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Cross talk occurs between the human gut and the lung through a gut-lung axis

involving the gut microbiota. However, the signatures of the human gut microbiota

after active Mycobacterium tuberculosis infection have not been fully understood.

Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by

shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We

observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by

significant decreases in species number and microbial diversity. The gut microbiota of

TB patients were mostly featured by the striking decrease of short-chain fatty acids

(SCFAs)-producingbacteria as well as associated metabolic pathways. A classification

model based on the abundance of three species,Haemophilus parainfluenzae,Roseburia

inulinivorans, and Roseburia hominis, performed well for discriminating between healthy

and diseased patients. Additionally, the healthy and diseased states can be distinguished

by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in

the microbiota in clinical TB patients. Our findings will shed light on the design of future

diagnoses and treatments for M. tuberculosis infections.
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INTRODUCTION

Tuberculosis (TB) is one of the most important infectious diseases, with extremely high morbidity
and mortality worldwide. The World Health Organization (WHO) estimated that there were 10.4
million new TB cases and 1.4 million TB deaths worldwide in 2015 (WHO, 2016).Mycobacterium
tuberculosis is the causative agent of TB, and although it can infect extrapulmonary organs, such as
lymph nodes, bone, and the meninges,M. tuberculosis predominantly infects the lungs and causes
pulmonary TB (Harisinghani et al., 2000).

The human body is inhabited by a tremendous number of commensal bacteria (the microbiota)
that closely communicate with the human immune system and exert significant influence on
human health. Various infectious and non-infectious diseases are associated with the human
microbiota, particularly the gut microbiota (Young, 2017). Given the close connections between
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the gut microbiota and diseases of the nervous system, liver
and lung, the gut microbiota is proposed to be involved in the
gut-brain (Foster and Neufeld, 2013), gut-liver (Compare et al.,
2012) and gut-lung (Budden et al., 2017) axes, with the latter
being the most recently recognized. With respect to the gut-
lung axis hypothesis, dynamic cross talk between the microbiota
of the respiratory tract and the gut has been suggested. The
processes are bidirectional, occurring either via the translocation
of local bacteria to the other site or through the release of
immunomodulatory molecules (bacteria-derived components or
metabolites, such as short-chain fatty acids [SCFAs]) into the
bloodstream, thus affecting systemic immunity (Marsland et al.,
2015; Budden et al., 2017; Cervantes and Hong, 2017). Many
studies have focused on revealing the role of this axis in the
development of lung diseases, such as asthma (Abrahamsson
et al., 2014), chronic obstructive pulmonary disease (COPD)
(Ekbom et al., 2008), and pneumococcal and Staphylococcus
aureus pneumonia (Gauguet et al., 2015; Schuijt et al., 2015).

To date, several efforts have been made to reveal the gut
microbiota changes after M. tuberculosis infection using murine
models or clinical samples (Dubourg et al., 2013; Winglee et al.,
2014; Luo et al., 2017; Namasivayam et al., 2017; Wipperman
et al., 2017). However, whether there are microbiota signatures
in gut microbial composition or metabolic potentials that can
discriminate healthy fromM. tuberculosis infection has not been
evaluated. Here, we characterized changes of the gut microbiota
in the fecal samples of clinical pulmonary TB patients. We
observed dramatic alterations in the structure and metabolic
pathways of the gut microbiota in the TB patients, and showed
that the gut bacterial signatures have the potentials to be used for
discriminating healthy from TB patients.

MATERIALS AND METHODS

Study Cohort
Wefirst sequenced themetagenomes of 61 fecal samples acquired
from 31 healthy controls (C group) and 30 TB patients (P
group). Then another 16 patients were sequenced and used
as the patient group (Test-P) in the testing dataset in the
subsequent discrimination model. All the 46 subjects in the P
group were newly diagnosed with active pulmonary TB prior
to anti-TB treatment. Patients suffering from other serious
diseases were excluded. The subjects were diagnosed with TB
by assessing symptoms, including the results of acid-fast bacilli
(AFB) smear microscopy, culture, the T-SPOT.TB test and a
chest radiograph. Drug-susceptibility testing was performed as
described previously (Zhao et al., 2012). This study was approved
by local ethics committees (Beijing Chest Hospital, Capital
Medical University, China), and written informed consent was
obtained from all participants.

