increased by only including Target Category 1 targets.

Results show that even at the lowest Library % Cut-off of

10%, only 75% of the VAT set were identified as HE targets

(Figure 3d). This was 17 fewer targets compared with when

using both Target Category 1 and 2 (Figure 3b). As only

using Target Category 1 resulted in potentially many false

negatives, for the third parameter, Target Category 1 and 2

were used to maximize the identification of the VAT set.

Library % Cut-off. The parameter, Library % Cut-off,

assesses the frequency at which a predicted target satisfies

the stated parameters in all degradome libraries analysed.

The greater number of libraries a predicted target occurs in,

the greater evidence it has as an miRNA target. As men-

tioned above, the Library % Cut-offs were 10%, 20%, 30%,
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Figure 2. Determining the optimal psRNATarget Expectation Score cut-off.

(a) Fold differences of the total number of targets predicted by psRNATarget

over the number of targets in the VAT set identified at each expectation

score cut-off. Black numbers above each bar are the total number of pre-

dicted targets/number of validated targets for each expectation score. (b)

Cumulative percentage of the 106 targets of the VAT set that are retrieved at

each expectation score cut-off. Red bar indicates the expectation score cut-

off that was chosen for the TRUEE workflow. Total HE targets = Validated

targets + potential targets.
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and 40%. Analysis was performed on the 61 Arabidopsis

degradome libraries available on WPMIAS (Fei et al., 2020).

At a Cleavage Tag Abundance of ≥5, and a Target Cate-

gory of 1 and 2, Library % Cut-off was assessed (Fig-

ure 3b). At the Library % Cut-off of 10%, 97 VATs and 22

new potential targets were identified. The number of VAT

set and potential targets identified decreased to 90 and 10,

respectively, at a 20% Library % Cut-off. These values con-

tinued to decrease with increasing Library % Cut-off. Based

on this, a Library % Cut-off of 20% appears optimal, as

most of the VAT set was identified as HE targets, with less

than 50% of additional new potential targets compared

with a Library % Cut-off of 10%.

In conclusion, using a Library % Cut-off of 20%, with a

Target Category of 1 and 2, and a Cleavage Tag Abundance

of ≥5 TP10M TRUEE maximizes the identification of VAT

set targets, whilst minimizing potential targets.

Category Score, a simple scoring schema to rank HE

targets

Within the HE targets identified from the above workflow,

there will remain a large variation in the confidence and

extent to which the retrieved targets are being subjected to

miRNA-mediated degradation. Therefore, ranking these HE

targets based on the strength and frequency of the target

across libraries will enable a clear indication of the confi-

dence miRNA-mediated degradation for each target. As the

Target Category approximates the extent of which miRNA-

mediated cleavage contributes to RNA degradation of a tar-

get, a scoring schema was devised, which considers the

number of libraries (frequency) a gene is found to be a Cate-

gory 1 (C1) or Category 2 (C2) target with a Cleavage Tag

Abundance of ≥5 (strength) (Figure 1). C1 and C2 were

assigned the weighted values of 5 and 1, respectively. The

heavier weighting for C1 compared with C2 targets was cho-

sen considering the reduced confidence of the latter in

reflecting miRNA-mediated degradation. The weighted

number of libraries a gene was found to be a C1 or C2 target

was then divided by the total number of libraries analysed

(nLib). The category score (Cat Score) was calculated by:

Cat Score ¼ 5C1 þ C2ð Þ
nLib

This equation can give a maximum Cat Score = 5, which

would mean the gene is a C1 target in all degradome
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Figure 3. Number of genes defined as high-

evidence (HE) targets, as determined by Library %

Cut-off, Cleavage Tag Abundance, or Target Cate-

gory.

‘Total targets’ indicate the total number of HE tar-

gets found by TRUEE. ‘Validated targets’ are the HE

targets found in the VAT set. ‘Potential targets’ are

HE targets that are not found in the VAT set. Note

the differences in y-axis scales.
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libraries analysed. For such a scenario, both the miRNA

and the target mRNA would need to be widely expressed

to be detected in all degradome libraries.

Determining the Cat Score of the VAT set targets identi-

fied by TRUEE (Figure 3b) found that the Cat Score ranged

from 4.15 to 0.12 (Table S1), enabling this ranking score to

assess the extent of miRNA-mediated degradation rapidly

for each HE target. Eight targets have a Cat Score ≥4, imply-

ing these MTIs are occurring strongly throughout Arabidop-

sis. Even within a family of miRNA targets, Cat Scores are

highly variable. For instance, the GROWTH REGUATORY

FACTOR (GRF) genes that are validated targets of miR396

have Cat Scores that vary from 4.02 (GRF1; At2g22840) to

0.12 (GRF7; At5g53660). Similarly, the SQUAMOSA

PROMOTER-BINDING PROTEIN LIKE (SPL) genes that are

validated targets of miR156 have Cat Scores that vary from

3.18 (SPL13; AT5G50570) to 0.33 (SPL9; AT2G42200), and

the TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERAT-

ING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP)

genes that are validated targets of miR319 have Cat Scores

that vary from 2.23 (TCP4; AT3G15030) to 0.28 (TCP10;

AT2G31070). This enables clear identification of which par-

alogues with identical (or near identical) expectation scores

are subjected to the strongest miRNA-mediated degrada-

tion. In addition, having a Cat Score ≥1 would indicate that

the gene must be a C1 target in at least one degradome

library. Of the 106 VAT set, 75 (70.8%) have a Cat Score of

≥1 (Table S1). This indicates that this cut-off will identify the

majority of experimentally validated miRNA targets.

HE targets identified by TRUEE that are not in the VAT set

In the analysis above, TRUEE identified HE targets from

Arabidopsis that were not present in the VAT set, and

therefore may be new targets or false positives. These tar-

gets are analysed below in terms of their Library % Cut-off,

their Cat Score and their highest Target Category (Maxi-

mum Category).

