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SARS-CoV-2 main protease (Mpro) involved in COVID-19 is required for maturation of the virus and infec-
tion of host cells. The key question is how to block the activity of Mpro. By combining atomistic simula-
tions with machine learning, we found that the enzyme regulates its own activity by a collective allosteric
mechanism that involves dimerization and binding of a single substrate. At the core of the collective
mechanism is the coupling between the catalytic site residues, H41 and C145, which direct the activity
of Mpro dimer, and two salt bridges formed between R4 and E290 at the dimer interface. If these salt
bridges are mutated, the activity of Mpro is blocked. The results suggest that dimerization of main pro-
teases is a general mechanism to foster coronavirus proliferation, and propose a robust drug-based strat-
egy that does not depend on the frequently mutating spike proteins at the viral envelope used to develop
vaccines.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

COVID-19 is an ongoing pandemic threatening the lives and
well-being of people across the globe [48]. A key means of curbing
the pandemic is the development of vaccines. However, it is
equally important to develop drugs to treat patients with the dis-
ease, and to prevent the proliferation of SARS-CoV-2 in the host.
To determine a viable drug target, the key objective is to identify
an indispensable mechanism in the viral replication cycle that
can be targeted by potential therapeutic agents. From this perspec-
tive, the main protease (Mpro) of SARS-CoV-2 has been recently
selected as a lucrative drug target due to three reasons [8]. First,
its substrate specificity is unique [43]. Mpro cleaves the amide link-
age in the viral polypeptide at 11 conserved locations defined by a
fixed motif at a position after a conserved glutamine (Q) residue in
the target sequence [52]. No human protease is known to have this
brand of specificity [20]. Second, Mpro is essential for the matura-
tion of the viral particles, thus inhibiting its action will severely
hamper the virus’s ability to spread to a human host [15]. Third,
given that viral proteases are commonly tested drug targets in viral
diseases such as HIV and Hepatitis C [1,13,36], pre-existing drugs
developed to block protease function, and whose safe use in
humans has already been established, can be repurposed for
speedy drug discovery [14,23,31,35,42,43].

Mpro is a cysteine protease with a well-determined target
sequence (-TSAVLQSGFRKM-) [7,37,45,46,50]. It has two main cat-
alytic residues [40,45,46]: a cysteine residue (C145) and a histidine
residue (H41) as illustrated in Fig. 1a and b. These residues reside
within a substrate binding cleft facing each other. H41 forms a
thiolate-imidazolium ion pair with C145 and extracts a proton
from it. The deprotonated C145 then initiates a nucleophilic attack
on the carbonyl carbon of a sessile peptide bond in the target sub-
strate [40,45,46]. Thus, for the initiation of the chemical reaction
mechanism, these two catalytic residues must reside close to each
other at a distance less than 4 Å and in a configuration where the
proton donor and acceptor face each other to form a stable hydro-
gen bond.

The Mpro enzyme monomer is composed of three domains
(Fig. 1a) [51]. Domains 1 and 2 contain the substrate-binding cleft,
which contain the catalytic residues (Fig. 1a and b). Domains 2 and
3 are involved in the oligomerization of the enzyme. In this work,
we refer to the apo and substrate-bound Mpro in the monomeric
form as M� and M+, respectively. The dimeric form of Mpro can
assume three different substrate-bound states: the apo state, the
singly-bound state (in which only one of the protomers is bound
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Fig. 1. The structure of Mpro. a. The monomer is composed of three domains. b. The substrate-binding cleft region magnified. The monomeric enzyme (light blue) bound to
the substrate analogue (red) with the catalytic residues H41 and C145 highlighted. c. Mpro in a dimeric form. The substrate-binding cleft and the substrate shown in red are
depicted. d. The consensus sequence of the substrate with the cleavage site indicated. e. The dimer interface of Mpro shown in dark blue. The bound substrate is shown in red.
The locations of all known mutations in the enzyme are shown in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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to the substrate), or the doubly-bound state (in which each pro-
tomer is bound to one substrate). We refer to the apo Mpro dimer
as D�D�, the singly-bound Mpro dimer as D+D�, and the doubly-
bound dimer as D+D+. Following the same logic, D� denotes an
apo protomer in a dimeric Mpro, and D+ denotes a protomer bound
to a substrate in a dimeric enzyme. The enzyme has been sug-
gested to be allosteric [11,17], meaning that one chain of the dimer
regulates the activation of the other chain. Importantly, Mpro can
form a homodimer (Fig. 1c), which may be necessary for the acti-
vation of enzymatic activity of the protein [5,6,17,29].

Although numerous crystal structures of Mpro are now available
in the PDB database [PDB IDs: 6Y2E/F/G [51], 6WTK/M/J [44], 7BUY
[24], 6WTT [32]], how the dimerization and substrate binding
affect the enzymatic activity remain open questions. Does the sub-
strate first bind a monomer, leading to dimerization? Or does
dimerization take place first, followed by substrate binding? Most
importantly, what exactly is the role of dimerization, and how
would a decrease in dimerization help inhibit the functionality of
Mpro?

