
Cooperative Integration and Representation Underlying
Bilateral Network of Fly Motion-Sensitive Neurons
Yoshinori Suzuki1*, Takako Morimoto2, Hiroyoshi Miyakawa2, Toru Aonishi1

1 Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan, 2 School of Life Sciences, Tokyo University of

Pharmacy and Life Sciences, Hachio-ji, Tokyo, Japan

Abstract

How is binocular motion information integrated in the bilateral network of wide-field motion-sensitive neurons, called
lobula plate tangential cells (LPTCs), in the visual system of flies? It is possible to construct an accurate model of this
network because a complete picture of synaptic interactions has been experimentally identified. We investigated the
cooperative behavior of the network of horizontal LPTCs underlying the integration of binocular motion information and
the information representation in the bilateral LPTC network through numerical simulations on the network model. First, we
qualitatively reproduced rotational motion-sensitive response of the H2 cell previously reported in vivo experiments and
ascertained that it could be accounted for by the cooperative behavior of the bilateral network mainly via interhemispheric
electrical coupling. We demonstrated that the response properties of single H1 and Hu cells, unlike H2 cells, are not
influenced by motion stimuli in the contralateral visual hemi-field, but that the correlations between these cell activities are
enhanced by the rotational motion stimulus. We next examined the whole population activity by performing principal
component analysis (PCA) on the population activities of simulated LPTCs. We showed that the two orthogonal patterns of
correlated population activities given by the first two principal components represent the rotational and translational
motions, respectively, and similar to the H2 cell, rotational motion produces a stronger response in the network than does
translational motion. Furthermore, we found that these population-coding properties are strongly influenced by the
interhemispheric electrical coupling. Finally, to test the generality of our conclusions, we used a more simplified model and
verified that the numerical results are not specific to the network model we constructed.
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Introduction

For many living beings, binocular visual perception is one of the

most important functions of their visual systems. For example, the

retinal images in the eyes are slightly different from each other,

which is referred to as binocular disparity, and this difference

provides information that the brain can use to calculate the depth

of objects in the visual field. In monkey’s visual cortex has been

reported to have binocular depth neurons that are tuned to

different ranges of binocular disparity [1]. Besides depth percep-

tion, visual ego-motion perception is an out standing function of

binocular vision. For almost every animal, including vertebrates

and invertebrates, ego-motion perception plays a dominant role in

their motion control [2–6]. The direction of optic flow fields in the

eyes depends on the type of ego-motion. Yaw-rotational motion of

animals (rotational ego-motion) elicits two distinct optic flows

directed from front-to-back and from back-to-front on each eye. In

contrast, forward or backward translation of animals (translational

ego-motion) elicits an optic flow directed either from front-to-back

or from back-to-front on both eyes. Motion stimuli caused by

rotational ego-motion are referred to as in-phase motion stimuli,

whereas ones caused by translational ego-motion are referred to as

out-of-phase motion stimuli. Thus, the combination of optic flow

fields in the eyes provides information that the brain can use to

distinguish whether they are rotating or translating. To achieve

this computation, motion information from the eyes has to be

integrated in the brain. In this paper, we study the visual system of

flies, an ideal model system to analyze such a binocular

computation [7–15].

Motion-sensitive neurons that analyze optic flow fields and often

have complex receptive fields are found at higher orders of

processing in the visual systems of many species [16–20]. These

neurons are involved in the visual perception of orientation,

locomotion tasks, and head movements. The neural mechanisms

underlying optic flow analysis have been studied especially well in

flies. In the visual system of the blowfly Calliphoravicina, there are

the hierarchical structures consisting of four neuropils in the left

and right hemispheres, and these neuropils retinotopically process

motion information from the left and right eyes, respectively. After

retinotopic processing, visual information converges in the lobula

complex, which subsequently receive the signal processed by the

medulla (Figure 1A). It contains a set of wide-field motion-sensitive

neurons called lobula plate tangential cells (LPTCs) [20,21].

LPTCs have complex receptive fields that cover a large part of the

ipsilateral visual hemi-field and show directional-selective motion

responses by shifting their membrane potential as well as evoking

an action potential [12,15,20,22–25]. Some of these cells have

been also found in Drosophila [26,27]. The LPTCs are grouped into
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horizontal and vertical cells that predominantly respond to

horizontal (front-to-back or back-to-front) and vertical (upward

or downward) motion stimulus on the ipsilateral visual hemi-field.

The LPTCs include eight horizontal cells in each hemisphere of

the blowfly’s brain, of which three are named HS cells (HSN, HSE

and HSS [28]), two are named CH cells (dCH and vCH [29,30]),

and the others are named Hu, H1 and H2 [8,10,13]. The H1, H2

and Hu cells are spiking neurons, whereas HS and CH cells are

graded-potential neurons.

Previous studies have identified the bilateral network of LPTCs

[10,13,31–33]. It has been reported that the LPTCs make the

intrahemispheric and interhemispheric connections and have the

possibility to integrate the binocular motion information in the

network. Some of the horizontal LPTCs have been reported to

have larger responses to in-phase motion than to out-of-phase

motion [8–10,13,29]. Farrow et al. (2006) [13] studied the

cooperative behavior of H2 and contralateral HSE cells and

demonstrated that an interhemispheric electrical coupling between

the H2 cell and its contralateral HSE cell is an important factor in

determining the sensitivity of the H2 cell to binocular motion

stimuli. This was a pioneering study revealing that the response

properties originated from not a single-cell behavior but a

cooperative behavior with another LPTC in the network.

However, whereas these studies focused on parts of the network,

there has been no work as yet on cooperative integration of

binocular motion performed by the whole LPTC network. In this

paper, we reveal how the whole LPTC network works to integrate

the binocular motion information and how the information are

encoded by neural activity at all levels from a single cell up to the

population of cells.