Stool Sample Collection and
DNA Extraction
Fresh stool samples from the healthy controls and the patients
were collected using collection tubes containing stool DNA
stabilizer provided in the PSP R© Spin Stool DNA Plus Kit
(Stratec Molecular, Germany), and stored at −20◦C until DNA

extraction. Metagenomic DNA was extracted from 200mg of
feces by using the recommended kit per the manufacturer.

Metagenomic Sequencing and Data
Processing
The DNA sequencing libraries with insert sizes of 350 bp were
constructed following the manufacturer’s instructions (Illumina).
The libraries were then paired-end sequenced on the HiSeq 2500
Illumina sequencers. The raw sequencing data were processed
using the MOCAT2 (Kultima et al., 2016) pipeline to remove
low-quality reads, adapters and human DNA contamination. In
brief, reads were trimmed using a length cut off of 30 and a
quality cut-off of 20. Next, the trimmed reads were then screened
against Illumina adapter sequences with an e-value of 0.01,
and against the human genome sequence with a 90% identity
cut-off. After filtering, approximately 5 GB of clean data for
each sample was obtained on average. For functional profiling,
genes were predicted and clustered into reference gene catalogs
after the clean data was assembled. The taxonomic assignment
and abundance estimation were performed with MetaPhlAn2
(Truong et al., 2015) using default parameters.

Microbial Diversity and Enterotype Analysis
The within-sample (α) diversity of samples was calculated using
the Shannon index based on the species profile. The distance
between samples (β diversity) was estimated by Non-metric
multidimensional scaling (NMDS) analysis based on the relative
abundance of genera.

Functional Profiling and Metabolic
Pathway Analysis
Metabolic pathway analysis was performed using clean data and
the program HUMAnN2 (Abubucker et al., 2012), which uses
the MetaCyc Metabolic Pathway Database (Caspi et al., 2015)
for annotation. MetaCyc currently contains 2526 experimentally
elucidated metabolic pathways involved in both primary and
secondary metabolism.

Random Forest Model Construction and
Validation
For discrimination analysis using the random forest package
in R, a random forest classifier was trained on the species
abundance profile of the C (n = 31) and P (n = 30) groups.
Five repeats of 10-fold cross-validation were performed to select
the optimal number of species used for the model. The random
forest variable importance by mean decrease in accuracy and in
gini was calculated. The first three species with the lowest cross-
validation errors were used for the predictivemodel construction,
in which the receiving operational curve (ROC) was analyzed
and the area under the ROC (AUC) was calculated. To evaluate
the discriminatory ability of the model, an independent dataset
comprised of 16 patients (Test-P group, mentioned above) and
30 healthy controls (Test-H group) was used for validation. The
30 controls were randomly selected from the healthy control
group used in a type 2 diabetes (T2D) cohort study reported
previously (Qin et al., 2012). The original sequencing data from
these samples were downloaded from NCBI database and then
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FIGURE 1 | Changes in bacterial diversities in gut microbiota in TB patients compared with healthy controls. C, control; P, patients. (A) Comparison of the numbers of

species in the two groups. P = 1.94E-5, Wilcoxon signed-rank test. (B) Comparison of α-diversity (as assessed by the Shannon index). P = 2.84E-4, Wilcoxon

rank-sum test. (C) NMDS plots based on the relative abundance of genera. Values of NMDS axes 1 and 2 for three groups were box plotted on the top and the

right, respectively.

taxonomically profiled using the same procedure applied for our
samples as described above.