In this work, we addressed these questions using extensive ato-
mistic molecular dynamics (MD) simulations combined with
machine learning (ML) techniques used to analyze �370 ls of
all-atom MD simulation data. We simulated the Mpro enzyme in
monomeric, dimeric, apo, and singly- and doubly-bound states
(Table 1). Here, we focus specifically on two key aspects of the Mpro

function: substrate binding and catalytic efficiency, which we elu-
cidate through several intriguing structural features revealed by
the ML analysis. The results suggest that the enzymatically active
form of Mpro is dimeric due to its higher substrate-binding affinity
and catalytic efficiency. Detailed analysis further unveiled a func-
tional mechanistic pathway, in which substrate binding follows
the formation of the Mpro dimer. The details of the simulation mod-
els, simulation approaches and ML-based analysis techniques are
provided in Methods.

Insights gained through this work suggest drug-based ways to
prevent Mpro dimerization and propose that dimerization of main
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protease may be a more general mechanism used by viruses to fos-
ter viral proliferation. Further, in the specific context of COVID-19,
vaccinations to prevent it are based on making fragments of the
SARS-CoV-2 virus spike proteins, with the aim of triggering an
immune response. However, given that continuous mutations in
these spike proteins reduce the effectiveness of the vaccines, it is
clear that a complementary strategy to prevent COVID-19 would
be to inhibit the activity of the main protease, as it would not be
dependent on mutations in the spike proteins.
2. Methods

2.1. Atomistic molecular dynamics simulations

We used the GROMACS 2020.1 simulation package [30] for our
atomistic molecular dynamics (MD) simulations. The simulation
inputs were generated with CHARMM-GUI [25]. The simulations
of Mpro were performed for both a dimer and a free monomer,
whose coordinates were obtained from the PDB ID 6LU7. The sim-
ulations were carried out at 310 K with 150 mM KCl using a cubic
box with initial dimensions 10�10�10 nm3, filled with �33000
water molecules. The force field used for the protein was Amber
ff14SB [33] with compatible parameters for salt ions [26]. For
water, we used the TIP3P [49] parameters. The Particle Mesh Ewald
[9] technique was used to calculate electrostatic interactions. For
short-range van der Waals interactions, we used a cut-off of
1.0 nm as parameterized for the Amber ff14SB [33]. The LINCS
[19] algorithm was used to constrain the covalent bonds in the
protein. Systems were equilibrated under NVT conditions and then
simulated in production runs in the NpT ensemble at 1 atm using a
timestep of 4 fs obtained by using heavy-hydrogens and reducing
their oscillatory frequencies, thus slowing down the fastest degrees
of freedom [21].

As to the substrate (Fig. 1d), we created a substrate analogue
which we inserted in the binding site by replacing the drug N3



Table 1
Simulation systems. The table lists the variants of Mpro systems. Nsim – the number of simulation repeats; tsim – the simulation length per repeat; ttot – total length of simulated
trajectories. Double mutant has the R4A and E290A mutations, which were implemented to the enzyme structure [34,38]. The descriptions 1A and 1B stand for one substrate per
dimer bound to chain A or chain B, respectively. In all systems, the initial structure of the protein was taken from the PDB ID: 6LU7.

System name Protein state Protein variant Substrate Nsim tsim (ls) ttot (ls)

Apo-monomer (M�) Monomer wild-type – 100 2 200
Bound monomer (M+) Monomer wild-type 1 20 2 40
Apo-dimer (D�D�) Dimer wild-type – 20 2 40
Doubly-bound dimer (D+D+) Dimer wild-type 2 20 2 40
Singly-bound dimer (chain A) (D+D�) Dimer wild-type 1A 10 2 20
Singly-bound dimer (chain B) (D�D+) Dimer wild-type 1B 10 2 20
Double mutant Dimer R4A, E290A – 5 2 10
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bound in the crystal structure. The initial coordinates (orientation
and conformation) of the substrate in the binding site were
obtained using structural alignment with the crystal structure of
substrate-bound SARS-CoV Mpro (PDB ID: 2Q6G) using the canoni-
cal substrate sequence [7,37] characteristic for SARS-CoV and
SARS-CoV-2 Mpro. All variant forms of the monomer and the dimer
bound to the substrate were explored. We thus simulated the
monomer in apo (M�) and substrate-bound (M+) conditions. Simi-
larly, the dimer was considered in its apo form (D�D�), doubly-
bound state (D+D+; the substrate bound to both chain A and chain
B), and the two singly-bound states where the substrate is bound
to either chain A or chain B (D+D� and D�D+).