To address this problem, we took a mathematical modeling

approach. It is technically difficult to record the membrane

Figure 1. Schematic diagrams of the fly optic lobe and circuit of LPTCs with horizontal preferred directions. A: Fly visual system
consisting of neuropils called the lamina, medulla, and lobula complex in the two hemispheres. Visual motion information on each side of the visual
field is retinotopically processed through the lamina and medulla and converges on the lobula complex in the ipsilateral hemisphere. The complex
contains a set of wide-field motion-sensitive neurons, called lobula plate tangential cells(LPTCs) [19]. B: Bilateral network of the LPTCs with horizontal
preferred directions. Each hemisphere consists of eight cells: those named Hu, H1 and H2 are spiking neurons (colored), whereas the others named
HS and CH are graded-potential neurons (gray). These LPTCs are mutually coupled through intrahemispheric and interhemispheric connections.
Open triangles, bars and resister symbols indicate excitatory, inhibitory and electrical synapses, respectively. The cells with black arrows receive
projections from the first-order neuropils, and the direction of each arrow denotes the preferred direction of each cell. dCH and vCH (without black
arrows) do not directly receive projections from the first-order neuropils [11].
doi:10.1371/journal.pone.0085790.g001

Cooperative Binocular Integration of Fly

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e85790



potentials of many cells simultaneously in vivo, and hence, it is

difficult to ascertain data about the cooperative behavior of the

whole network through measurements. However, it is possible to

construct an accurate model of the bilateral LPTC network

because a complete picture of its synaptic interactions has been

experimentally identified. In this study, we focused on the network

of horizontal LPTCs that mainly contributes to binocular motion

integration and constructed a bilateral network model that takes

into account all synaptic connections that have experimentally

identified in the actual network.

First, we qualitatively reproduced the in-phase motion-sensitive

response of the H2 cell that had been previously reported and

made sure that it could be accounted for by the cooperative

behavior of the bilateral network mainly via interhemispheric

electrical coupling. We also found that the response properties of

single H1 and Hu cells, unlike H2 cell, are not influenced by

motion stimuli in the contralateral visual hemi-field, but that

correlations between these cell activities are enhanced by the in-

phase motion stimulus. Next, to reveal the coding properties of a

population of spiking LPTCs, we performed principal component

analysis (PCA) on the firing rates of all spiking LPTCs. We showed

that the two orthogonal patterns of correlated population activities

given by the first two principal components represent the in-phase

and out-of-phase motions, respectively, and the population activity

is more sensitive to the in-phase motion stimuli. Furthermore, we

found that these population-coding properties are strongly

influenced by the interhemispheric electrical coupling. Finally,

by reproducing these population-coding properties with a reduced

model, we confirmed that the numerical results are not specific to

the network model we constructed.

Materials and Methods

Fly visual system
The fly visual system consists of four neuropils called the lamina,

medulla, lobula, and lobula plate that exhibit the same columnar

structure as the retina and are retinotopically organized in both

hemispheres. Visual motion information from each side of the

visual field is retinotopically processed and converges on the lobula

complex comprised of the lobula and lobula plate (Figure 1A).

This complex contains a set of large motion-sensitive neurons,

called lobula plate tangential cells (LPTCs). A total of 60 different

cells exist in the blowfly, all of which show directional-selective

motion responses by shifting their membrane potential as well as

their action potentials [20]. During preferred direction (PD)

motion stimulation, the cells in each hemisphere are depolarized

or generate action potentials, whereas during antipreferred or null

direction (ND) motion stimulation, the cells in each hemisphere

are hyperpolarized.

Bilateral horizontal LPTCs network
The LPTCs are grouped into horizontal and vertical cells that

predominantly respond to horizontal and vertical motion stimuli,

respectively. As mentioned above, we will focus on the horizontal

cells. Each hemisphere consists of eight horizontal cells (Figure 1B).

H1, H2 and Hu cells produce action potentials during PD motion

stimulations (i.e., spiking cells). HS and CH cells respond to PD

motion stimuli in a graded way (i.e., graded-potential cells). These

horizontal LPTCs are mutually coupled through intrahemispheric

and interhemispheric connections with various electrical and

chemical synapses, as shown in Figure 1B. The experimental

findings on these couplings have been reported in [10,13,15,20].

We constructed a network model of horizontal LPTCs by mainly

referring to Borst et al. (2011) [15].

Conductance-based model (Detailed model)
To keep the model relatively simple, we decided that the

morphology of each model cell would be a simple long cylinder.

Here, the model cells do not have dendritic branches as in the real

cells. The HS and CH cells are modeled as one passive

compartment (gray cylinders in Figure 1B), and the H1, H2 and

Hu cells are modeled as one active compartment capable of

producing action potentials (colored cylinders in Figure 1B). We

ascertained that the behaviors of the single compartment model

are much the same as the ones of the multi compartment model

(data not shown). The morphological parameters of each model

cell are listed in Table 1. The properties and distribution of ion-

conductances in LPTCs are still unknown (but see also [23,34]).

Thus, instead of high-dimensional conductance-based models, the

type-I Morris-Lecar (ML) model is used to describe membrane

currents in the active compartments. The ML model is one of the

simplest conductance-based models capable of reproducing the

variety of oscillatory behaviors found in various excitatory

membranes [35]. The ML model and simple passive model used

here are uniformly described in terms of the following ordinary

differential equations:

Cm
dV

dt
~{gfastm?(V{Vfast){gsloww(V{Vslow)

{gleak(V{Vleak)zIconzIapp

ð1Þ

dw

dt
~

w(w?{w)

t

where the conductances gfast, gslow and gleak are for the fast, slow

and the leak channels, respectively. Note that when gfast and gslow

are zero, these equations are equivalent to a simple passive model.

The passive electrical parameters including the leak parameters of

the ML model are listed in Table 1. In this paper, the fast and slow

channels are not specified as specific ion channels, whereas in the

original ML model, the fast and slow channels are respectively

calcium and potassium channels. The functions m? and w are the

equilibrium open fractions for the fast and slow channels, and t is

the activation time constant for the slow channel. These functions

are

m?~0:5½1ztanhf(V{V1)=V2g�

w?~0:5½1ztanhf(V{V3)=V4g�

t~1=cosf(V{V3)=2V4g

The parameters of the type-I ML model are listed in Table 2. Iapp

denotes the total postsynaptic current from motion-sensitive cells

in the first-order neuropils (medulla and lobula), and Icon is the

total postsynaptic current from the other horizontal LPTCs. A

detailed explanation of Iapp and Icon is given in the following

subsections. Numerical simulations were carried out with the

NEURON simulator.

Mimicking visual stimuli
We used four different binocular motion stimuli: clockwise(C),

counterclockwise(CC), front-to-back(FB) and back-to-front(BF).