To maximize the potential of identifying new targets, the

Library % Cut-off was lowered from 20% to 10%, resulting

in the identification of a total of 22 new potential targets

(Table 1). However, the 12 additional potential targets iden-

tified at the Library % Cut-off of 10%, all have a very low

Cat Score (all but two were <0.5). This lends support to the

justification of using the Library % Cut-off of 20% deter-

mined above. Of the 22 targets, only four had a Cat Score

>1, and these were in 40% of libraries. Four of these tar-

gets showed evidence that was typical of canonical miRNA

targets (Figure S1a-d). The highest ranked targets, RNA

PROCESSING FACTOR3 (RPF3) and PENTATRICOPEPTIDE

REPEAT1 (PPR1) are both family member homologues of

genes in the VAT set with evidence of being miRNA tar-

gets, and therefore should have been included in the VAT

Table 1 Analysis of identified HE targets not present in the VAT set

miRNA Target ID Target description

Library % Cut-off

Max Cat Cat S10 20 30 40

miR161 AT1G62930 RPF3, RNA Processing Factor 3 X X X X 1 2.311
miR161 AT1G06580 PPR1, Pentatricopeptide Repeat 1 X X X X 1 1.180
miR167 AT5G58590 RANBP1, RAN BINDING PROTEIN 1 X X X X 1 1.689
miR398 AT2G27530 PGY1, PIGGYBACK 1 X X X X 1 1.246
miR398 AT1G03630 POR C, X X X X 2 0.492
miR408 AT3G01480 Cyclophilin 38 X X X X 2 0.492
miR168 AT3G58030 MUSE1 X X X 1 0.852
miR408 AT1G68010 HPR, HYDROXYPYRUVATE REDUCTASE X X X 2 0.328
miR395 AT1G50930 Serine/threonine-kinase X X 1 0.541
miR396 AT3G19400 Cysteine proteinases superfamily protein X X 1 0.393
miR161 AT1G64583 Tetratricopeptide repeat (TPR)-like X 1 0.721
miR164 AT3G12977 NAC (No Apical Meristem) domain X 1 0.525
miR167 AT1G51760 IAR3, IAA-Alanine Resistant 3, X 1 0.295
miR167 AT5G10550 GTE2, Global Transcription Factor E2 X 2 0.148
miR172 AT3G05530 ATS6A.2, RPT5A, TRIPLE-A ATPASE 5A X 2 0.131
miR396 AT1G48380 HYP7, HYPOCTYL 7, ROOT HAIRLESS 1 X 1 0.262
miR396 AT1G60140 TPS10, Trehalose Phosphate Synthase X 1 0.295
miR398 AT4G24280 cpHsc70-1, chloroplast heat shock 70–1 X 2 0.164
miR398 AT5G14550 Beta-1,6-N-acetylglucosaminyltransferase X 2 0.115
miR408 AT5G21930 PAA2, P-type ATPase of Arabidopsis 2 X 2 0.148
miR408 AT2G47900 TLP3, TUBBY LIKE PROTEIN 3 X 2 0.131
miR408 AT4G34230 CAD5, Cinnamyl Alcohol Dehydrogenase 5 X 2 0.131

Library % Cut-off threshold meet for each HE target is indicated by ‘X’. Genes in bold type indicate HE targets that were found to possess
T-plots comparable with those in the VAT set (Figure 4, S1). Maximum Category (Max Cat) indicates whether the highest T-plot Category
found across degradome libraries is Cat 1 or Cat 2 and Cat S is Category Score. HE, high evidence.
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set (Allen et al., 2004; Howell et al., 2007). However, no

clear previous evidence exists for the miR167 target, RNA

BINDING PROTEIN 1 (RANBP1) or the miR398 target, PIG-

GYBACK1 (PGY1), both of which had a Maximum Category

of 1 with a high Cleavage Tag Abundance (Figure 4a,b).

Both T-plots were comparable with that of previously vali-

dated miR167 target, AUXIN RESPONSE FACTOR 6 (ARF6),

or the miR398 target, COPPER/ZINC SUPEROXIDE DISMU-

TASE 1 (CSD1) (Figure S1e-h), suggesting an analogous

degree of miRNA-mediated regulation in this library. Nei-

ther the miRNA-binding site in RANBP1 nor PGY1 was con-

served beyond the Brassicaceae family (Figure S2), and

thus may explain why targets such as these have not been

previously identified by bioinformatic tools that rely on

conservation (Chorostecki et al., 2012; Ma et al., 2018).

In contrast, although PROTOCHLOROPHYLLIDE OXIDOR-

EDUCTASE C (POR C) and CYCLOPHILIN 38 (CYP38) were

also found in more than 40% of libraries, they had compar-

atively lower Cat Scores (<0.5). In addition, their Maximum

Category was 2, and subsequent investigation of their T-

plots revealed Cleavage Tag Abundances to be comparable

with other degradome reads mapping at many different

nucleotide positions throughout the transcript (Figure 4c,

d). This suggests the occurrence of the high Cleavage Tag

Abundance in a high percentage of degradome libraries

may be due to RNA degradation pathways other than

miRNA-mediated regulation.

Despite occurring in fewer libraries than PORC1 and

CYP38, four additional targets, MUSE1, SERINE/

THREONINE-KINASE, a TPR homologue, and a NAC homo-

logue, have greater Cat Scores and their Maximum Cate-

gory was 1. Again, both TPR and NAC are family members

of genes previously found to be miRNA-regulated, but for

MUSE1 and SERINE/THREONINE-KINASE there is no

known evidence for miRNA regulation, and both display T-

plots characteristic of canonical targets (Figure 4e,f). This

suggests that even at a Library % Cut-off of 10%, by con-

sidering targets with the highest Cat Scores, TRUEE is able

to identify targets with T-Plots highly indicative of miRNA-

mediated cleavage. Therefore, while also considering

Library % Cut-off and Maximum Category, Cat Score

enables the ranking of targets, which should be given pri-

ority for further investigation regarding potential miRNA

regulation. In this regard, a Library % Cut-off of 10%, in

addition to a Cat Score cut-off of ≥0.5, may be used as an

alternate set of parameters to identify HE targets.
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Figure 4. T-plots of high-evidence targets not from

the VAT set.

T-plots of (a) RNA BINDING PROTEIN 1 (RANBP1);

(b) PIGGYBACK1 (PGY1) that encodes a ribosomal

protein L10aP; (c) PROTOCHLOROPHYLLIDE OXI-

DOREDUCTASE C (POR C); (d) CYCLOPHILIN 38

(CYP38); (e) MUSE1, encodes a RING domain E3

ligase; (f) VASCULAR-RELATED UNKNOWN PRO-

TEIN 2, which encodes a serine/threonine-kinase

(STK). T-plot from the degradome library with the

highest Maximum Category and highest Cleavage

Tag Abundance was used for each miRNA target.

Cleavage tag is circled in red. T-plot figures were

adapted from WPMIAS (Fei et al., 2020).
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Modification of TRUEE to consider narrow spatial and

temporal expression

At a Library % Cut-off of 20%, only 16 of 106 of the VAT set

were not identified by TRUEE (Table S1). Several of these

are known canonical miRNA targets, most of which are

only regulated under specific environmental/stress condi-

tions and so are likely being overlooked by TRUEE due to

insufficient degradome libraries under the specific environ-

mental conditions that these MTIs occur. To overcome this,

the analysis of select degradome libraries from a particular

treatment or tissues may better detect these narrow spatial

or temporal MTIs. For instance, narrowing TRUEE only to

analyse root libraries finds large increases to the Cat Score

of SERINE/THREONINE-KINASE (0.5–4.3), and a NAC

homologue (At3g12977) (0.5–3.33), implying these MTIs

occur preferentially in roots (Table 2). Therefore, by filter-

ing which degradome libraries are analysed, TRUEE can

allow the identification of more subtle MTIs, such as spa-

tially specific MTIs.

Defining the Arabidopsis miRNA targetome

Most of the literature on Arabidopsis MTIs corresponds to

the 29 miRNA and tasiRNA families whose targets compose

the VAT set. However, this is only a small subset of Ara-

bidopsis miRNAs, as there are 428 annotated miRNAs

composing 231 families in Arabidopsis as reported in miR-

Base v22 (Kozomara et al., 2019). Therefore, to gain a better

understanding of the scope of MTIs in Arabidopsis, TRUEE

was applied to this complete set of putative Arabidopsis

miRNAs (Table S2). The analysis was performed on 34 Ara-

bidopsis degradome libraries, which appeared to be the

limit to which WPMIAS could process the 400 miRNAs. The

initial analysis was performed at a Library % Cut-off of 10%

to assist the identification of more subtle MTIs (henceforth,

low stringency). The collection of HE targets identified by

this analysis is defined as the ‘miRNA targetome’.