Each case was simulated for 2 ls through 10–120 independent
replicas (Table 1). For the analysis of the simulation data, we dis-
carded the first 250 ns of all trajectories and an equal number of
data frames were selected from each state to avoid any statistical
bias. The total simulation time was 370 ls. Protein structures were
visualized with VMD [22].
2.2. Determinant of substrate binding

To have an objective measure of the substrate binding capacity
of the enzyme, we created a model to represent the accessibility of
the substrate-binding cleft in the enzyme binding site. From visual
inspection of simulation trajectories, we chose five residues (T24,
M49, N142, E166, N189) that flank the cleft. From the C-alpha
atoms of these five residues (Fig. S1c) we built a polygon whose
area acts as a proxy for the visibility of the substrate-binding cleft.
This area was computed for both the monomer and the dimer in
both apo and substrate-bound forms. Results for the polygon area
were observed to be in very good agreement with visual identifica-
tion of the tightly bound and loosely bound substrates in the active
site (Fig. S1a and b).
2.3. Free energy calculations

We calculated the relative binding free energies of the Mpro-
substrate complexes by the Molecular Mechanics-Poisson–Boltz
mann Solvent-Accessible surface area (MMPBSA) method [3], using
the g_mmpbsa tool [28]. The MMPBSA data were calculated from
the substrate-bound systems (Table S1) at every 10 ns of each tra-
jectory. The final free energy values were obtained by taking an
average of all the simulation replicas in a given system. The
MMPBSA method calculates the binding free energy of a protein-
substrate complex, focusing on its enthalpic component, and
assuming that the entropy of binding is similar and the differences
in the DDS � 0. Consequently, the key importance of the results
given by this method lies in the qualitative trends it observes
rather than in quantitative figures. These free energy calculations
indicated that the free energy of binding was the largest in systems
where the binding cleft area was the smallest, and vice versa.
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2.4. Machine learning: Background

We used two machine learning methods for characterization:
the Gaussian Mixture Model (GMM) and the Partial Least Squares
based Functional Mode Analysis (PLS-FMA) model. The GMM is
used to indicate how different enzyme states are determined by
the orientation of the catalytic residues. This allows us to classify
these states with a quantitative and statistically robust parameter
that can indicate their catalytic activation. Meanwhile, the PLS-
FMA model is a robust technique to infer how the dynamics of
the rest of the enzyme is specifically correlated to the catalytic
residues.
2.5. Machine learning: Construction of the Gaussian Mixture model

As a direct indicator of the catalytic efficiency of the enzyme, we
used the orientations of the catalytic residues C145 and H41. To
simplify presentation, these complex variables were described by
two distances: dCA as the distance between the C-alpha atoms of
the two residues. and dSidechain as the distance between the CE1
atom of H41 and the S atom of C145 (Fig. 2c). To detect individual
clusters in the distribution defined by these distances, we pooled
all the MD simulation data (Table S1) together (Fig. 2a) to build a
machine learning-based Gaussian Mixture Model (GMM) [12] to
optimally separate the clusters. GMM is a probabilistic model that
assumes data points to be generated from a mixture of Gaussian
distributions. The choice of this model was motivated by observing
the elliptically distributed data points in the raw representation of
the coordinates selected for the clustering (Fig. 2a). For our GMMs,
we used the Scikit-learn [2] package BayesianGaussianMixture. The
model was initialized with centers selected by the k-means clus-
tering technique.

We shuffled our pooled dataset of �400,000 points and ran-
domly picked 10,000 points to build a GMM over this trial set
(Fig. 2a). We used the Aikake Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) (Fig. S2b) [16] to choose the
number of clusters that minimize the penalty score that indicates
overfitting. Once this score can no longer be minimized, further
addition of cluster centers leads to an overfitted model. Based on
our judgment from the BIC and AIC curves, we chose a five-
cluster model, since beyond this number there is little decrease
in the penalty. To confirm that the five-cluster model was robust
in prediction tasks, we repeated the model building with 10 non-
overlapping training sets of 10,000 points each from the pooled
data and built independent GMMs from each set. We then used
these GMMs to predict labels for a reserved data set of 10,000
points (test set). The standard deviation of the prediction labels
obtained for the test set from the 10 GMMs developed on the train-
ing sets were then used to judge the robustness of the models. Low
standard deviations for all individual clusters implied that the clus-
tering performed with the training sets leads to high-fidelity pre-
dictions in the test set, validating robustness (Fig. S2c).



Fig. 2. Gaussian Mixture model (GMM) for estimating catalytic efficiency. a. Simulation data illustrated in terms of dCA (the distance between the C-alpha atoms of the
catalytic residues) and dSidechain (the distance between the side chains of the catalytic residues). b. Cluster determination by the GMM. The colored circles on the clusters
represent observed crystal structures currently available on the PDB. c. Representative conformations of the catalytic residues from each cluster.
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2.6. Machine learning: Partial least squares based functional mode
analysis (PLS-FMA)

We used machine learning (the PLS-FMA method [27]) to build
a mechanistic model of protein dynamics associated with the coor-
dinates of interest (function). The PLS-FMAmodel identifies a set of
highly correlated collective atomic motions, i.e., a collective mode,
that has a maximal linear correlation with a function of interest
calculated from the simulation data. This collective mode can be
composed of several components, each of which is highly correlated
to the function of interest and orthogonal to each other. The
cross_decomposition.PLSRegression module from scikit-learn was
used to perform the PLS-FMA analysis. We used all the heavy
atoms of the backbones and side chains to train the model.