The clockwise and counterclockwise motion stimuli are classified

Cooperative Binocular Integration of Fly
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as in-phase horizontal binocular motion stimuli that are elicited

when a fly rotates about its vertical body axis (yaw). The front-to-

back and back-to-front stimuli are classified as out-of-phase

horizontal binocular motion stimuli that are elicited by forward

and backward translation. By using these four motion stimuli, we

can verify the response properties of the horizontal LPTCs

network for all possible combinations of directions of stimuli for

each eye. A simple way to simulate the responses of the LPTCs to

the stimuli is to mimic the total postsynaptic current from the

earlier neuropils, Iapp, with either a depolarizing or hyperpolar-

izing DC current depending on whether each stimulus direction is

preferred or not by each cell. In this way, Iapp is determined by the

following formula:

Iapp~SX zn

X~P or N,Sn(t)T~0, Sn(t)n(t’)T~s2d(t{t’)

where n is a white noise term independent from neuron to neuron

and s is the noise intensity. SX represents the DC signal that

changes to SP or SN depending on whether each motion stimulus

is PD or ND for each cell. The cells with black arrows in Figure 1B

receive projections from the first-order neuropils, and the direction

of each arrow denotes the preferred direction of each cell. Table 3

shows the amplitude of the DC signal given to each horizontal

LPTC. Note that the CH cells (not marked with black arrows in

Figure 1B) do not directly receive projections from the earlier

neuropils [10], and thus, SX of the CH cells is set to zero. Table 4

shows all combinations of either depolarizing or hyperpolarizing

current for representing the four stimuli.

To measure the robustness of neural coding, we define the

signal to noise ratio (SNR) for Iapp as

SNR~
SX

s

We analyzed the responses of spiking LPTCs with various SNR.

Connection properties
To construct a network model of the horizontal LPTCs, we

connect the conductance-based models through electrical and

chemical synapses, as shown in Figure 1B. In Eq. (1), Icon denotes

the total postsynaptic current from the other horizontal LPTCs.

The implementation of Icon can be easily realized with the

NEURON simulator. Electrical couplings can be implemented

with the NMODL function of the NEURON simulator. This

function makes a conductive connection between two connected

compartments with a particular conductance. In this study, all

electrical couplings have the same conductance (40 nS) [13]. The

excitatory and inhibitory chemical synapses are modeled as a

change in synaptic conductivities triggered by spike events in

presynaptic cells, which are implemented using the ExpSyn

function of the NEURON simulator. The reversal potentials of the

excitatory and inhibitory synapses are 0 mV and -70 mV,

respectively. The conductance of excitatory and inhibitory

synapses is described by a simple exponential decay with a time

constant of 0.3 ms and amplitudes of 0.01and 0.005 nS, respec-

tively. We manually tuned these synaptic parameters to fit the

simulated EPSP and IPSP to previously reported physiological

data [10,13].

As described above, the CH and HS cells are non-spiking. It has

been reported that the CH cell inhabits the activities of the

ipsilateral H1 and H2 cells, and the HS cell excites the activities of

the ipsilateral Hu cell. In this study, the excitatory postsynaptic

current depending on the presynaptic graded-potential is de-

scribed using a sigmoid function,

f (V )~
K

1zexpf{a(V{x0)g ð2Þ

where V is the graded potential of the presynaptic neuron, i.e., the

HS cell. The inhibitory postsynaptic current depending on the

Table 1. Morphological parameters and passive electrical
parameters of each.

Cell
type Length mm Diameter mm Cm mF=cm2 Eeq mV gleak S=cm2

H1 1000 5 20 0.002

H2 200 5 20 0.002

Hu 200 5 20 0.002

HS 250 15 1 250 0.001

CH 250 15 1 250 0.001

doi:10.1371/journal.pone.0085790.t001

Table 2. Parameters of the type-I Morris-Lecar model.

Vfast mV gfast S=cm2 Vslow mV gslow S=cm2 Vleak mV

120 0.004 284 0.008 260

V1 mV V2 mV V3 mV V4 mV w=msec

21.2 18 12 17.4 0.066

doi:10.1371/journal.pone.0085790.t002

Table 3. Amplitude of the DC signal corresponding to PD
and ND motion stimulus.

H1 H2 HS

Sp nA 10 2 3.6

SN nA 21 20.2 21.3

doi:10.1371/journal.pone.0085790.t003

Table 4. Combinations of either depolarizing or
hyperpolarizing current for representing the four types of
stimuli.

C CC FB BF

H1L P N N P

H2L P N N P

HuL N P P N

HSL N P P N

H1R N P N P

H2R N P N P

HuR P N P N

HSR P N P N

doi:10.1371/journal.pone.0085790.t004
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presynaptic graded potential is given by {f (V ). The parameters

used in the simulations were K~0:2nA, a~0:4 and

x0~{47mV .

The purpose of this study is to clarify the role of the bilateral

horizontal LPTC network in the binocular motion integration. For

this purpose, we compared two cases: one in which the cells are

mutually connected as described above, the other in which the

cells are isolated from each other without lateral connections. In

the following sections, we will refer to these cases as the

connected case and disconnected case.

Formal neuron model (Reduced model)
To check the generality and robustness of the results obtained

from the conductance-based model, we constructed a reduced

model and verified whether or not it qualitatively reproduced the

results. In this model, five graded-potential cells, which are

coupled through electrical synapses and have similar response

properties, are merged into a single neuron named HS/CH.

Furthermore, we used McCulloch Pitts formal neurons instead of

the conductance-based model. The state space equation for the

reduced model is

t
dV

dt
~IappzWf (V)zGV{V ð3Þ

V~ VH1L VH2L VHuL VHSL=CHL VH1R VH2R VHuR VHSR=CHR

� �T

W~

0 0 0 0 0 0 0 wi

0 0 0 wi 0 0 0 0

0 0 0 we 0 0 0 0

0 0 0 0 we we 0 wi

0 0 0 wi 0 0 0 0

0 0 0 0 0 0 0 wi

0 0 0 0 0 0 0 we

we we 0 wi 0 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

G~

0 0 0 0 0 0 0 0

0 {g 0 0 0 0 0 g

0 0 0 0 0 0 0 0

0 0 0 {g 0 g 0 0

0 0 0 0 0 0 0 0

0 0 0 g 0 {g 0 0

0 0 0 0 0 0 0 0

0 g 0 0 0 0 0 {g

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

where T denotes matrix transposition, V denotes the state vector

consisting of the membrane potentials of eight cells and t is the

time constant (t~5 msec). f (x) is the sigmoidal function defined

in Eq. (2), which represents the transfer function of each cell. The

matrix W represents the couplings between these cells through

chemical synapses, and the matrix G denotes the electrical

couplings between them. we and wi in W are the weights of the

excitatory and inhibitory synapses, respectively, and g in G is the

conductance of the electrical couplings. Thus, each component of

the vector Wf (V)zGV describes the total postsynaptic current in

each cell via lateral connections.

