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Abstract

Single-molecule spectroscopy has revolutionized molecular biophysics and provided means to 

probe how structural moieties within biomolecules spatially reorganize at different timescales. 

There are several single-molecule methodologies that probe local structural dynamics in the 

vicinity of a single dye-labeled residue, which rely on fluorescence lifetimes as readout. 

Nevertheless, an analytical framework to quantify dynamics in such single-molecule single 

dye fluorescence bursts, at timescales of microseconds to milliseconds, has not yet been 

demonstrated. Here, we suggest an analytical framework for identifying and quantifying within-

burst lifetime-based dynamics, such as conformational dynamics recorded in single-molecule 

photo-isomerization-related fluorescence enhancement. After testing the capabilities of the 

analysis on simulations, we proceed to exhibit within-burst millisecond local structural dynamics 

in the unbound α-synuclein monomer. The analytical framework provided in this work paves the 

way for extracting a full picture of the energy landscape for the coordinate probed by fluorescence 

lifetime-based single-molecule measurements.

INTRODUCTION

The advent of single-molecule fluorescence spectroscopy (SMFS) has been a boon to 

structural biology, allowing conformations to be directly observed, rather than the ensemble 

average of a large group of molecules with multiple unsynchronized conformations (1,2). 

There are a variety of SMFS modalities, which vary in time resolution (2), and all rely on 

attaching fluorophores to a biomolecule, such as a protein or nucleic acid under study. These 
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methods vary both by whether a confocal or wide-field microscope is used and by what 

fluorescence phenomenon is exploited, such as Förster resonance energy transfer (FRET), 

photo-induced electron transfer (PET) (3,4), or photo-isomerization-related fluorescence 

enhancement (PIFE; commonly known as protein-induced fluorescence enhancement) (5–

10).

Confocal-based methods provide the highest time resolution, using detectors sensitive to the 

arrival of individual photons, and typically record interphoton times on the order of a few 

microseconds (11, 12). In these experiments, single molecules traverse the confocal volume, 

and while doing so undergo multiple excitation-emission cycles. This results in periods of 

high photon count rate, referred to as photon bursts, which typically last a few milliseconds. 

In traditional burst analysis, the photon detection events of each burst are aggregated to form 

a single data point per burst. This is ideal for biomolecules that undergo dynamic transitions 

at timescales slower than milliseconds, termed “between-burst dynamics.” However, when 

dynamic transitions occur in timescales on the order of burst durations or faster, termed 

“within-burst dynamics,” molecular sub-populations blur together and require alternative 

techniques that analyze the photon stream(s) directly to uncover the dynamics hidden in the 

blurred burst parameter histograms.

Methods such as probability distribution analysis (PDA) (13), burst variance analysis (BVA) 

(14,15), and others (2) exist to quantify within-burst dynamics in confocal-based single-

molecule FRET experiments. These methods rely on the fundamentally centrally distributed 

ratiometric parameter of the FRET efficiency. It is common in other modalities, however, 

to rely on the fundamentally exponentially distributed parameter of fluorescence lifetime. 

These specific modalities, however, might lack equivalent ways of quantifying within-burst 

dynamics in confocal-based single dye fluorescence lifetime experiments. In that respect, 

fluorescence correlation spectroscopy is sensitive to correlations in fluorescence intensity 

occurring at different timescales for different types of fluorescence dynamic processes, 

and as such can, in principle, detect these single dye fluorescence dynamics processes 

(16). Two-dimensional (2D) fluorescence lifetime correlation spectroscopy (2D-FLCS) 

(17,18) is capable of detecting fluorescence lifetime dynamics in single dye fluorescence 

measurements, but requires a large dataset and could suffer from numerical instabilities 

(see section “discussion”). Thus, methods to efficiently and accurately quantify within-burst 

dynamics in confocal-based single dye fluorescence lifetime experiments are required.