The dSidechain and the binding cleft area coordinateas described
above were used as the target functions on which the PLS-FMA
model was trained. Only the monomeric simulations in the apo
form (M�) were used to create this model. The model was vali-
dated by using only a half of the simulation data set to train the
model, while reserving the other half for cross-validation. The coef-
ficient of determination (R2) for the cross-validation set was used
to check that the model was not overfitted. We found that the R2

value for the dSidechain coordinate was saturated with 15 compo-
nents, indicating that adding more components would lead to
overfitting. The R2 with 15 components was >0.8, thus leading to
a robust model that was used for the analysis of the simulation
data. For the binding cleft area coordinate, the model was found
to reach an R2 value >0.8 with five components (Fig. S6). The collec-
tive modes for the dSidechain and the binding cleft area coordinates
are illustrated in Movie S1 and S2, respectively.

3. Results

3.1. The dimer interface is strictly conserved

To get an idea of the evolutionary stress of the various parts of
the enzyme, we combined all the reported mutations in the struc-
ture of Mpro to date [18]. These are shown on the enzyme surface as
illustrated in Fig. 1e. All known mutations are distributed evenly
on the enzyme surface including the area of the catalytic cleft
3339
but are absent from its dimerization interface. This indicates that
the virus does not tolerate any modification at the dimerization
interface of Mpro, highlighting that the residues responsible for
dimerization are crucial for the function of Mpro and the matura-
tion of SARS-CoV-2. This is the fundamental reason why, in this
work, we focus on the dimer interface.

3.2. Active site is characterized by five states, one of them being active

The catalytic efficiency of Mpro was assessed based on the
geometry of the catalytic residues H41 and C145. For efficient pro-
ton extraction from the thiol group of C145 by H41, these catalytic
residues must be brought close to each other. Additionally, they
must be in a correct orientation to form a hydrogen bond such that
the side chains face each other to lead to a formation of a catalytic
dyad that can participate in a proteolytic reaction mechanism. We
studied the behavior of H41 and C145 using two figures of merit:
the distance between the C-alpha atoms of these catalytic residues
(dCA), and the distance between the sulfur atom of thiol in C145
and the Ce carbon atom of the imidazole ring of H41 (dSidechain)
(Fig. 2). The coordinate dCA indicates how the backbone atoms of
the catalytic residues are positioned, while dSidechain is an indicator
of the proximity of the functional groups of the residues. The
results based on the analysis of �370 ls atom-scale molecular
dynamics (MD) simulation data of both Mpro monomers and
dimers (Table 1) are depicted in Fig. 2a. The distribution of these
coordinates in a variety of bound states is shown in Fig. S2a.

To analyze these data, we used a machine learning method
known as the Gaussian Mixture Model (GMM, see Methods). In
essence, we used the distributions of the different states
(Fig. S2a) to build the GMM, which identified five clusters shown
in Fig. 2b. Each of these clusters represents a distinct characteristic
geometry of the catalytic residues. The structures closest to the
centers of the GMM clusters are shown in Fig. 2c. Cluster 1 repre-
sents the activated configuration of the catalytic residues where
the backbone atoms of the two residues are maximally separated,
but the sidechains are in proximity. The orientation of the two
head groups of these sidechains is ideally suited for the formation
of the catalytic dyad, as the Nd atom of H41 directly faces the thiol
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group of C145. In this configuration, the hydrogen bonding for the
proton transfer is expected to be optimal. Analysis of the simula-
tion data showed that this is the case: hydrogen bonding was
found to be present in �80% of the cluster members. Although
Cluster 2 has similar values for dCA and dSidechain as Cluster 1, the
plane of H41 in Cluster 2 is turned away from the thiol group of
C145. This makes the extraction of the proton by H41 difficult. This
was expressed as a lower hydrogen bonding capacity, which
decreased to 41% within these cluster members. Thus, Cluster 2
is not favorably suited to form the catalytic dyad. In Clusters 3
and 4, the H41 sidechain plane is far from the thiol group
(Fig. 2c), which is also inefficient for dyad formation. Cluster 5 rep-
resents another inactive configuration, since the distance between
the two catalytic residues is unsuitable for dyad formation.

Altogether, our results provide compelling evidence that the
catalytic residues of Mpro have five different states, and only one
of them (Cluster 1) is catalytically active.