The vector Iapp in the state space equation denotes the input

vector in which each component represents the total postsynaptic

current of each cell from motion-sensitive cells in the earlier

neuropils. As described in the detailed model, to simply simulate

responses of the LPTCs to the four types of stimuli, Iapp is

mimicked with a combination of depolarizing or hyperpolarizing

DC currents depending on whether each stimulus direction is

preferred or not by each cell. Iapp is given by

Iapp~SX z½ n1 n2 . . . n8 �T

X~In or Out, Sni(t)T~0, Sni(t)nj(t’)T~s2d(t{t’)di,j

where ni are white noise term independent from neuron to neuron

and s is the noise intensity. SIn and SOut are the input vectors

when presenting in-phase and out-of-phase stimuli:

SIn~½ s s {s {s {s {s s s �T

SOut~½{s {s s s s s {s {s �T

where s is a time-dependent variable taking +1 or -1. If s~1, the

input patterns of SIn and SOut correspond to clockwise rotation

and forward translation motion stimuli, respectively, whereas if

s~{1, the input patterns of SIn and SOut correspond to

counterclockwise rotation and backward translation motion

stimuli, respectively.

The parameters for the formal neuron model used in the

simulations were g~1, we~1, wi~{1, a~0:5, x0~0:5 and

K~5. The simulations were carried out with MATLAB.

Data analysis
Cross-correlation analysis. Let xn and yn be the mean

firing rates of different cells at time n. The cross-correlation

between xn and yn is defined as

R(t)~
XN{t{1

n~0

xnztyn

where N is the length of these two sequences and t is a time lag.

For the cross-correlation analyses, the mean firing rate was

calculated at intervals of 10 msec.

Principal component analysis of multi-neuronal

activity. The principal component analysis (PCA) is a dimen-

sionality reduction technique in which high-dimensional data is

linearly projected on an orthogonal subspace spanned by vectors

representing highly correlated directions [36]. We tried to

elucidate the correlated activities of a neural population coding

the four types of binocular motion stimuli by applying PCA to

simulated multi-neuronal activity data. First, we calculated the

mean firing rates of six spiking LPTCs at intervals of 150 msec

within non-overlapping 150 msec temporal windows, and we

constructed a set of six-dimensional firing rate vectors, g1
�!

, g2
�!

,

. . . gT
�!

, where T denotes the total number of firing rate vectors

(e.g. T~160 when the length of the spike sequence is 24 sec).

Next, we performed principal component analysis (PCA) on the set

Cooperative Binocular Integration of Fly
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of the firing rate vectors. The calculation was carried out with the

princomp function of MATLAB.

Results

The activity of the H2 cell in response to its PD motion
stimuli is only modified by the contralateral LPTC
activities

We carried out numerical simulations of the detailed model (see

Material and Methods for details) to analyze how the activity of

single LPTCs of one hemisphere in response to the PD motion

stimulus presented in the ipsilateral visual hemi-field are modified

by changes in the contralateral LPTCs activities depending on

motion stimuli in the contralateral visual hemi-field. We focused

on three spiking LPTCs in the left hemisphere, H1L, H2L and

HuL. The H2L cell is directly connected with the HSE cell of the

right hemisphere through an interhemispheric electrical coupling,

and the H1L and HuL cells indirectly receive effects from the

contralateral cells via other ipsilateral cells (see Figure 1B). Note

that it is not necessary to show the activities of counterparts of

these three cells in the right hemisphere. This is because the

bilateral LPTCs network has a reflective symmetric structure,

statistical response properties of LPTCs separately located on both

hemispheres to pair of binocular motion stimuli which are in

Figure 2. Activities of the H2 cell strongly depend on interhemispheric couplings between H2 and contralateral HSE. Gray in all
figures: Responses of the H2L cell to the ipsilateral PD motion stimulus in the disconnected case. Red and blue: Responses of the H2L cell to the
clockwise and back-to-front motion stimuli in the connected case (A, B and C) and the case without the interhemispheric electrical couplings (D and
E). A: Raster plots showing locations of action potentials of the H2L cell in time for a single trial (SNR = 0.166). B: Differences in mean firing rate from
spontaneous activity in the H2L cell in response to these motion stimuli with different noise levels. The abscissa indicates the signal-to-noise ratio of
motion stimuli. The ordinate indicates difference between firing rates during stimulations and spontaneous activity. (mean+SEM, 8 trials) C: ISI
distributions of the H2L cell in response to PD motion stimuli (SNR = 0.166). D: Differences in mean firing rates of the H2L cell without the
interhemispheric electrical couplings. (mean+SEM, 8 trials) E: ISI distributions of the H2L cell without the electrical couplings. (SNR = 0.166). As shown
in B and C, although the H2L cell directly faces the PD motion stimuli in the clockwise and back-to-front cases, the activity and regularity of the H2L
cell for the clockwise motion stimulus are higher than those of the back-to-front stimulus because of the modification by contralateral LPTC activities.
If the interhemispheric electrical couplings are only cut off and other connections remain in the bilateral network, as revealed in D and E, the activity
and regularity of the H2L cell in this case is almost same as that in the disconnected case. Thus, these results suggest that the interhemispheric
electrical couplings are a key factor to determining the responsive characteristics of the H2 cell to the binocular motion stimuli.
doi:10.1371/journal.pone.0085790.g002
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symmetric relation are the same. Therefore, it is sufficient to check

for the responses of LPTCs located on one hemisphere.

To quantify the effect of the connections among LPTCs on the

activities of each spiking LPTC, we compared the disconnected

case and the connected case, as described in the Materials and

Methods section. In the disconnected case, we numerically

simulated the responses of single spiking LPTCs isolated from

other cells to the PD motion stimulus only presented in the

ipsilateral visual hemi-field. In the connected case, we numerically

simulated the responses of single spiking LPTCs to the in-phase

and out-of-phase motion stimuli.

Figure 2A shows the spike raster plots displaying the spike times

of the H2L cell in these cases, and Figure 2B show the difference of

the mean firing rate from spontaneous activity in the H2L cell as a

function of the signal-to-noise ratio (SNR) (defined in the Materials

and Methods section). We found that the difference in mean firing

rate induced by the clockwise motion in the connected case is lager

than in the disconnected case. In contrast, the difference in mean

firing rate induced by the back-to-front motion in the connected

case is smaller than in the disconnected case. Figure 2C shows the

distributions of inter-spike intervals (ISIs) of the H2L cell. The ISI

distribution for the clockwise motion in the connected case is

sharper than in the disconnected case, whereas the ISI distribution

for the back-to-front motion in the connected case is broader than

in the disconnected case. Therefore, though, in all these cases, the

H2L cell faces the same PD motion stimulus in the ipsilateral

visual hemi-field, the activity and regularity of the H2L cell are

modified by the chenges in the contralateral LPTCs activities

depending on motion stimuli in the contralateral visual hemi-field.