Number of HE targets per miRNA family strongly

correlates with miRNA conservation

Given the large numbers of miRNAs, they were first sorted

into groups based on conservation (Table 3). These

conservation-based groups were: (i) miRNAs that have

only been identified in Arabidopsis thaliana (132 families;

referred to as ‘A. thaliana-specific’); (ii) miRNAs conserved

in at least one other species of the Brassicaceae (53 fami-

lies; referred to as ‘Brassicaceae-specific’); these included

many miRNAs that have only been found in A. thaliana

and Arabidopsis lyrata; and (iii) miRNAs conserved across

multiple clades of land plants (27 families; referred to as

‘conserved’), as defined in Axtell & Meyers (2018).

Table 2 Additional TRUEE targets not in the VAT set from only analysing root-specific degradome libraries

miRNA Target ID Target description

Library % Cut-off

Max Cat Cat S10 20 30 40

miR161 AT1G06580 PPR1, Pentatricopeptide Repeat 1 X X X X 1 4.167
miR161 AT1G62930 Tetratricopeptide repeat (TPR)-like superfamily protein X X X X 2 0.667
miR164 AT3G12977 NAC (No Apical Meristem) domain X X X X 1 3.333

miR172 AT3G05530 REGULATORY PARTICLE TRIPLE-A ATPASE 5A X X X X 2 0.5
miR395 AT1G50930 Serine/threonine-kinase X X X X 1 4.333

miR396 AT3G19400 Cysteine proteinases superfamily protein X X X X 2 0.5
miR398 AT2G27530 PGY1, PIGGYBACK 1 X X X X 2 1
miR396 AT1G60140 TPS10, TREHALOSE PHOSPHATE SYNTHASE X X X 2 0.333
miR398 AT4G26230 Ribosomal protein L31e family protein X X X 2 0.333
miR408 AT4G34230 CINNAMYL ALCOHOL DEHYDROGENASE 5 X X X 2 0.333
miR857 AT5G36880 ACS, acetyl-CoA synthetase X X X 2 0.333
miR159 AT2G21600 endoplasmatic reticulum retrieval protein 1B X 2 0.167
miR159 AT3G08850 RAPTOR1B X 2 0.167
miR161 AT1G64583 Tetratricopeptide repeat (TPR)-like protein X 1 0.833
miR163 AT5G38100 SABATH family methyltransferase. X 1 0.833
miR166 AT1G07810 RNA-binding (RRM/RBD/RNP motifs) protein X 2 0.167
miR167 AT3G07810 RNA-binding (RRM/RBD/RNP motifs) protein X 2 0.167
miR167 AT3G52190 Phosphate transporter traffic facilitator1 X 2 0.167
miR168 AT3G58030 MUSE1 X 1 0.833
miR398 AT1G75270 DHAR2, dehydroascorbate reductase 2 X 2 0.167
miR398 AT2G43900 Endonuclease/exonuclease/phosphatase X 2 0.167
miR408 AT2G47900 TLP3, TUBBY LIKE PROTEIN 3 X 2 0.167

Library % Cut-off threshold meet for each high-evidence target is indicated by ‘X’. Genes in bold type indicate high-evidence targets that
were found to possess T-plots comparable with those in the VAT set. Maximum Category (Max Cat) indicates whether the highest T-plot
Category found across degradome libraries is Cat 1 or Cat 2 and Cat S is Category Score.
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Conserved miRNAs were further grouped into Conserved-

guide (27 families) and Conserved-passenger (19 families)

as there is evidence that the miRNA passenger strand

(miRNA*) also have regulatory roles (Liu et al., 2017).

In total, 3478 targets were predicted for the 428 Ara-

bidopsis miRNAs by psRNATarget (Table 3). Of these,

TRUEE identified 292 as HE targets at a low stringency

Library % Cut-off of 10% (Table 3). Therefore, the number

of HE targets is at least an order of magnitude lower than

the number of predicted targets. The Conserved-guide

miRNA grouping had the greatest number of HE targets

(41%), followed by the A. thaliana-specific (30%),

Brassicaceae-specific (20%), and Conserved-passenger

(9%) families. Therefore, HE targets of the Conserved-

guide miRNA group contributes the most to the Arabidop-

sis targetome, despite this grouping having far fewer

miRNA families than the Brassicaceae-specific or

A. thaliana-specific groupings (Table 3).

Finally, TRUEE only identified HE targets in 108 of the

231 Arabidopsis miRNA families (Table 3). Whereas only

33% of A. thaliana-specific families had HE targets, the

majority of families in the Brassicaceae-specific (30 of 53;

57%), Conserved-passenger (10 of 19; 53%), and

Conserved-guide (24 of 27; 89%) groupings, had HE tar-

gets. Therefore, as the conservation of a miRNA family

increased, the likelihood it had an HE target increased.

Upon analysing the distribution of HE targets by individ-

ual miRNA families, it was found that most Conserved-

guide families had multiple HE targets (Figure 5a). In con-

trast, most A. thaliana-specific and Brassicaceae-specific

families only had single HE targets, although a few of

these families had many HE targets. The Cat Scores of the

HE targets were determined for each conservation group-

ing (Figure 6a). It was found that the Cat Scores for HE tar-

gets from the Conserved-guide families were the most

evenly distributed, ranging from 0.2 to 4.3. By contrast, the

number of HE targets for A. thaliana-specific and

Brassicaceae-specific families plateaued around a Cat

Score of 0.75, and both had relatively few HE targets with

a Cat Score >1 (Figure 6a). In particular, Conserved-

passenger families had the fewest HE targets with a Cat

Score ≥0.5, where none exceeded 0.7 (Figure 6a; Table S3).

Therefore, most of the HE targets with high Cat Scores cor-

respond to targets from the Conserved-guide families.

Most HE targets with the highest Cat Scores correspond

to previously characterized MTIs

Next, the HE targets of Conserved-guide miRNA families

were classified as either belonging to a conserved target

family, or corresponding to being a non-conserved target

(Table S4). Most of the HE targets (86%) from conserved tar-

get families had a Cat Score ≥0.5 (Figure 6b; Table S4). On

the other hand, most non-conserved HE targets (77%) had a

Cat Score <0.5 (Figure 6b). For non-conserved targets, the

highest Cat Scorewas 2.6, whereas many conserved targets

exceeded this value, with the highest Cat Score being 4.3.

Of the conserved HE targets that had Cat Scores ≥0.5, all
but two were part of the VAT set (Table S1), indicating the

vast majority of these MTIs have been previous character-

ized. Interestingly, the only two HE targets not part of the

VAT set were both homologues of characterized targets,

i.e. an NAC homologue (AT3G12977; miR164) and an SBP-

DOMAIN homologue (AT5G50670; miR156). For non-

conserved targets, the top two HE targets with the highest

Cat Scores, RELATED TO AP2 12 (RAP2.12; AT1G53910)

and CRY2-INTERACTING BHLH4 (CIB4; AT1G10120), were

also part of the VAT set.