3.3. The substrate binding cleft has two distinct states: Tightly and
weakly bound

We used our atom-scale simulation data to analyze the
substrate-binding capacity of Mpro, which in practice was imple-
mented by representing the accessibility of the substrate-binding
cleft with the area of a polygon that forms the cleft surface
(Fig. S1c). In essence, a large area indicates that the cleft is open
and the substrate can only bind loosely, while a small area indi-
cates strong binding. This analysis revealed that the binding cleft
(Fig. 1c) can bind the substrate either tightly (Fig. S1a) or weakly
(Fig. S1b). We have discovered through free energy calculations
that a smaller area of the binding cleft corresponds to tighter bind-
ing through a lower (more negative) value of binding free energy,
and vice versa.

3.4. Monomeric Mpro has low substrate affinity

The apo-monomer (M�) has a very flexible binding cleft (Fig. 3a)
characterized by large fluctuations of the cleft area. The substrate-
bound monomer (M+; Fig. 3b), on the other hand, has a stable but
large cleft area (�75 Å2), where the flanking residues that enclose
the binding site face away from the cleft. This informs that mono-
meric Mpro cannot bind the substrate tightly, since even when the
substrate is bound to the monomeric Mpro, the substrate may slip
out of its cleft. Free energy calculations also indicated that the
monomeric Mpro has a much lower affinity for the substrate than
the dimeric states.

Cluster 1, which represents the activated configuration of the
catalytic residues, occupies �30% of the population of the apo-
monomer (M�, Fig. 3c). In the substrate-bound monomer (M+),
Cluster 1 occupies �75% of the population (Fig. 3d), indicating that
the catalytic residues are oriented ideally for forming a dyad. How-
ever, given that the affinity of the substrate for the binding cleft of
monomeric Mpro is low, the catalytic potential of the enzyme in the
monomeric state is expected to be low, too.

3.5. Dimeric Mpro is specialized for substrate binding

To resolve how dimerization affects substrate affinity, we stud-
ied various substrate-bound states of the Mpro dimer, including the
apo-dimer (D�D�), as well as the singly- (D+D�) and doubly-bound
(D+D+) forms (Table 1). The D�D� chains have a flexible substrate-
binding cleft, like that of the apo-monomer (M�; Fig. S3a and b; cf.
Fig. 3a). In D�D�, the catalytic residues are distributed across the
five clusters. The population of either chain being in Cluster 1 is
around �25%, like in the apo-monomer (Fig. S3c and d; cf.
Fig. 3c). The doubly-bound dimer (D+D+) has a rigid substrate bind-
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ing cleft (Figs. S4a and b), and unlike the substrate-bound mono-
mer (M+; Fig. 3b), the cleft is narrower with an area of � 60 Å2

(Figs. S4a and b). Cluster 1 has the highest population (�40%) for
each chain (Figs. S4c and d). For D+D�, we find that the apo pro-
tomer (D�) (Fig. 4a) behaves like the apo-monomer (M�) with
respect to the area of the substrate-binding cleft (Fig. 3a). Mean-
while, the substrate-bound protomer (D+) has a narrow and rigid
cleft (Fig. 4b). All residues that flank the cleft in D+ point into the
cleft, blocking the substrate from escaping (Fig. 4b inset). D� in
the singly-bound dimer has a population of �30% in Cluster 1
(Fig. 4c), while in the bound one it is �63% (Fig. 4d). This behavior
does not depend on which chain the substrate is bound to, as
expected.

These data indicate that only the singly-bound dimeric state
(D+D�) is capable of both binding the substrate and maintaining
an active dyad configuration of the catalytic residues.

Additionally, we found in all dimeric simulations that the C-
terminus of one protomer can shield the substrate-binding cleft
of the other protomer (Fig. S1d). To estimate this probability, we
calculated a distribution for the distance from the C-terminus to
the C-alpha atoms of the catalytic residue C145. To effectively
block the exit of a substrate from the substrate-binding cleft, or
to block entrance to this cleft, this distance should be 10 Å or less.
We found that this condition is satisfied in �20% of the population
in this distribution. This shielding is an additional barrier for the
entry to (or the release of the substrate from) the active site, sug-
gesting that this barrier could increase the residence time in the
binding cleft to increase catalytic potential. Quantum-mechanical
calculations would be needed to confirm this hypothesis.

3.6. Dimer forming interactions are coupled to the catalytic residues
and the accessibility of the binding cleft

Our results revealed that the primary variable differentiating
active Mpro enzymes from inactive ones are the dSidechain distance
and the cleft area coordinate. We identified the intrinsic collective
mode of the protein that is highly correlated with dSidechain and the
cleft area using the PLS-FMAmachine learning algorithm (see SI) to
analyze the atom-scale simulation data. We found through cross-
validation studies of our simulation data that for the dSidechain coor-
dinate, the PLS-FMAmodel was maximally predictive with 15 com-
ponents. The collective mode composed of these 15 components is
visualized in Movie S1. For the cleft area coordinate, the PLS-FMA
model was optimally predictive with 5 modes and is visualized
in Movie S2. Analysis of the collective modes demonstrates that
the dSidechain coordinate is tightly coupled to an inter-subunit
salt-bridge pair formed between the residues R4 and E290
(Fig. 5a, Movie S1). We also observed that domain 3 of the
substrate-bound Mpro monomer (M+) undergoes large-scale bend-
ing motions along the longitudinal axis of the enzyme, introducing
the bending angle h as a complementary key variable for this anal-
ysis (Fig. 5b). For decreasing values of h, one observes the salt
bridges to break (Fig. 5c and d), which indicates lower ability for
formation of dimers. Our results indicate that the average bending
angle for M+ is much smaller (about 175 degrees) than for the
dimer (�220 degrees), and for M� the bending angle (about 205
degrees) is more consistent with the dimer.