Moreover, to investigate the contribution of interhemispheric

electrical couplings between the H2 cell and contralateral HSE cell

to the selectivity of the H2 cell, we removed the interhemispheric

electrical couplings from the detailed model and simulated the

response of the H2L cell similarly to the above. As shown in

Figure 2D and Figure 2E, the differences in mean firing rate and

the ISIs of the H2L cell are not altered by the type of binocular

motion in this situation. Therefore, we consider that the

interhemispheric electrical coupling is a key factor in determining

the responsive characteristics of the H2 cell to binocular motion

stimuli. Our numerical results are in accord with in-vivo

experimental results indicating that the H2 cells are more

activated by an in-phase motion stimulus than by an out-of-phase

motion stimulus [13].

The in-phase motion stimulus enhances synchronization
between spiking LPTCs

In the previous subsection, we focused on modifications of

single-cell activities depending on contralateral motion stimuli.

Here, we tried to determine whether a combination of motion

stimuli presented in the left and right visual hemi-fields affects the

synchronization between spiking LPTCs. For this purpose, we

calculated the cross-correlation between the firing rates of two

spiking LPTCs (see the Materials and Methods section for details).

Figures 3A and Figure 3B show the cross-correlation between

the H1L and H2L cells located in the left hemisphere when

presenting clockwise and back-to-front motion stimuli, respective-

ly. In both these cases, each of the cells is exposed to the PD

motion stimulus in the left visual hemi-field. When the two cells

are exposed to the clockwise motion stimulus, the peak of the

cross-correlation at a lag of 0 msec is higher than the peak that

occurs with the back-to-front motion stimulus. This is because the

out-of-phase motion stimulus decreases both the firing rate and

regularity of the H2 cell (see Figure 2).

Figure 3C shows the cross-correlation between the H1L and

HuR cells separately located in the two hemispheres when

presenting the clockwise motion stimulus, and Figure 3D shows

the cross-correlation between the H1L and H1R cells separately

located in the two hemispheres when presenting the back-to-front

motion stimulus. In both cases, each cell is exposed to the PD

motion stimulus presented in the ipsilateral visual hemi-field.

Thus, as shown in Figure S2 and Figure S3, these cells have

identical differences in mean firing rate from the spontaneous

activity and identical ISI distributions. However, as shown in

Figure 3C and Figure 3D, the peak of the cross-correlation

between the firing rates of the H1L and HuR cells at a lag of

0 msec when presenting the clockwise motion stimulus is slightly

higher than that of the cross-correlation between the firing rates of

the H1L and H1R cells when presenting the back-to-front motion

stimulus. Therefore, the synchrony of these cells is enhanced by

the in-phase motion stimulus. The numerical results suggest that

the H1 and Hu cells, whose single-cell activities are independent of

the motion stimuli presented in the contralateral visual hemi-field,

could represent information on the binocular motion stimuli

through their synchrony.

Synchronous population activities of the bilateral LPTCs
network represent binocular motion stimuli

In the previous subsections, we examined the modifications of

the single-cell activities and synchronies in spiking LPTCs in

relation to binocular motion stimuli. Here, we use principal

component analysis (PCA) to reveal the properties of population

activities of spiking LPTCs in response to four different motion

stimuli. First, we calculated the mean firing rates of six spiking cells

and construct a set of six-dimensional firing rate vectors (see the

Materials and Methods section for details). Then, by applying

Figure 3. Change in firing-rate correlations between two
spiking LPTCs depending on binocular stimuli. Left column: In-
phase motion stimulus (clockwise). Right column: Out-of-phase motion
stimulus (back-to-front). A and B: Cross-correlations between the H1
and H2 cells located in the left hemisphere. C: Cross-correlation
between the H1 and Hu cells separately located in two hemispheres. D:
Cross-correlation between two H1 cells separately located in two
hemispheres. Note that the two LPTCs in each pair shown in these
graphs receive PD motion stimuli in the in-phase and out-of-phase
cases, respectively. The peak of the cross-correlations of the H1 and H2
cells at a lag of 0 sec for the in-phase motion stimulus is higher than
that of the out-of-phase motion stimulus. Whereas the responsiveness
of single H1 and Hu cells does not change with the contralateral motion
stimuli (Supplements 2 and 3), the peak of the cross-correlations of
these for the in-phase motion stimulus is higher than that of the out-of-
phase motion stimulus.
doi:10.1371/journal.pone.0085790.g003
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PCA to the set of firing rate vectors, we projected them onto a two-

dimensional space spanned by the first and second principal

components, PC1 and PC2. PC1 and PC2 were found by

calculating the two eigenvectors associated with the first- and

second-largest eigenvalues of the correlation matrix obtained from

the firing rate vectors. Thus, the principal components represent

highly correlated or synchronous activity patterns of the spiking

LPTCs. This analysis incorporated the correlation analysis carried

out in the previous subsection.

The upper and lower parts of Figure 4A show examples of

simulated spike sequences of six spiking LPTCs (denoted by raster

plots) in the disconnected and connected cases for four different

motion stimuli. Figure 4B shows the results obtained by applying

PCA to these simulated spike sequences. In the disconnected case,

four clusters of firing rate vectors corresponding to four different

stimuli are respectively separated into the four quadrants in the

PC1–PC2 space (left panel in Figure 4B). Clusters corresponding

to the clockwise and back-to-front motion stimuli are distributed

within the right half plane of the PC1–PC2 space. These two

stimuli share the same visual motion in the left visual hemi-field.

On the other hand, the clusters of the counterclockwise and front-

to-back motion stimuli are distributed within the left half plane of

the PC1–PC2 space. These two stimuli also share the same visual

motion in the left visual hemi-field. Therefore, PC1 represents a

population activity coding the left monocular visual motion. In the

same way, each pair of clusters distributed within the upper or

lower half plane of the PC1–PC2 space corresponds to the same

visual motion in the right visual hemi-field. Thus, PC2 represents a

population activity pattern that codes the right monocular

motions. This result is trivial because in the disconnected case,

the cells are isolated from each other without lateral connections.

Supplement 3 shows the values of each element of PC1 and PC2

in five trials of numerical simulations with different random seeds

for noise, and it also presents what each principle component

codes in the five trials. It shows that PC1 and PC2 are randomly

assigned to either left or right monocular motion. Thus, there is no

eye dominance in the disconnected case. In the connected case, on

the other hand, two pairs of clusters corresponding to the in-phase

and out-of-phase motion stimuli are distributed along the PC1 and

PC2 axes, respectively (right panel in Figure 4B). Therefore, the

PC1 and PC2 represent population activity patterns that code the

in-phase and out-of-phase motions, respectively. We also found

that PC1 and PC2 stably represent the in-phase and out-of-phase

motions with different random seeds for noise (Figure S3).