This was also true for the Brassicaceae-specific miRNA

targets where 15 of the 19 of the HE targets with a Cat

Score ≥0.5 were previously reported as miRNA targets in

the literature (either part of the VAT, or otherwise) or were

related to these targets (e.g. miR161:PPR/TPR family;

miR163:SAMT family) (Table 4, Table S5). Furthermore, the

Brassicaceae-specific HE targets with the highest Cat

Scores also corresponded to the most highly studied MTIs,

such as the miR161:PPR/TPR module and miR824:AGL16

Table 3 Low and high stringency miRNA targetome of Arabidopsis

miRNA group miRNAa families Predictedb targets

HE targetsc
miRNA families
withd HE targets

Low High Low High

Conserved-guide 27 493 120 82 24 20
Conserved-passenger 19 478 27 6 10 4
Brassicaceae-specific 53 983 57 19 30 10
Arabidopsis thaliana-specific 132 1907 88 29 44 14
Total 231 3478 292 136 108 48

Abbreviation: HE, high evidence.
aTotal number of miRNA family entries for A. thaliana on miRBase v22 (Kozomara et al., 2019).
bNumber of predicted targets based on default settings of psRNATarget (Dai et al., 2018).
cTotal number of HE targets identified using high and low stringency parameters in TRUEE.
dNumber of miRNA families with HE targets using high and low stringency parameters in TRUEE.
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module (Howell et al., 2007; Kutter et al., 2007; Szaker et

al., 2019). By contrast, only four of the 38 Brassicaceae-

specific HE targets with a Cat Score <0.5 were part of the

VAT set. Together, these results show that, for the

Conserved-guide and Brassicaceae-specific miRNA group-

ings, most HE targets with the highest Cat Scores are well

characterized miRNA targets, or are related to these

targets. This argues that the scope of functional MTIs in

Arabidopsis has largely been identified.

Many HE targets of Arabidopsis thaliana-specific miRNAs

are diverse genes with trinucleotide repeats

By contrast, most of the HE targets for the A. thaliana-

specific families have not been previously described, and

Targetome
(Low stringency)

Targetome
(High stringency)

(b)

(a)

292 HE targets

136 HE targets

Figure 5. Arabidopsis miRNA targetome.

High-evidence (HE) targets identified for all Ara-

bidopsis miRNA families by conservation group at:

(a) low stringency; (b) high stringency. Families are

grouped by conservation so that pink indicates Ara-

bidopsis thaliana-specific miRNA families, green

indicates Brassicaceae-specific miRNA families,

blue indicates Conserved-guide miRNA families,

and purples indicates Conserved-passenger miRNA

families. Each bar represents the number of HE tar-

gets per miRNA family when analysed by TRUEE.
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Figure 6. Distribution of high-evidence (HE) target Cat Scores that relate to conservation.

(a) Cumulative number of HE targets against Cat Score of the different miRNA conservation groups. Dotted line indicates a Cat Score cut-off of 0.5.

(b) Cumulative number of HE targets against Cat Score for conserved and non-conserved targets of the Conserved-guide miRNA families.

Table 4 HE targets of Brassicaceae-specific miRNA families with a Cat Score ≥0.5

miRNA Target ID Cat Score Previously characterized Gene symbol Target description

miR161 AT5G41170 4.118 Yesa PPR-like superfamily protein
miR824 AT3G57230 3.471 Yesa AGL16 AGAMOUS-like 16
miR823 AT1G69770 2.294 Yesa CMT3 CHROMOMETHYLASE 3
miR161 AT1G06580 1.794 Yesa PPR superfamily protein
miR472 AT5G43740 1.529 Yesb Disease resistance protein (CC-NBS-LRR class) family
miR163 AT1G66700 1.206 Yesa PXMT1 S-adenosyl-L-methionine-dependent methyltransferase
miR4221 AT1G20500 1.059 No AMP-dependent synthetase and ligase family protein
miR161 AT1G64583 1.059 Yesa TPR-like superfamily protein
miR400 AT1G62720 0.735 Yesc PPR-like superfamily protein
miR831 AT3G56020 0.735 No Ribosomal protein L41 family
miR868 AT1G18270 0.676 No Ketose-bisphosphate aldolase class-II family protein
miR831 AT3G08520 0.676 No Ribosomal protein L41 family
miR858 AT2G47460 0.618 Yesd MYB12 myb domain protein 12
miR161 AT1G62910 0.588 Yesa PPR superfamily protein
miR161 AT1G62914 0.588 Yesa PPR repeat-containing protein
miR161 AT1G62930 0.588 Yesa TPR-like superfamily protein
miR161 AT1G63130 0.588 Yesa TPR-like superfamily protein
miR163 AT3G44860 0.588 Yesa FAMT Farnesoic acid carboxyl-O-methyltransferase
miR858 AT4G26930 0.559 MYB12 related MYB97 myb domain protein 97

aPart of or related to targets in the VAT set
bBoccara et al., 2014
cPark et al., 2014
dSharma et al., 2016
Abbreviations: HE, high evidence; PPR, pentatricopeptide repeat; TPR, tetratricopeptide repeat.
List of HE targets with a indicating that the target is part of, or related to genes in the VAT set. b, c, d Indicate genes that are not in the VAT
set but are supported in literature to have genetic and molecular evidence as miRNA targets.
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none were present in the VAT set. Of the 29 HE targets

with Cat Scores ≥0.5, 16 were targets of three miRNAs

(miR414, miR5021, and miR5658), with some of these HE

targets having very strong Cat Scores (Table 5). Curiously,

all three miRNAs are mainly composed of repeated trinu-

cleotide sequences, which was also characteristic of their

binding sites in their HE targets. In addition, the HE targets

of miR414, miR5021, and miR5658 did not appear to be

related in identity, but had rather diverse mRNA targets

containing these trinucleotide repeats.

A high stringency Arabidopsis miRNA targetome

Given the above analyses have shown the majority of MTIs

with strong experimental evidence correspond to HE targets

with Library % Cut-off of 10% and a Cat Score cut-off of ≥0.5,
imposing these cut-offs appears justified in terms of captur-

ing MTIs with the highest evidence in a bid to define a high

stringency Arabidopsis targetome. Using these parameters,

only 136 HE targets are identified, with the Conserved-guide

HE targets now making up the majority of targets (60%), fol-

lowed by A. thaliana-specific (21%), Brassicaceae-specific

(14%), and Conserved-passenger (5%) families (Figure 5b). In

this high stringency targetome, the number of miRNA fami-

lies with HE targets dropped to only 48 of the 231 miRNA

families (21%), with the A. thaliana-specific (14 of 132; 11%),

Brassicaceae-specific (10 of 53; 19%) and Conserved-

passenger (4 of 19; 21%) groupings now all having a minority

of miRNA families with HE targets. This reduction stems

mainly from the exclusion of single HE target-miRNA interac-

tions being filtered from this high stringency Arabidopsis

targetome (Figure 5b). By contrast, the majority of

Conserved-guide families still had HE targets (20 of 27; 74%).

Hence, TRUEE is filtering out a set of targets that is in line

with the long-standing notion that most functional MTIs are

conserved (Axtell, 2008), rather than the possibility of

promiscuous targeting of many mRNAs via a large and

diverse miRNome (Brodersen & Voinnet, 2009).