To understand how the salt-bridge pair as well as the substrate-
binding cleft and the bending angle behave in the collective mode,
we explored the behavior of all three quantities against dSidechain.
Fig. 5c shows that the salt-bridge pairs break as the distance
between the side chains of the catalytic residues increases. The
bending angle decreases along the collective mode as dSidechain
increases, retracting domain 3 away from the dimerization inter-
face (Fig. 5d). The area of the substrate-binding cleft increases
along the collective mode as dSidechain increases (Fig. 5e). As



Fig. 3. Substrate affinity and catalytic potential of the Mpro monomer. a. Distribution of the area of the substrate-binding cleft of the apo-monomer (M�). b. Distribution of
the area of the substrate-binding cleft in the substrate-bound monomer (M+). The red dashed line illustrates the maximum of the distribution of the bound monomer. Shown
in the inset is the structure of the substrate-binding cleft of M+ at an area of the substrate binding cleft matching the maximum of the distribution. The polygon formed from
the C-alpha atoms of the residues surrounding the cleft is shown with a black dashed line. c,d. The cluster populations of M� and M+. Cluster numbering corresponds to Fig. 2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Substrate affinity and catalytic potential of a singly-bound Mpro dimer. a. Distribution of the substrate-binding cleft area in a singly-bound dimer (D+D�): the chain
not bound to the substrate (D�). b. As in panel A, but now for the chain bound to the substrate (D+). The black dashed line illustrates the maximum of the distribution for
D+D�. For comparison, the red dashed line illustrates the maximum of the distribution of M+(see Fig. 3b). The inset describes the structure of the substrate-binding cleft of the
substrate-bound chain at an area of the substrate binding cleft matching the maximum of the distribution. The polygon formed from the C-alpha atoms of the residues
surrounding the cleft is depicted with a black dashed line. c,d. The cluster populations of D+D�: the unbound chain, and the chain bound to the substrate. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Machine Learning model based on the dSidechain coordinate. a. Inter-chain salt-bridges between the residues R4 and E290. b. The definition of the bending angle to
quantify the motion of domain 3 of Mpro. The C-terminus is shown as a curved dark green curve attached to domain 3. Color scheme used here is consistent with the color
scheme in Fig. 1a. c. Distance between the side chains of the inter-subunit salt-bridge forming residues as a function of dSidechain. d. Bending angle as a function of dSidechain. e.
Area of the binding site interface as a function of dSidechain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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dSidechain increases linearly along the collective mode, the corre-
sponding value of dSidechain is shown on the x-axis of Fig. 5e. Fur-
ther, the bending angle was observed to be highly correlated
with the potential ability of a monomer to form strong salt-
bridges. The substrate-bound (M+) case demonstrated predomi-
nantly higher propensity towards broken inter-subunit salt-
bridges at the dimeric interface (Fig. S5a). Its bending angle, as
defined in Fig. 5b, is also smaller compared to the dimeric forms
and fluctuates more than M� (Fig. S5b). Additional data (Fig. S5c
and d) demonstrate the strong correlation of these inter-subunit
salt-bridges with the bending angle in the two monomeric states.
The dimeric state, on the other hand, shows little variation in the
bending angle (Fig. S5b and d).

A complementary PLS-FMA model developed for the binding
cleft area revealed concerted dynamics of inter-domain salt-
bridges, shown in Fig. 6a, along its predicted collective mode. As
the area of the cleft increases, one observes the formation of a
salt-bridge between the residues R40 of domain 1 and D187 of
domain 2. This is accompanied by the breaking of a salt-bridge
between D153 and R298 of domains 2 and 3, respectively, while
simultaneously forming a salt-bridge between the residues R131
and D289 of domains 2 and 3 (Fig. 6b). These rearrangements are
correlated to the the dimer-forming interface, potentially strength-
ening the salt-bridge it can form with the E290 residue of the sec-
ond chain (Fig. 6c). Interestingly, R40 sits directly in the
neighborhood of the catalytic residue H41 and influences its rear-
rangement and formation of the catalytic dyad by affecting the
dSidechain coordinate (Fig. 6d). Combined inference from Fig. 6c
and d indicates that the formation of the dimeric interfacial salt-
bridges assists the formation of the catalytic dyad by bringing
the catalytic residues together. This collective mode (Movie S2)
highlights the mechanism of transmission of information from
the substrate binding site to the dimerization interface. We further
verified the relevance of the salt-bridges identified in this collec-
tive mode by analysing the conservation of the residues involved
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in a variety of coronavirus orthologs (Fig. 6e). We found that the
residues involved in the salt-bridge between domains 1 and 2
are uniformly conserved in all the sequences available from the
PDB database for the Mpro enzyme. In essence, other salt-bridges
also show substantial sequence conservation of the charges of
the residues (>60%), indicating functional relevance.
3.7. Mutations in the inter-chain salt-bridge inactivate the enzyme