Metagenomic SNP Calling and
Phylogenetic Analysis
The identification ofmetagenomic SNPs was performed using the
Metagenomic Intra-species Diversity Analysis System (MIDAS)
(Nayfach et al., 2016). In brief, SNP calling was carried out
when species had sufficient sequencing coverage and depth.
First, a local bowtie2 database containing one representative
genome for each abundant species, was built. Reads in each
sample were then aligned to the genome to identify SNPs and
to estimate allele frequencies. The following filtering criteria
were used: ≥40% of the reference genome was covered with
>15× average depth; SNP sites were covered by ≥10 reads
in at least 20% of samples in each group. For heterozygous
SNPs present in a sample, the major allele was used for the
SNP analysis. Concatenated core-genome (commonly covered
genomic regions in different samples) SNPs were used for
phylogenetic analysis. The maximum likelihood (ML) tree was
constructed by MEGA 6 (Tamura et al., 2013) with 1000
bootstrap replicates.

Statistics
All statistical analyses were performed using R packages.
The Wilcoxon rank-sum test was used to compare
continuous variables. Two-tailed Fisher’s exact test was
used to compare differences in SNP distributions between
groups. Spearman’s rank test was performed to analyze the
correlation between species. When multiple hypothesis tests
were performed simultaneously, P-values were corrected
using Benjamini and Hochberg’s false discovery rate (FDR)
(Benjamini and Hochberg, 1995).

RESULTS AND DISCUSSION

Microbial Diversity is Decreased in TB
Patients
To characterize alterations in the gut microbiota in TB patients,
we analyzed the microbial composition and metabolic potential
of the gut microbiota in 61 samples from the C (n = 31)
and P (n = 30) groups (Table S1). Using MetaPhlAn2 for
taxonomic profiling, we identified 11 phyla, 156 genera and 400
species across the three groups (Tables S2, S3, S4). Compared
with the number of species present in the controls, the species
present in the patients was significantly decreased (P = 1.95E-5;
Wilcoxon rank-sum test; Figure 1A). Consistently, the Shannon
index, indicating within-sample (α) diversity, was much lower
for the P groups than that for the controls (P = 2.84E-
4; Wilcoxon rank-sum test; Figure 1B). NMDS analysis based
on genus relative abundance also revealed striking differences
between the C and P groups especially at the NMDS 2
axis (Figure 1C).

Gut Bacteria Associated With
M. tuberculosis Infection
We then compared the relative abundance of each identified
species across the two groups to identify the bacteria in
the human gut microbiota that are altered in response to
M. tuberculosis infection. We found that 25 species were
differentially enriched in the two groups. Among these species,
23 were enriched in healthy controls, while two were more
abundant in patients (Wilcoxon rank-sum test, FDR<0.1;
Figure 2A and Table S5). Strikingly, nine out of the 23 control-
enriched bacteria were widely reported SCFA-producing bacteria,
including five butyrate producers (Roseburia inulinivorans, R.
hominis, R. intestinalis, Eubacterium rectale, and Coprococcus
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FIGURE 2 | Relative abundances of differentially enriched species and metabolic pathways in the gut microbiota of the C and P groups. (A) Differentially abundant

species between the C and P groups. P-values for all differentially abundant species between groups are plotted above (Wilcoxon rank-sum test, FDR < 0.1,

respectively). Species (present in at least 10% samples) with mean relative abundances of more than 0.001 were considered. (B) Heat map showing the

control-enriched metabolic pathways and (C) the patient-enriched metabolic pathways. Among 110 differentially abundant pathways in the C and P groups (Wilcoxon

rank sum test, FDR < 0.1), 106 belonging to Biosynthesis, Degradation/Utilization/Assimilation and Generation of Precursor Metabolites and Energy are shown. The

pathways are ordered by consensus functional classification. The abundance of each pathway was converted to row Z scores.

comes), two lactate and acetate producers (Bifidobacterium
adolescentis and B. longum), and two acetate and propionate
producers (Ruminococcus obeum and Akkermansia muciniphila).
Only two species were found enriched in the patients, including
an unclassified Coprobacillus bacterium and Clostridium bolteae,
the latter of which is a frequently reported autism-associated
bacterium (Pequegnat et al., 2013) that has also been found to
be enriched in T2D patients (Qin et al., 2012). Interestingly,
both autism and T2D are closely connected with immune system
abnormalities (Goines and Van de Water, 2010; Brooks-Worrell