DISCUSSION

A central question of plant miRNA biology is the identifica-

tion of functionally important (physiologically relevant)

MTIs. Here, TRUEE has been developed to filter and rank

MTIs based on experimental evidence. This was then

applied to Arabidopsis as a proof-of-concept to define an

Table 5 HE targets of Arabidopsis thaliana-specific miRNA families with a Cat Score ≥0.5

miRNA Rep. miRNA Target ID Cat score Gene symbol Target description

miR414 Yes AT5G55580 3.941 Mitochondrial transcription termination factor
miR5021 Yes AT2G40520 3.676 Nucleotidyltransferase family protein
miR5021 Yes AT5G24670 3.676 Cytidine/deoxycytidylate deaminase
miR5021 Yes AT1G03190 3.647 UVH6 RAD3-like DNA-binding helicase protein
miR5021 Yes AT3G23890 3.559 TOPII Topoisomerase II
miR414 Yes AT5G40340 2.765 Tudor/PWWP/MBT superfamily protein
miR8177 AT1G15710 2.618 Prephenate dehydrogenase family protein
miR5652 AT1G62670 2.529 RPF2 rna processing factor 2a

miR414 Yes AT3G11810 2.118 (1 of 2) PTHR33133:SF7 - F26K24.10
miR414 Yes AT5G55300 2.118 TOP1ALPHA DNA topoisomerase I alpha
miR414 Yes AT1G16150 2.088 WAKL4 Wall associated kinase-like 4
miR414 Yes AT1G60220 1.853 ULP1D UB-like protease 1D
miR5658 Yes AT1G73710 1.706 Pentatricopeptide repeat (PPR) superfamily
miR5658 Yes AT4G11600 1.5 GPX6 Glutathione peroxidase 6
miR5658 Yes AT5G56860 1.382 GNC GATA type zinc finger transcription factor
miR5633 AT2G35670 1.147 FIS2 VEFS-Box of polycomb protein
miR5652 AT5G16640 0.912 Pentatricopeptide repeat (PPR) superfamilya

miR5027 AT1G07610 0.882 MT1C Metallothionein 1C
miR2933 AT4G32390 0.765 Nucleotide-sugar transporter family protein
miR5658 Yes AT2G32310 0.735 CCT motif family protein
miR2934 AT5G03650 0.676 SBE2.2 Starch branching enzyme 2.2
miR8183 AT5G04220 0.676 SYTC Calcium-dependent lipid-binding family
miR414 Yes AT5G64830 0.676 PCD 2 C-terminal domain-containing protein
miR5658 Yes AT4G20070 0.618 AAH Allantoate amidohydrolase
miR5650 AT5G03240 0.618 UBQ3 Polyubiquitin 3
miR826 AT1G09730 0.5 ASP1 Arabidopsis sumo protease 1
miR5024 AT3G57290 0.5 EIF3E Eukaryotic translation initiation factor 3
miR8180 AT4G29350 0.5 PFN2 Profilin 2
miR5650 AT5G20620 0.5 UBQ4 Ubiquitin 4

List of the HE targets, and indication of whether it is regulated by a miRNA with trinucleotide repeats (Rep. miRNA), Cat Score, and gene
annotation. None of these targets are in the VAT set.
Abbreviations: HE, high evidence.
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accurate estimation of the number of functional MTIs in a

plant, termed the ‘miRNA targetome’. Although non-

exhaustive, the approach suggests Arabidopsis would

have no more than 300 functionally MTIs, and likely, con-

siderably fewer. In the context of this paper, functionally

important refers to an MTI that if altered, would alter a

plant trait (i.e. have a physiological impact).

TRUEE: a simple approach to rank MTIs independently of

miRNA-target complementarity

We aimed to develop a simple bioinformatic approach

based on currently available and widely utilized online

tools. First, psRNATarget is the most widely used and cited

plant miRNA target prediction tool that has been recently

updated (Dai et al., 2018). It is a highly accessible, user-

friendly webserver, and is compatible with WPMIAS (Fei et

al., 2020). WPMIAS is also a highly accessible, user-

friendly webserver and currently is the simplest tool to

analyse multiple degradome libraries.

Unlike previous miRNA target prediction tools that are

based on miRNA-target complementarity, the scoring

schema of TRUEE is derived solely from degradome data. It

is based on the strength and frequency of a target’s T-plots

across multiple degradome libraries, from which the Cat

Score can be derived, a metric that directly relates to extent

of miRNA-mediated cleavage. Like WPMIAS (Fei et

al., 2020), Target Categories 3 and 4 were not considered

strong enough evidence for miRNA-mediated cleavage (so

are essentially given a weighted score of 0). This approach

is justified in that using only Target Categories 1 and 2 was

sufficient to identify the vast majority of the VAT set (Fig-

ure 3). Target Category 1 was given an arbitrary weighted

value 5-fold greater than Target Category 2 plots given the

much greater confidence that these signals are derived from

miRNA-mediated regulation. This is illustrated in Figure 4,

where it is unclear whether the Target Category 2 signals for

POR C and CYCLOPHILIN 38 is derived from miRNA-

mediated cleavage or other degradation mechanisms.

Finally, if TRUEE is compared with data from the most

recently published tool, TarHunter (Ma et al., 2018), it

appears TRUEE is identifying less false positives. Using

TarHunter in the ortho_mode (protein and nucleotide

sequence at the target site is conserved) and most strin-

gent number of mismatches, TarHunter identifies 59 tar-

gets for the conserved set of miRNAs in Arabidopsis

(http://www.biosequencing.cn/TarHunter/ath.html). Of these,

17 (29%) are not present in the VAT set. Therefore, even at

the highest stringency of TarHunter, it appears that TRUEE

is identifying proportionally fewer false positives.

Limitations of TRUEE

First, given the presence of a degradome signal requires

both the presence of the miRNA and transcription of the tar-

get mRNA, TRUEE will preferentially detect MTIs that are

widespread, and potentially miss those MTIs that have a

narrow temporal and spatial occurrence. Both the canonical

nutrient-dependent miR399:PHO2 and miR395:SULTR2

MTIs had low Cat Scores (0.265, Table S4), as the majority

of the degradome analyses have likely not been performed

when conditions exist for these MTIs. To offset this, a selec-

tion of particular degradome libraries (conditions or tis-

sues), potentially may help identify these narrow MTIs, as

was demonstrated for the root MTIs. The current code (pub-

lished on Open Science Framework) is customizable, so that

the analysis of any subset(s) of degradome libraries is pos-

sible. As most degradome experiments are only a snapshot

of miRNA-mediated activity at one particular developmen-

tal stage or growth condition, obviously the larger the num-

ber of degradome libraries analysed, the more

comprehensive a picture will be of the miRNA targetome.

Secondly, TRUEE will not detect targets that are regu-

lated solely by translational repression. However, this may

be inconsequential, as nearly all canonical targets were

identified using TRUEE, validating the use of this approach

to detect the majority of miRNA targets. This is consistent

with the observation that canonical targets that are known

to undergo translational repression, are also cleaved by

the miRNA (for review see Yu et al., 2017), implying there

is no strong evidence that miRNA targets are solely regu-

lated by translational repression.