The machine learning analysis of the simulation data predicts
that the inter-chain R4-E290 salt-bridges are critical for the activa-
tion of the catalytic site and thereby Mpro function. To test the
validity of this hypothesis, we performed additional atomistic sim-
ulations where we doubly mutated the salt-bridge forming resi-
dues to alanine in the apo dimer (D�D�). Fig. 7 shows the effects
of these mutations on the cleft area and the distribution of the
clusters. The cluster populations for the mutated dimer demon-
strate that the population of Cluster 1, representing the active
state, is drastically suppressed to 5–8%, which is the lowest value
observed for any state simulated in this work. In brief, our results
are consistent with the view that the impairment of the inter-chain
R4-E290 salt-bridges alters the configuration of the catalytic resi-
dues and hinders the formation of the dyad structure necessary
for catalysis. In silico mutations of the interfacial salt bridge resi-
dues confirm the allosteric coupling between the catalytic site
and the dimer interface, as predicted by the machine learning
model.
4. Discussion and conclusions

We combined extensive atomistic simulations with machine
learning methods to investigate the dynamics of Mpro under condi-
tions that describe substrate binding and dimerization. Using this
approach, we developed a mechanistic model for its structure-



Fig. 6. Machine Learning model based on the binding cleft area coordinate. a. Intra-chain salt-bridges that rearrange along the collective mode. Anionic residues are
shown in red and the cationic residues in blue. Domain colors for the protein correspond to the color scheme used in Fig. 1a. b. Rearrangement of the salt-bridge distance as a
function of the binding cleft area. DI – DII, DII – DIII (1), DII – DIII (2), and DIII – DIII indicate a salt-bridge between the residues R40-D187 of domains 1 and 2, the residues
R131-D289 of domains 2 and 3, the residues R298-D153 of domains 2 and 3, and the residues R298-D295 of domain 3, respectively. c. Distance between the side chains of the
inter-subunit salt-bridge forming residues (R4 and E290) as a function of binding cleft area. d. dSidechain as a function of the binding cleft area. e. The salt-bridge forming
residues of SARS-CoV-2 Mpro (R40, D187, D131, D197, D153, D295, D298) are aligned with analogous residues of other 15 coronavirus orthologs for which the structures of
Mpro are available. The PDB IDs for these structures are shown in the first column and the corresponding strains are shown in the last column. Mpro orthologs were aligned
with multiple sequence alignment [38]. Positively and negatively charged residues are highlighted with blue and orange colors, respectively. Identified intra-subunit salt
bridges are marked using dashed lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Substrate affinity and catalytic potential of the double mutant in the Mpro dimer. a,b. Distributions of the area of the substrate-binding cleft of the double mutant:
chains A and B. The red dashed line depicts the maximum of the distribution of the bound monomer (Fig. 3b). c,d. The cluster populations of the double mutant: chains A and
B. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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function relationship. Our model revealed the activation mecha-
nism of Mpro.

The analysis of structural Mpro data revealed that although a
large number of different mutations have been observed for this
enzyme, none of them are at the dimerization interface of Mpro,
which strongly suggests that the functional state of Mpro is a dimer.
The results of atomistic simulations support this view and depict a
detailed picture of the mechanism of the enzyme’s function. The
ML analysis unveiled that the affinity of the substrate for the
substrate-binding cleft of monomeric Mpro is likely so low that
the enzyme cannot use its high catalytic potential in the mono-
meric state. In essence, monomeric Mpro has low catalytic poten-
tial, as it cannot bind the substrate with high affinity.
Meanwhile, in the dimeric structure a majority population of at
least one chain exists in a form that is capable of both binding
the substrate and maintaining a configuration of catalytic residues
that can form an active dyad structure. Therefore, the functional
state of Mpro is dimeric. The results revealed that even then the
enzyme is active primarily in a state where the dimer is bound
to only one substrate. This implies that the dimer is specialized
for substrate retention, and the singly-bound dimeric (D+D�) form
is ideally suited for catalysis.