et al., 2012), and M. tuberculosis infections demonstrate strong
interactions with the human immune systems. A causal link
between mycobacterial infection and autism has been proposed
(Dow, 2011), while an increased risk forM. tuberculosis infection
in T2D patients has been recognized for centuries (Dooley and
Chaisson, 2009). Therefore, further investigation is required to
determine whether there is a shared alteration in immune signals
that induces the similarly observed enrichment of C. bolteae,
or vice versa, with respect to M. tuberculosis infection, autism
and T2D.
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Functional Profiling of the Microbiome in
TB Patients
In total, 110 metabolic pathways were found differentially
enriched between the C and P groups (Wilcoxon rank-sum
test, FDR<0.1; Table S6), among which 87 were over-
represented in the healthy controls (Figure 2B), while only
23 were enriched in patients (Figure 2C), suggesting an
overall decrease in metabolic potentials in TB patients.
One hundred and six of the 110 differentially enriched
pathways belonged to three metabolic categories: Biosynthesis,
Degradation/Utilization/Assimilation, and Generation of
Precursor Metabolites and Energy (Figures 2B,C; Table S6).
We identified 39 pathways associated with biosynthesis that
were enriched in the gut microbiota in the healthy controls. In
contrast, 19 biosynthesis pathways were observed to be more
abundant in TB patients. Interestingly, however, six vitamin
biosynthesis pathways related to folate, pantothenate, vitamin
B6, thiamine and flavin biosynthesis were highly represented in
TB patients, while only the biotin and ascorbate biosynthetic

pathways were more abundant in healthy controls. In addition to
biosynthesis, the degradation/utilization/assimilation capacities
for different types of substrates and the production of precursor
metabolites and energy were decreased in patients, as reflected
in the significantly lower abundance of 28 and 16 related
pathways, respectively. Notably, five pathways related to the
SCFA fermentation were strikingly decreased in TB patients.

This result coincided with our aforementioned findings, in which

SCFA-producing bacteria were significantly less abundant in
TB patients.

SCFAs exert remarkable effects on host inflammatory and

immune responses (Koh et al., 2016). The decreased abundance
of SCFA-producers has also been observed in the gut microbiota

in patients with inflammation-associated diseases, such as

inflammatory bowel disease (IBD) (Kostic et al., 2014), colorectal
cancer (Weir et al., 2013), and T2D (Qin et al., 2012). The
loss of SCFA producers and associated pathways in TB patients
may indicate elevated systemic inflammation and impairment
of the systemic immune response. However, increased SCFAs

FIGURE 3 | Random forest model to discriminate TB patients from healthy controls. (A) Five repeats of 10-fold cross-validation error. Relative abundances of 348

species in controls and patients (n = 31 and 30) were used to train the model. Each gray line indicates a repeat, and the red line indicated the average. The dashed

line indicates the number of species in the optimal set, which was determined to be 3 species. (B) Random forest Mean Decrease in Accuracy and Gini. Red circles

indicate the 3 species in the optimal set according to cross-validation in (A). (C) ROC for the training set. AUC = 0.846 and the 95% CI is 0.651–0.956 (controls, n =

31; patients, n = 30). (D) ROC for the testing set. AUC = 0.767 and the 95% CI is 0.614–0.920 (controls, n = 30; patients, n = 16).
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FIGURE 4 | Phylogenetic tree of B. vulgatus based on differentially distributed

core-genome SNPs. Fisher’s exact test was performed to test the differences

in SNP distribution (P < 0.01). The ML tree was constructed in MEGA 6 with

1,000 bootstrap replicates. Blue dots and red triangles indicate controls and

patients, respectively.

in the lungs of HIV patients after antiretroviral therapy has
been suggested to increase TB risk by suppressing IFN-γ and
IL-17A production (Segal et al., 2017). Therefore, the role of
SCFAs and the causality between active TB and the decrease of
SCFA-producing bacteria should be further defined.