Figure 4C shows the contribution ratio of PC1 and PC2 and the

cumulative contribution ratio in the connected and disconnected

cases. The difference between the contributions of PC1 and PC2

in the connected case is larger than those of the disconnected case.

To check whether or not the neuronal morphologies affect on

the coding properties, we carried out an additional simulation

under conditions in which the length of each LPTC is two-third

that of the original model. We obtained the same results as those

obtained by the original model (Figure S4). Therefore, we

speculate that the neuronal morphologies do not strongly affect

on the coding properties.

Effect of interhemispheric electrical couplings between
the H2 cell and the contralateral HSE cell on population
coding in the bilateral LPTC network

Here, we evaluated the effect of the interhemispheric electrical

coupling between the H2 cell and contralateral HSE cell on

population coding in the bilateral network. We carried out

numerical simulations on the detailed model using several different

conductances of the interhemispheric electrical coupling, and we

applied PCA to the simulated spike sequences, as in Figure 4. We

used four different conductances: 0, 33.3, 50 and 100 nS. The

parameters used in this simulation, except for the electrical

coupling, were the same as in the previous simulations.

As shown in Figure 5A, in the case of no electrical coupling

(0 nS), four clusters of firing rate vectors corresponding to four

different motion stimuli are respectively separated into the four

quadrants of the PC1–PC2 space. This result conforms to that of

the disconnected case shown in Figure 4B. Furthermore, as shown

in Figure 5B, the difference in the contribution ratios of PC1 and

PC2 is relatively small compared with those of the other nonzero

cases, which is also similar to the disconnected case. When the

electrical coupling between the H2 and HSE cells exists, two pairs

of clusters corresponding to the in-phase and the out-of-phase

motion stimuli are respectively distributed along the PC1 and PC2

axes (Figure 5A). The difference between the contribution ratios of

PC1 and PC2 increases with the conductance of the electrical

coupling (Figure 5B). These results suggest that the interhemi-

spheric electrical coupling between the H2 and HSE cells strongly

contributes to the coding properties of a population of LPTCs in

the network.

Properties of population coding in the detailed model
are conserved in the reduced model

To check whether or not the numerical results are specific to the

network model we constructed, we construct a reduced model and

tried to reproduce the results of Figure 4. To simplify the structure

of the LPTC network, in each hemisphere, we merged five graded-

potential neurons, which are coupled through electrical synapses,

into a single neuron named HS/CH, as shown in Figure 6A.

Furthermore, to simplify the activity properties of cells, we

described all LPTCs in the network by using the McClloch-Pitts

model instead of the conductance-based model (see the Materials

and Methods section for details).

The left and right panels of Figure 6B show examples of the

activities of three LPTCs corresponding to the spiking cells in the

left hemisphere in response to the four different motion stimuli in

the connected and disconnected cases. Figure 6C shows results

obtained by applying PCA to a set of six-dimensional state vectors

consisting of the responses of six spiking LPTCs in both

hemispheres. In the disconnected case (left panel in Figure 6C),

four clusters of state vectors corresponding to four different motion

stimuli are respectively separated into the four quadrants of the

PC1–PC2 space, whereas in the connected case (right panel in

Figure 6C), two pairs of clusters corresponding to the in-phase and

the out-of-phase motion stimuli are distributed along the PC1 and

PC2 axes. Figure 6D shows the contribution ratio of PC1 and PC2

and the cumulative contribution ratio in the connected and

disconnected cases. The difference between the contributions of

PC1 and PC2 in the connected case is larger than in the

disconnected case. Figure S5 shows the values of each element of

PC1 and PC2. The principal components of the reduced model

qualitatively correspond to those of the detailed model. Therefore,

the results obtained from the reduced model qualitatively conform

to those of the detailed model in Figure 4.

Discussion

Summary of Results and Conclusion
We investigated the cooperative behavior of the LPTCs

underlying the integration of binocular motion information and

the information representation in the bilateral LPTC network

through numerical simulations. First, we showed that the cooper-

ative activities of cells in the bilateral network via interhemispheric
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couplings, especially interhemispheric electrical couplings, could

account for the in-phase sensitive response of the H2 cells that was

previously reported (Figure 2). Moreover, the results of cross-

correlation analyses suggested that the other spiking LPTCs, H1

and Hu, might be involved in representing binocular motion in a

manner that is a synchrony of these activities (Figure 3). We also

applied PCA to the firing rates of all spiking LPTCs and found that

when the LPTCs are isolated from each other; two orthogonal

patterns of correlated population activities given by PC1 and PC2

represent the monocular motions, whereas when the LPTCs are

connected to each other, two orthogonal pattens of correlated

population activities respectively represent the in-phase and out-of-

phase motions, and the population activity is more sensitive to the

in-phase motion stimuli (Figure 4). Moreover, we found that the inter-

hemispheric electrical couplings strongly influence these population-

coding properties (Figure 5). Finally, we confirmed the generality

and robustness of these results by using a reduced model (Figure 6).

Intuitive explanation of the binocular motion integration
in the bilateral network

Let us try to intuitively understand the cooperative behavior of

the LPTCs underlying binocular motion integration by referring

to the reduced model. Figure 7 illustrates the activity patterns of

the cells responding to the in-phase and out-of-phase motion

stimuli and the synaptic connections of the network. In the case of

the in-phase motion stimulus, the polarity of each cell depending

on the PD motion matches the polarity of each lateral synaptic

connection (Figure 7A), resulting in an enhancement of each cell’s

sensitivity to the PD motion. In this situation, cells cooperatively

integrate the motion information in the bilateral network. On the

other hand, in case of the out-of-phase motion stimulus, the

polarity of each cell depending on its PD motion is somewhat

mismatched to the polarity of the lateral synaptic connections

(Figure 7B and Figure 7C), resulting in a decrease in sensitivity.

This mechanism can account for the increase in the response of

some LPTCs during the in-phase motion stimulation reported in

previous in vivo experiments [8–10,13,29]. Furthermore, it is

known that mismatches between cell polarity and lateral synaptic

polarity, which are referred to as frustration, induce asynchronous

cell activities in a general class of networks. Thus, this mechanism

can also account for the greater synchrony among LPTCs in

response to in-phase motion compared with the response to the

out-of-phase motion (Figure 3 and Figure 4).