Importantly, our results reveal that activation of Mpro requires
dimerization, followed by substrate binding. Fig. 8 illustrates the
model supported by our data. It postulates two main pathways
for activation. In the first one, a monomer first binds to the sub-
strate and then attempts to form a dimer. However, in this scenar-
io, the inter-chain salt-bridges between R4 and E290 cannot be
formed effectively due to large structural changes at the dimeric
interface (Fig. 5a-d). Also, the bound monomer (M+) is trapped in
a low-affinity state, even though it has a highly active configura-
Fig. 8. Predicted pathways for the activation of Mpro. The primary mechanism of acti
substrate tightly bound to an enzyme, leading to a high-catalytic potential state (shown
the binding of two tightly bound substrates (shown by a blue arrow) but the catalytic po
Cluster 1). In a different scenario, where a monomer first binds to the substrate and th
substrate (shown by a red arrow). However, in this case the salt bridges stabilizing the d
The C-terminus is shown as a curved dark green curve attached to domain 3. (For interp
web version of this article.)
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tion of the catalytic residues. In the second pathway, two mono-
mers first form a dimer, after which the dimer is associated with
either one or two substrates. Both monomers of the dimer have a
similar high-affinity binding to the substrate as indicated by free
energy calculations. However, the singly-bound dimer (D+D�) is
catalytically more efficient, suggesting D+D� as the most active
form.

These functional predictions can be tested in vitro. First, our
results predict that monomeric Mpro has a low affinity for the sub-
strate, which can be tested by, e.g., measuring the KM with
Michaelis-Menten kinetics. Second, our results predict that the
mutations E290A and R4A lead to an enzyme whose dimerization
is low and catalysis is inefficient. On the other hand, based on
experimental results already known, it can be concluded that the
mechanism presented by our simulation results is justified. The
E290A mutation in SARS Mpro (analogous to the E290 residue in
SARS-CoV-2 Mpro) resulted in a complete loss of function [47]. In
the same study, the R4A mutation (analogous to the R4 residue
in Mpro of SARS-CoV-2) also leads to a significant reduction in enzy-
matic catalytic potential. Additionally, a drug known as x1187 was
found to block the dimerization of Mpro and reduce its catalytic
potential [11]. Taken together, there is strong empirical evidence
that the mechanism suggested by our simulations and ML analysis
can indeed translate into a therapeutic strategy.

Altogether, the simulations and the clustering analysis suggest
that the catalytic potential of the enzyme is based on a collective
mechanism in which the two chains of the enzyme modulate each
other. This finding is in agreement with the fact that the enzyme is
active only in the dimeric state and not in the monomeric state
[39]. Dimerization affects the dynamics of the substrate binding
sites, enhancing the affinity of the substrate for the enzyme. How-
on is based on dimerization of Mpro monomers followed by the binding of a single
by green arrows). Alternatively, dimerization of Mpro monomers can be followed by
tential of the enzyme is then less than 50% of the primary mechanism (occupancy of
en tries to dimerize, there is a very active monomer that is weakly bound to the
imer are weakened, leading to an unstable dimer and hence low catalytic potential.
retation of the references to color in this figure legend, the reader is referred to the
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ever, a catalytically active dimer is realized only when the sub-
strate is bound to only one of the chains. Indeed, substrate binding
to one of the chains is likely to prevent the binding of another sub-
strate to the other chain by an anticooperative allosteric mecha-
nism that involves blocking of the substrate-binding cleft of the
latter with the C-terminus of the former.

Our model leads to an obvious question: why is the dimeriza-
tion important from the point of view of the life cycle of the virus?
We speculate that dimerization of Mpro acts as a switch, which
allows the virus to regulate cell lysis. The virus cannot mature until
it has enough monomers, and by rendering monomeric Mpro

unsuitable for efficient catalysis, premature maturation is pre-
vented. In other words, dimerization can only be enhanced when
sufficient monomeric units have been synthesized from the viral
mRNA, with the goal of regulating the time interval for the lysis
of host cells. This model provides a general understanding of the
maturation process across other viral species. Viral maturation that
is too rapid will lead to a premature lysis of the host cells, leading
to low viral particle numbers that are insufficient to propagate
viral infection. This, in turn, can lead to activation of the host
defense machinery, which can detect and effectively neutralize
the few free viral particles. To prevent this, it is plausible that
viruses use this dimerization mechanism to regulate the time
scales of maturation for effective infection and proliferation.
Preventing dimerization of the Mpro enzyme may, thus, be a means
to hindering viral maturation, and can serve as a therapeutic target
in drug-based methods [10] to combat COVID-19. This result has a
concrete implication for the previously identified coronaviruses
involved in Severe Acute Respiratory Syndrome (SARS), Middle
East Respiratory Syndrome (MERS), and the closely related coron-
aviruses HKU5 and HKU7 [4,41] on bat species. In all these four
cases, there exists empirical evidence connecting the dimerization
interface of the Mpro analogues of these enzymes with their activ-
ity, indicating a common mechanism. The strong preservation of a
seemingly evolutionarily conserved mechanism of action thus
forms a solid basis for future treatment of coronavirus-related
diseases.
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