Gut Bacteria Discriminate Active TB
Patients From Healthy Controls
To explore whether there were features of the gut microbiota that
discriminated M. tuberculosis infection status, we first employed
a random forest model to distinguish between healthy and
diseased states based on species abundance profiles. Five repeats
of 10-fold cross-validation using the training set (n = 31 and
30 for controls and patients, respectively) led to the optimal
selection of three species markers, Haemophilus parainfluenzae
and two butyrate-producing bacteria, R. inulinivorans and
R. hominis, for correct classification (Figures 3A,B). The
performance of the model using these three species for
discriminating, as assessed by the ROC analysis, achieved an
AUC of 84.6%, and a 95% confidence interval (CI) of 0.651–
0.956 (Figure 3C). The model also performed well when using
an independent test set consisting of 16 patients and 30 healthy
controls (Table S7), with an AUC of 0.767 and a 95% CI of
0.614–0.920 (Figure 3D).

Next, we performedmetagenome-wide SNP calling to identify
group-specific strains or SNPs. After filtering (see Methods),
six species, Bacteroides coprocola, B. stercoris, B. uniformis, B.

vulgatus, Phascolarctobacterium sp. and Prevotella copri, were
selected for a further SNP distribution analysis (Table S8). We
first compared the SNP density distributions of these six species,
but no differences were observed between the groups (one-
way ANOVA; Figure S1). In addition, samples belonging to
different groups did not separately cluster in phylogenetic trees
that were constructed based on the concatenated core genome
SNPs (Figure S2).

Among the six species, B. vulgatus was more prevalent in
the two groups, presenting in 70 samples, compared with the
other five species (Table S8). We therefore examined the SNP
distributions in the protein-coding regions for this species.
We observed that 46 SNPs in B. vulgatus were differentially
distributed between the two groups (Table S9). Phylogenetic
analysis of these differentially distributed SNPs revealed that the
control samples could be largely clustered together and were
separated from the P samples, suggesting the presence of distinct
mutation patterns in the species between the different groups
(Figure 4). The phylogenetic analysis also indicated that the
SNPs in this species were more divergent in healthy controls
than those in the patients, as reflected by the differences in tree
branch length.

We then determined in which genes these differentially
distributed SNPs were located in. Interestingly, they were
harbored within more genes associated with carbohydrate
metabolism: eight SNPs were located in seven carbohydrate
metabolism genes including those encoding β-galactosidase,
α-N-arabinofuranosidase, α-1, 2-mannosidase, rhamnulokinase,
Rhamnogalacturonides degradation protein, β-galactosidase and
D-lactate dehydrogenase (Table S9). These results may suggest
an altered carbohydrate preference and a resulting different
carbohydrate metabolism patterns in the gut bacteria of TB
patients. We should mention that our metagenomic sequencing
data cannot ensure enough coverage and sequencing depth
for the SNP calling of all bacterial species identified in
our samples. In addition to the results we presented here,
variations in other species and bacterial genes still need to
be identified by using new sequencing strategies such as
MetaSort (Ji et al., 2017).

CONCLUSION

We applied the metagenomic sequencing approach to
characterize the features of gut microbiota in TB patients.
We demonstrated that the gut microbiota as well as its metabolic
functions were significantly altered in TB patients. The gut
bacterial species-based classifier or the strain-level SNPs have
the ability to discriminate healthy from TB patients. Though
we found a significant dysbiosis of the gut microbiota in TB
patients, the causal relationship still needs to be determined.
It is likely that these changes were caused by M. tuberculosis
infection based on the similar results observed in murine model
after M. tuberculosis infection (Winglee et al., 2014). However,
the possibility that the dysbiosis of gut microbiota precedes
and contributes to the M. tuberculosis infection, as suggested
previously (Khan et al., 2016), cannot be excluded. Moreover, we
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should mention that, as only TB patients and healthy controls
were included in this study, we are not clear if the gut bacteria
and the suggested model have the ability to discriminate TB
patients from other non TB-patients. Also, to be a potential
diagnostic method for TB in the future, the accuracy and
specificity of the gut microbiota-based strategy should be further
validated in large-scale sampling studies. Finally, the findings
we presented here were observed in patients with active TB
infection; the gut microbiota signature in latent TB infection still
needs to be investigated.
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