Functional miRNA targetome of Arabidopsis

Currently, the functional scope of the plant miRNome

remains contentious. As many studies claim that most

miRNAs in a plant are lineage-specific (Cui et al., 2017),

and that many of these MTIs are evolutionarily fluid (Smith

et al., 2015), these notions align with the hypothesis that

there are likely 100s of functional miRNAs and 1000s of

MTIs. However, other researchers are more cautious, and

question the validity of many of these species-specific miR-

NAs that have been annotated on databases such as miR-

Base (Axtell & Meyers, 2018) or argue that most non-

conserved miRNAs are likely to be evolutionary transient

with no functional targets (Axtell, 2008; Cuperus

et al., 2011). In this study, by determining how many func-

tional MTIs there are in a plant and the proportion of these

that correspond to non-conserved miRNAs, we aimed to

add weight to which hypothesis is more likely.

Our findings support the notion that only several 100

MTIs of functional importance are present in a plant (Li et

al., 2014; Taylor et al., 2014). Although previously pro-

posed, the value of reiterating this notion has merit in that

many current studies assume there are 1000s of MTIs of

functional importance as predicted by bioinformatics

(Bülow et al., 2012; Dai et al., 2018; Fei et al., 2020; Kozo-

mara et al., 2019; Lindow et al., 2007; Lindow &

Krogh, 2005). Moreover, without the filters imposed by

TRUEE, studies based on degradome data also claim 1000s
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of targets (e.g. WPMIAS reports >10 000 MTIs in Oryza

sativa from an analysis of 738 miRNAs; Fei et al., 2020).

Our findings align with the view of Axtell & Meyers (2018),

in that the prediction of 1000s of targets, followed by Gene

Ontology or KEGG Ontology analysis to infer miRNA func-

tion is problematic (Eldem et al., 2012; Tiwari et al., 2020;

Xu et al., 2020; Yaish et al., 2015; Yawichai et al., 2019),

and likely has little relevance to miRNA function in planta.

We advocate that using an approach such as TRUEE will

enable rapid identification of which genes are being

strongly regulated by miRNA, and therefore, what genetic

targets would be best to modify in the bid to improving

desired plant traits.

Our analyses support the idea that the majority of func-

tional MTIs have already been identified in Arabidopsis. In

the analysis of 34 Arabidopsis degradome libraries in

WPMIAS (Fei et al., 2020), the known conserved canonical

miRNA targets had the highest-ranking Cat Scores, indicat-

ing this metric was able to filter out and identify strong

MTIs that have clear functional roles (Table S4). By con-

trast, there were very few uncharacterized MTIs that had a

high Cat Score. This extended to the Brassicaceae-specific

MTIs, where the highest Cat Scores were largely limited to

previously documented MTIs, such as the well-studied

miR824:AGL16 and miR161:PPR modules (Howell et

al., 2007; Kutter et al., 2007; Szaker et al., 2019).

It could be argued that only a subset of sRNAs were

investigated, as the complex miRNome includes miRNA

isoforms that arise through altered processing or modifica-

tions and that are predicted to confer altered specificity,

and these were not included in the analysis. To investigate

this possibility, we analysed the passenger strands (miR-

NA*s) of Conserved-guide miRNAs, as currently this class

of alternative miRNA isoforms have the strongest evidence

implicating them in functional MTIs (Du et al., 2017; Liu et

al., 2017; Manavella et al., 2013; Zhang et al., 2011). How-

ever, only a few HE targets were identified for this

Conserved-passenger grouping and all had low Cat Scores

(<0.7). Moreover, previously reported functional miRNA*-

target interactions, such as miR393* (Zhang et al., 2011)

were not detected in the analysis. Again, it is possible that

these classes of sRNAs have highly specific temporal and/

or spatial expression, and so their MTIs are missed due to

the absence of the corresponding degradome libraries, as

TRUEE will be biased towards MTIs that are widespread.

Nevertheless, despite the regulatory potential of the miR-

NA*s, none of their MTIs have Cat Scores characteristics of

the known physiologically important MTIs.

For the majority of Arabidopsis miRNA entries in miR-

Base, TRUEE either failed to identify a HE target (72% for

the Brassicaceae-specific and 89% for the A. thaliana-speci-

fic groupings) or had a single target with a low Cat Score.

This is consistent with the observation that most low confi-

dence miRNA entries on miRBase corresponded to poorly

expressed, evolutionarily young miRNAs that lack a func-

tional target gene (Cuperus et al., 2011), and the annota-

tion of many of these being bona fide miRNAs has been

questioned (Axtell & Meyers, 2018; Taylor et al., 2017). It is

consistent with the hypothesis of the existence within the

plant cell of a large pool of diverse, evolutionarily young,

and weakly expressed miRNAs from which new MTIs of

functional significance may arise (Axtell, 2008; Axtell et

al., 2007; Cuperus et al., 2011; Fahlgren et al., 2007; Raja-

gopalan et al., 2006). However, it has been hypothesized

this is rare and that most young miRNAs remain targetless

and undergo neutral drift until their sequences are no

longer recognizable by DCL for processing (Axtell, 2008;

Cuperus et al., 2011). Again, it may be argued that many

young MTIs will not be identified by TRUEE because they

have a narrow spatial and temporal expression. However,

that any young MTI can be detected, such as miR824:

AGL16, which are localized in stomatal complexes, sug-

gests otherwise (Kutter et al., 2007).

Finally, the highest ranking HE targets of the A. thaliana-

specific miRNAs, predominantly consisted of targets of

three unrelated miRNAs that have trinucleotide repeats,

miR414, miR5021, and miR5658. For each miRNA, their tar-

gets consisted of diverse genes with the common feature

of trinucleotide repeats at their potential binding site. Trin-

ucleotide repeat expansions are known to cause multiple

human genetic diseases such as Huntington’s disease and

have been reported to cause sensitivity to high tempera-

tures in the A. thaliana accession Bur-0 (Bates et al., 2015;

Tabib et al., 2016). Therefore, these A. thaliana-specific

miRNAs may have a specialized role in silencing poten-

tially deleterious genes with trinucleotide repeat expan-

sions. However, these claims will need to be tested with

experimental analyses.

CONCLUSIONS

TRUEE represents an approach to rank miRNA targets

independently of complementarity, circumventing the limi-

tation of that approach that has been a central feature of

bioinformatic target prediction programs. We envision the

approach can be applied to other species, once sufficient

degradome analyses have been conducted. It will enable

fast ranking of targets, and therefore, which genes to mod-

ify concerning the plant traits that miRNAs control.

EXPERIMENTAL PROCEDURES

Bioinformatics workflow

The parameters of TRUEE were developed via benchmarking the
retrieval of the VAT set. The VAT set was assembled via systemati-
cally and manually reviewing the literature, requiring two inde-
pendent lines of evidence from commonly used experimental
approaches. The literature supporting the formation of the VAT
set is found in Table S1.
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Mature miRNA sequences were retrieved from miRBase v22
(Kozomara et al., 2019). Where multiple isomiRs were found, the
isomiR with the highest abundance found on a plant next-
generation sequencing database (https://mpss.danforthcenter.org)
was used (Nakano et al., 2020). The most conserved tasiARF
sequence as reported by Allen et al. (2005) was used in the analy-
sis. For the Arabidopsis ‘miRNA targetome’, all 428 available
mature miRNA sequences, which include isomiRs, were retrieved
from miRBase v22 (Kozomara et al., 2019; note that tasiARFs were
not analysed, as they are not on miRBase).