Figure 4. Coding properties of a population of LPTCs in a bilateral network. A: Raster plots showing locations of action potentials of all six
spiking LPTCs in time for a single trial with the four different stimuli. Red plots indicate responses of spiking LPTCs in the connected case, and black
plots present responses of spiking LPTCs in the disconnected case. B: Principal component analysis (PCA) for population activities shown in A. The
firing rate vectors are projected onto a two-dimensional space spanned by the first and second principal components, PC1 and PC2. Colors indicate
different stimuli. In the disconnected case, four clusters of the firing rate vectors corresponding to the four different stimuli are respectively separated
into the four quadrants, whereas in the connected case, clusters of the firing rate vectors corresponding to the in-phase and out-of-phase stimuli are
respectively distributed along the PC1 and PC2 axes. C: Contribution ratio of PC1 and PC2 (bars) and cumulative contribution ratio (dots) in the
connected and disconnected cases. (mean+SEM, 10 trials).
doi:10.1371/journal.pone.0085790.g004
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Reliability of modeling with the ML model
Through in vivo experiments, Farrow et al. [13] suggested the

possibility that the interhemispheric electrical coupling between

H2 and contralateral HSE cells is involved in the flow field

selectivity of H2 cells. Moreover, they indicated through numerical

simulations that the electrical couplings can quantitatively account

for the selectivity of the H2 cell. In the simulations, they used a

simplified neural network of the horizontal LPTCs, which

consisted of four horizontal cells, H1, H2, HS and CH cells in

each hemisphere. In contrast, our neural network model (the

detailed model) has a more anatomically accurate structure, in

which we modeled all of horizontal LPTCs that include cells

ignored in Farrow et al. [13]. We demonstrated that the in-phase

sensitive response of H2 cells can also be qualitatively reproduced

by our detailed model and that it can be accounted for by the

interhemispheric electrical coupling (Figure 2). Our numerical

results are consistent with the results of Farrow et al. [13], and this

consistency ensures the reliability of the results obtained from our

model.

Farrow et al. [13] used the Hodgkin-Huxley model for the

spiking LPTCs. At present, however, the properties and distribu-

tion of the ion-channels of spiking LPTCs are not well understood.

Hence, the Hodgkin-Huxley model is not the only way to model

spiking LPTCs. In this paper, we used the Morris-Lecar (ML)

model for the spiking LPTCs in the detailed model. The ML

model, which has a two-dimensional state space, shares a common

bifurcation structure with other high-dimensional Hodgkin-

Huxley type models classified into types I and II, and it can

reproduce electrical responsiveness of typical neurons. Therefore

(invoking Occam’s razor), in circumstances where the properties of

the membrane ion-conductances of the cell that we want to model

are unknown, a lower dimensional model with high explanatory

power should be used. However, in the ML model, the firing rate

is limited to less than 30 Hz. The firing rate of the real spiking

LPTCs, for example, the H2 cell, is more than 50 Hz, or even

100 Hz in some circumstances. Thus, the ML model cannot

adequately reproduce the firing rate of spiking LPTCs. Despite

this, the numerical results obtained from the ML model

qualitatively conform to results observed in vivo [10,13].

Moreover, as shown in Figure 6, we confirmed that the results

of simulation are not dependent on the conductance-based model

we used by testing the more simplified model consisting of

McCulloch Pitts units. According to the consistent results obtained

from the two models, we conclude that the spiking mechanism

based on the properties of the membrane ion-channels do not

affect properties of population coding in the network sensitively.

Accordingly, we consider that the ML model is able to capture the

mechanism of binocular motion integration.

Potential of synchronized coding of binocular motion in
spiking LPTCs other than H2 cells

In the detailed model, we demonstrated that the firing rate and

regularity of single H1 and Hu cells, unlike H2 cells, are not

influenced by motion stimuli in the contralateral visual hemi-field

(see Figure S1 and Figure S2). However, we showed that the

correlations between these cell activities are enhanced by the in-

phase motion stimulus (Figure 3). From a structural viewpoint,

there is a major difference between H2 and the other horizontal

spiking LPTCs in the manner of their receiving inputs from the

contralateral LPTCs. H2 cells directly receive input via the

interhemispheric electrical coupling from the contralateral

cell;therefore, the activity of H2 cells is strongly influenced by

the contralateral motion stimulus. H1 and Hu cells, on the other

hand, indirectly receive input from the contralateral hemisphere

via the ipsilateral graded-potential cells, and the input is not strong

enough to change the firing rate or regularity. The spike timings of

H1 and Hu cells are entrained with each other through the

indirect and weak interaction, and this makes the correlation of the

activities of these cells dependent on the binocular motion. It is

theoretically conjectured that the weak interaction, which is too

Figure 5. Interhemispheric couplings between H2 and HSE cells mainly affect the coding properties of population activities. A: PCAs
for population activities using different values of the conductance of the electrical coupling. As in Fig. 4B, the firing rate vectors are projected onto a
two-dimensional space spanned by PC1 and PC2. Colors indicate different stimuli. B: Contribution ratio of PC1 and PC2 as a function of the
conductance of the electrical coupling. For comparison, the contribution ratio in the disconnected case is superimposed on this graph. As the
conductance of the electrical coupling increases, the difference between contribution rates of PC1 and PC2 becomes larger. In the disconnected case
and the case with the electrical coupling of 0 nS, the differences are relatively small, and four clusters of population activities corresponding to the
four different stimuli are separated into the four quadrants, as shown in Figs. 5A and 4B. (mean+SEM, 10 trials).
doi:10.1371/journal.pone.0085790.g005
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weak to change phase trajectories in oscillations, enhances the

synchronization of spikes across neurons [37,38]. This result

suggests that H1 and Hu cells, unlike H2 cell, represent the

binocular motions by using not the individual cell activity but the

correlation of activities. Little is known about the responsivity of

H1 and Hu cells to binocular motion. To reveal the representation

of binocular motion in these cells, the responsivity of these LPTCs

to binocular motion will have to be recorded electro-physiologically.

Significance of sensitive response to in-phase motion in
optomotor response

What are the functional roles of the sensitive response to the in-

phase motion? It has been reported that neurons sensitive to in-

phase motion exist in other species, for instance, descending

neurons (DNVII1) in the honeybee [39]. It is also known that

many species of insect, crustacean, and mammal have the ability

to stabilize retinal images by moving their eyes, head or whole

body to compensate for their movements through the environment

[20,40,41]. This motor action is referred to as the optomotor

response. It can be thought that the neurons sensitive to the in-

phase motion provide the most important cue for the optomotor

response, because retinal image motions evoked by perturbed

movements of the observer’s head and body are the in-phase

motion in most cases.

Importance of our analysis method
A large number of studies have sought to reveal the coding

properties of neural populations by using simultaneous multi-

neuronal recordings and statistical techniques [42–45]. However,

there is a limit on the number of neurons that can be

simultaneously recorded in vivo. Thus, we must infer the

population-coding properties of a whole local network from

partial data. The limitations of such a measurement make it hard

to understand the population coding in the whole local network.

On the other hand, researchers are using advanced genetic tools

to get a complete picture of synaptic interactions in the whole

Figure 6. Coding properties are conserved in the reduced model. A: Summary diagram of the reduced model. For simplicity, in each
hemisphere, five graded-potential cells are merged into a single cell named HS/CH. All cells are described using the McCulloch-Pitts model instead of
the conductance-based model. B:Activities of three LPTCs corresponding to the spiking cells on the left side in response to the four different stimuli.
Black and red lines denote the disconnected and connected cases, respectively. C: PCA for population activities shown in B. By applying PCA to
activity vectors whose elements correspond to activities of six LPTCs on the left and right hemispheres, we projected the activity vectors onto a two-
dimensional space spanned by the first and second principal components, PC1 and PC2. Colors indicate different stimuli. In the disconnected case,
four clusters of the activity vectors corresponding to the four different stimuli are respectively separated into the four quadrants, whereas in the
connected case, clusters of the activity vectors corresponding to the in-phase and out-of-phase stimuli are respectively distributed along the PC1 and
PC2 axes. D: Contribution ratio of PC1 and PC2 (bars) and cumulative contribution ratio (dots) in the connected and disconnected cases.
(mean+SEM, 10 trials).
doi:10.1371/journal.pone.0085790.g006
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brain of the fly [46]. If the synaptic interactions in local networks

can be completely identified, we can construct accurate models of

these local networks. Then, by combining numerical simulations of

the network model with statistical techniques, we can elucidate the

population-coding properties of the whole local network. More-

over, by altering the conductance of a particular synapse in the

network model, we can evaluate the contribution of the synapse to

the information processing or representation of the network. In

this paper, we showed that interhemispheric electrical couplings

play a key role in the integration of binocular motion information.

Although compared with chemical synapses, much less is known

about how electric couplings contribute to information processing

in a neural network, it has recently become recognized that the

electric couplings play a significant role in information processing

in the local network [47]. Our study provides an important clue to

understanding the functional role of electrical couplings in visual

information processing. Moreover, unlike multi-neuronal record-

ing approaches, we can use our approach to answer a big question

about how the computation is implemented with neural interactions

Supporting Information

Figure S1 Activities of the H1L cell in response to PD motion

stimuli are not modified by contralateral LPTC activities. (gray)

Responses of the H1L cell to the ipsilateral PD motion stimulus in

the disconnected case. (red) Responses of the H1L cell to the

clockwise motion stimulus in the connected case. (blue) Responses

of the H1L cell to the back-to-front motion stimulus in the

connected case. A: Differences in mean firing rate from

spontaneous activity in the H1L cell in response to these motion

stimuli with different noise levels. The abscissa is the signal-to-

noise ratio of the motion stimuli. The ordinate is the difference

between firing rates during stimulation and spontaneous activity.

(mean+SEM, 8 trials) B: ISI distributions of the H1L cell in

response to PD motion stimuli (SNR = 0.166). The activity and

regularity of the H1L cell when the facing of the clockwise motion

stimulus is almost the same as that of the back-to-front stimulus.

(TIF)

Figure S2 Activities of the HuL cell in response to PD motion

stimuli are not modified by contralateral LPTC activities. (gray)

Responses of the HuL cell to the ipsilateral PD motion stimulus in

the disconnected case. (red) Responses of the HuL cell to the

counterclockwise motion stimulus in the connected case. (blue)

Responses of the HuL cell to the front-to-back motion stimulus in

the connected case. A: Differences in mean firing rate from

spontaneous activity in the HuL cell in response to stimuli with

different noise levels. The abscissa indicates the signal-to-noise

ratio of motion stimuli. The ordinate indicates differences between

firing rates during stimulations and spontaneous ones. (mean-

+SEM, 8 trials) B: ISI distributions of the HuL cell in response to

PD motion stimuli (SNR = 0.166). The activity and regularity of

the HuL cell when the facing of the counterclockwise motion

stimulus is almost same as that of the front-to-back stimulus.

(TIF)

Figure S3 Each element of the first two principal components,

PC1 and PC2, in five trials of numerical simulations for the

detailed model with different random seeds for noise. The upper

table is the disconnected case, and the lower table is the connected

case. What each principle component codes in the five trials is

presented on the margins of these tables. In the connected case,

PC1 and PC2 stably represent the in-phase and out-phase

motions, whereas in the disconnected case, PC1 and PC2 are

randomly assigned to either left or right monocular motion.

(TIF)

Figure S4 The neuronal morphologies do not affect on the

population coding properties. A: Principal component analysis

Figure 7. Mechanisms of binocular integration of visual information. Red and blue circles indicate depolarized and hyperpolarized cells in
response to ipsilateral PD and ND motion stimuli, respectively. A: In the in-phase case, the cells responding to ipsilateral PD stimuli receive excitatory
inputs from contralateral and ipsilateral LPTCs, and the cells responding to ipsilateral ND stimuli receive inhibitory inputs from the other LPTCs. The
cells integrate the in-phase motion stimuli through their cooperative behavior. B, C: In the out-of-phase case, some cells responding to ipsilateral PD
stimuli receive inhibitory inputs from the other LPTCs, and some cells responding to ipsilateral ND stimuli receive excitatory inputs from the other
LPTCs. Thus, there is a frustration in the out-of-phase case because the activities of the neurons interfere with the mutual interactions.
doi:10.1371/journal.pone.0085790.g007
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(PCA) for population activities. We analyzed population coding

properties under conditions in which the length of each LPTC is

two-third that of the original model. The firing rate vectors are

projected onto a two-dimensional space spanned by the first and

second principal components, PC1 and PC2. Colors indicate

different stimuli. Clusters of the firing rate vectors corresponding

to the in-phase and out-of-phase stimuli are respectively

distributed along the PC1 and PC2 axes. This result is the

qualitatively same as those shown in Figure 4B. B: Contribution

ratio of PC1 and PC2 (bars) and cumulative contribution ratio

(dots). (mean+SEM, 10 trials).

(TIF)

Figure S5 Each element of the first two principal components,

PC1 and PC2, in five trials of numerical simulations for the

reduced model with different random seeds for noise. The upper

table is the disconnected case, and the lower table is the connected

case. What each principle component codes in the five trials is

presented on the margins of these tables. In the connected case,

PC1 and PC2 stably represent the in-phase and out-phase

motions, whereas in the disconnected case, PC1 and PC2 are

randomly assigned to either left or right monocular motion.

(TIF)
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