Sequences were used as input into psRNATarget v2, 2017 scor-
ing schema (Dai et al., 2018). Default settings were used for analy-
sis other than the expectation score, which was decreased to 3 for
all sRNAs except miR167, miR398, and miR408. An expectation
score of 5 was used for these miRNAs as their targets from the
VAT set exceeds an expectation score of 3.

The resulting predicted targets were then analysed using
WPMIAS (Fei et al., 2020). WPMIAS settings were: (i) analysis type
– analysis > Advanced II > use psRNATarget predicted results
directly; (ii) plant species – A. thaliana; cDNA libraries – Transcript,
JGI genomic project, Phytozome 11, 167 TAIR10 (from psRNAtar-
get); (iii) offset from spliced position (nt) 0 (default), or 1 for
miR162, miR396, and miR398, which can only be identified using
an offset of 1 (Debernardi et al., 2012; Shao et al., 2015; Yamasaki
et al., 2007); (iv) mismatches allowed for mapping degradome
reads to references, i.e. 0 (default).

Degradome data retrieved from WPMIAS were then used as
input and analysed using TRUEE to identify HE and LE targets as
described in Figure 1. TRUEE was developed using an in-house R
script. Analysed data from WPMIAS and R script for TRUEE is
accessible on the Open Science Framework page for this project
https://osf.io/k7rcs/. Target Categories as defined in WPMIAS were
used in this study (Fei et al., 2020).

Data visualization

Multiple sequence alignments were performed using Multiple
Alignment using Fast Fourier Transform (Katoh & Standley, 2013),
and the resulting alignment visualized using Jalview (Waterhouse
et al., 2009). T-plots of miRNA targets were adapted from
WPMIAS (Fei et al., 2020). Figures determining the optimal expec-
tation score (Figure 2), identifying the HE targets by TRUEE (Fig-
ure 3), and the Arabidopsis targetome (Figure 5) were generated
using R package, ggplot2. Code and design for Figure 5 was by
Holtz Yan and can be found at https://www.r-graph-gallery.com/
297-circular-barplot-with-groups.html. All graphs were generated
using the R package, ggplot2.
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Szaker, H.M., Darkó, É., Medzihradszky, A., Janda, T., Liu, H.C., Charng,

Y.Y. et al. (2019) miR824/AGAMOUS-LIKE16 module integrates recurring

environmental heat stress changes to fine-tune Poststress development.

Frontiers in Plant Science, 10, 1–19. https://doi.org/10.3389/fpls.2019.

01454.

Tabib, A., Vishwanathan, S., Seleznev, A., McKeown, P.C., Downing, T.,

Dent, C. et al. (2016) A polynucleotide repeat expansion causing

temperature-sensitivity persists in Wild Irish accessions of Arabidopsis

thaliana. Frontiers in Plant Science, 7, 1311. https://www.frontiersin.org/

article/10.3389/fpls.2016.01311.

Taylor, R.S., Tarver, J.E., Foroozani, A. & Donoghue, P.C.J. (2017) Insights

and perspectives MicroRNA annotation of plant genomes. Do it right or

not at all. BioEssays, 1600113, 1–6. https://doi.org/10.1002/bies.

201600113.

Taylor, R.S., Tarver, J.E., Hiscock, S.J. & Donoghue, P.C.J. (2014) Evolution-

ary history of plant microRNAs. Trends in Plant Science, 19, 175–182.
https://doi.org/10.1016/j.tplants.2013.11.008.

Thody, J., Moulton, V. & Mohorianu, I. (2020) PAREameters: a tool for com-

putational inference of plant miRNA–mRNA targeting rules using small

RNA and degradome sequencing data. Nucleic Acids Research, 48, 2258–
2270. https://doi.org/10.1093/nar/gkz1234.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2022), 110, 1476–1492

Ranking functional miRNA targets 1491

https://doi.org/10.1105/tpc.110.082784
https://doi.org/10.1105/tpc.110.082784
https://doi.org/10.1093/nar/gkr319
https://doi.org/10.1093/nar/gkr319
https://doi.org/10.1093/nar/gky316
https://doi.org/10.1371/journal.pgen.1002419
https://doi.org/10.1111/tpj.13540
https://doi.org/10.1371/journal.pone.0050298
https://doi.org/10.1371/journal.pone.0000219
https://doi.org/10.1093/bioinformatics/btz820
https://doi.org/10.1093/bioinformatics/btz820
https://doi.org/10.1093/nar/gks277
https://doi.org/10.1038/nbt1417
https://doi.org/10.1105/tpc.107.050062
https://doi.org/10.1186/gb-2013-14-12-r145
https://doi.org/10.1186/gb-2013-14-12-r145
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1105/tpc.107.050377
https://doi.org/10.1016/j.tplants.2014.08.006
https://doi.org/10.1371/journal.pcbi.0030238
https://doi.org/10.1371/journal.pcbi.0030238
https://doi.org/10.1186/1471-2164-6-119
https://doi.org/10.1186/1471-2164-6-119
https://doi.org/10.1105/tpc.113.120972
https://doi.org/10.1105/tpc.113.120972
https://doi.org/10.3389/fpls.2017.02200
https://doi.org/10.3389/fpls.2017.02200
https://doi.org/10.1093/bioinformatics/btx797
https://doi.org/10.1093/bioinformatics/btx797
https://doi.org/10.1038/sj.emboj.7600340
https://doi.org/10.1104/pp.112.207068
https://doi.org/10.1104/pp.112.207068
https://doi.org/10.1104/pp.19.00957
https://doi.org/10.1093/pcp/pcu096
https://doi.org/10.1093/pcp/pcu096
https://doi.org/10.1101/gad.1476406
https://doi.org/10.1016/j.devcel.2005.01.018
https://doi.org/10.1016/j.devcel.2005.01.018
https://doi.org/10.1038/srep09891
https://doi.org/10.1104/pp.15.01831
https://doi.org/10.1104/pp.15.01831
https://doi.org/10.1111/tpj.12754
https://doi.org/10.1111/tpj.12754
https://doi.org/10.1186/1471-2164-15-348
https://doi.org/10.1186/1471-2164-15-348
https://doi.org/10.1007/978-1-61779-123-9_12
https://doi.org/10.3389/fpls.2019.01454
https://doi.org/10.3389/fpls.2019.01454
https://doi.org/10.3389/fpls.2016.01311
https://doi.org/10.3389/fpls.2016.01311
https://doi.org/10.1002/bies.201600113
https://doi.org/10.1002/bies.201600113
https://doi.org/10.1016/j.tplants.2013.11.008
https://doi.org/10.1093/nar/gkz1234


Tiwari, J.K., Buckseth, T., Zinta, R., Saraswati, A., Singh, R.K., Rawat, S. et

al. (2020) Genome-wide identification and characterization of microRNAs

by small RNA sequencing for low nitrogen stress in potato. PLoS One,

15, e0233076. https://doi.org/10.1371/journal.pone.0233076.

Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J.

(2009) Jalview version 2—a multiple sequence alignment editor and

analysis workbench. Bioinformatics, 25, 1189–1191. https://doi.org/10.

1093/bioinformatics/btp033.

Xu, X., Chen, X., Chen, Y., Zhang, Q., Su, L., Chen, X. et al. (2020) Genome-

wide identification of miRNAs and their targets during early somatic

embryogenesis in Dimocarpus longan Lour. Scientific Reports, 10, 4626.

https://doi.org/10.1038/s41598-020-60946-y.

Yaish, M.W., Sunkar, R., Zheng, Y., Ji, B., Al-Yahyai, R. & Farooq, S.A. (2015)

A genome-wide identification of the miRNAome in response to salinity

stress in date palm (Phoenix dactylifera L.). Frontiers in Plant Science, 6,

946. https://www.frontiersin.org/article/10.3389/fpls.2015.00946.

Yamasaki, H., Abdel-Ghany, S.E., Cohu, C.M., Kobayashi, Y., Shikanai, T. &

Pilon, M. (2007) Regulation of copper homeostasis by micro-RNA in Ara-

bidopsis. Journal of Biological Chemistry, 282, 16369–16378. https://doi.
org/10.1074/jbc.M700138200.

Yawichai, A., Kalapanulak, S., Thammarongtham, C. & Saithong, T. (2019)

Genome-wide identification of putative MicroRNAs in cassava (Manihot

esculenta Crantz) and their functional landscape in cellular regulation.

BioMed Research International, 2019846. https://doi.org/10.1155/2019/

2019846.

Yu, Y., Jia, T. & Chen, X. (2017) The ’how’ and ’where’ of plant microRNAs.

New Phytologist, 216, 1002–1017. https://doi.org/10.1111/nph.14834.
Zhang, X., Zhao, H., Gao, S., Wang, W.C., Katiyar-Agarwal, S., Huang, H.D.

et al. (2011) Arabidopsis Argonaute 2 regulates innate immunity via

miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene,

MEMB12. Molecular Cell, 42, 356–366. https://doi.org/10.1016/j.molcel.

2011.04.010.

Zheng, Y., Li, Y.F., Sunkar, R. & Zhang, W. (2012) SeqTar: an effective

method for identifying microRNA guided cleavage sites from degradome

of polyadenylated transcripts in plants. Nucleic Acids Research, 40, e28.

https://doi.org/10.1093/nar/gkr1092.

Zheng, Z., Reichel, M., Deveson, I., Wong, G., Li, J. & Millar, A.A. (2017)

Target RNA secondary structure is a major determinant of miR159

efficacy. Plant Physiology, 174, 1764–1778. https://doi.org/10.1104/pp.16.
01898.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2022), 110, 1476–1492

1492 Gigi Y. Wong and Anthony A. Millar

https://doi.org/10.1371/journal.pone.0233076
https://doi.org/10.1093/bioinformatics/btp033
https://doi.org/10.1093/bioinformatics/btp033
https://doi.org/10.1038/s41598-020-60946-y
https://doi.org/10.3389/fpls.2015.00946
https://doi.org/10.1074/jbc.M700138200
https://doi.org/10.1074/jbc.M700138200
https://doi.org/10.1155/2019/2019846
https://doi.org/10.1155/2019/2019846
https://doi.org/10.1111/nph.14834
https://doi.org/10.1016/j.molcel.2011.04.010
https://doi.org/10.1016/j.molcel.2011.04.010
https://doi.org/10.1093/nar/gkr1092
https://doi.org/10.1104/pp.16.01898
https://doi.org/10.1104/pp.16.01898

	 SUMMARY
	 Bioin�for�matic work�flow to facil�i�tate the iden�ti�fi�ca�tion of HE miRNA tar�gets
	 An exper�i�men�tally val�i�dated set of Ara�bidop�sis miRNA tar�gets to bench�mark TRUEE param�e�ters
	 Input param�e�ters of TRUEE work�flow
	 (a) psRNATar�get expec�ta�tion score


	 (a) psRNATar�get expec�ta�tion score
	tpj15751-fig-0001
	 Cleav�age tag abun�dance


	 Cleav�age tag abun�dance
	Outline placeholder
	 Tar�get cat�e�gory


	 Tar�get cat�e�gory
	Outline placeholder
	 Library % Cut-off


	 Library % Cut-off
	tpj15751-fig-0002
	 Cat�e�gory Score, a sim�ple scor�ing schema to rank HE tar�gets
	tpj15751-fig-0003
	 HE tar�gets iden�ti�fied by TRUEE that are not in the VAT set
	tpj15751-fig-0004
	 Mod�i�fi�ca�tion of TRUEE to con�sider nar�row spa�tial and tem�po�ral expres�sion
	 Defin�ing the Ara�bidop�sis miRNA targe�tome
	 Num�ber of HE tar�gets per miRNA fam�ily strongly cor�re�lates with miRNA con�ser�va�tion
	 Most HE tar�gets with the high�est Cat Scores cor�re�spond to pre�vi�ously char�ac�ter�ized MTIs
	 Many HE tar�gets of Ara�bidop�sis thaliana-speci�fic miRNAs are diverse genes with trin�u�cleotide repeats
	tpj15751-fig-0005
	tpj15751-fig-0006
	 A high strin�gency Ara�bidop�sis miRNA targe�tome
	 TRUEE: a sim�ple approach to rank MTIs inde�pen�dently of miRNA-tar�get com�ple�men�tar�ity
	 Lim�i�ta�tions of TRUEE
	 Func�tional miRNA targe�tome of Ara�bidop�sis
	 Bioin�for�mat�ics work�flow
	 Data visu�al�iza�tion

	 REFERENCES
	tpj15751-bib-0001
	tpj15751-bib-0002
	tpj15751-bib-0003
	tpj15751-bib-0004
	tpj15751-bib-0005
	tpj15751-bib-0006
	tpj15751-bib-0007
	tpj15751-bib-0008
	tpj15751-bib-0009
	tpj15751-bib-0010
	tpj15751-bib-0011
	tpj15751-bib-0012
	tpj15751-bib-0013
	tpj15751-bib-0014
	tpj15751-bib-0015
	tpj15751-bib-0016
	tpj15751-bib-0017
	tpj15751-bib-0018
	tpj15751-bib-0019
	tpj15751-bib-0020
	tpj15751-bib-0021
	tpj15751-bib-0022
	tpj15751-bib-0023
	tpj15751-bib-0024
	tpj15751-bib-0025
	tpj15751-bib-0026
	tpj15751-bib-0027
	tpj15751-bib-0028
	tpj15751-bib-0029
	tpj15751-bib-0030
	tpj15751-bib-0031
	tpj15751-bib-0032
	tpj15751-bib-0033
	tpj15751-bib-0034
	tpj15751-bib-0035
	tpj15751-bib-0036
	tpj15751-bib-0037
	tpj15751-bib-0038
	tpj15751-bib-0039
	tpj15751-bib-0040
	tpj15751-bib-0041
	tpj15751-bib-0042
	tpj15751-bib-0043
	tpj15751-bib-0044
	tpj15751-bib-0045
	tpj15751-bib-0046
	tpj15751-bib-0047
	tpj15751-bib-0048
	tpj15751-bib-0049
	tpj15751-bib-0050
	tpj15751-bib-0051
	tpj15751-bib-0052
	tpj15751-bib-0053
	tpj15751-bib-0054
	tpj15751-bib-0055
	tpj15751-bib-0056
	tpj15751-bib-0057
	tpj15751-bib-0058
	tpj15751-bib-0059
	tpj15751-bib-0060
	tpj15751-bib-0061
	tpj15751-bib-0062