Out of several modalities that introduce excited-state fluorescence modulation (i.e., either 

quenching or enhancement), PIFE is of particular interest because 1) it only requires a single 

dye, simplifying labeling procedures and minimizing the potential structural perturbation 

that dye labeling may introduce to the biomolecule under study; and 2) the fluorescence 

quantum yield, and therefore the molecular brightness, and the fluorescence lifetime of 

the dye have been shown to be monotonically related to the proximity of the dye to the 

biomolecular surface in the 0–3 nm range (5,6,8,19,20), among other potential reasons that 

affect the dye fluorescence lifetime.
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The dye-protein proximity dependence in PIFE renders it not only an attractive method on 

its own but also a nice complement to FRET (8), having sensitivity to distances smaller than 

the scale of distance sensitivities in FRET.

Using this effect, we were able to observe different groupings of photon bursts of freely 

diffusing sulfo-Cy3 (sCy3)-labeled biomolecules based on the mean value of all photon 

nanotimes (i.e., mean nanotime), the photon detection times relative to the moments of 

excitation that led to these photon emission events (sometimes referred to as photon 

microtimes). Bursts with short mean nanotimes are associated with a biomolecular structure 

having minimal steric hindrance on the sCy3-labeled residue, while those with longer 

mean nanotimes are associated with a biomolecular structure having a relatively restricted 

steric environment in its vicinity. This assessment, however, still relied on assessing single-

molecule bursts over a time-integrated parameter, and therefore the possibility of within-

burst dynamics could not be precluded, and no method has been introduced for the analysis 

of within-burst dynamics in single-molecule PIFE (smPIFE) experiments.

Therefore, we aspired to develop a method to quantify within-burst dynamics in single 

dye single-molecule fluorescence lifetime-based measurements such as smPIFE. For this, 

we sought to adapt the multi-parameter photon-by-photon hidden Markov modeling 

(mpH2MM) framework (21,22) that we recently introduced to function with photon 

nanotime data, which has previously only been applied to FRET-based applications. We 

therefore introduce a simple and widely implementable scheme to transform the exponential 

distribution of photon nanotimes into set of tractable parameters, amenable for use with 

mpH2MM.

In this work, we first use simulations to assess the applicability and limitations of our 

scheme to find within-burst dynamics using photon nanotimes. We then apply it to smPIFE 

data of freely-diffusing unbound α-synuclein monomer, and are able to quantify the 

transition rates between two conformational sub-populations.

RESULTS

The divisor approach

Single photon counting data can include the absolute photon detection time, relative to the 

moment data acquisition started (the photon macrotime), and also the delay between the 

moment of excitation and photon detection for each detected photon (the photon nanotime, 

also referred to as the photon microtime; in the rest of this text, we will exclusively use 

the term nanotime to prevent confusion). The maximal photon nanotime value corresponds 

to the reciprocal of the laser repetition rate, creating a range of potential photon nanotime 

values. In time-correlated single photon counting (TCSPC) systems, the photon nanotime 

can be measured with picosecond precision, hence each TCSPC time bin can report on 

photon nanotimes with uncertainties in the picosecond timescale. When a large number 

of photons have been detected, the histogram of the photon nanotimes can be used for 

representing the fluorescence decay (Fig. 1 d). Unfortunately, a single burst typically 

contains far too few photons to construct a smooth fluorescence decay that is useful in decay 

fitting. Therefore, alternative methods, such as maximum likelihood estimation (MLE) (23), 
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or the phasor approach (24), are used for determining the fluorescence lifetime from smaller 

number of photons. Even these methods, however, have no way to distinguish a transition 

between 1) distinct single fluorescence lifetime states occurring within a single-molecule 

photon burst, hence within-burst dynamics; and 2) a single-molecule photon burst reporting 

on dwell in a single state characterized by a multi-exponential decay.

A powerful method for identifying within-burst dynamics is photon-by-photon hidden 

Markov modeling (H2MM), introduced by Pirchi et al. (21), of which we have made 

extensive use, recently leading to the multi-parameter version of H2MM (mpH2MM) (22). 

In H2MM, the basic framework of hidden Markov modeling (HMM) is extended to accept 

the variable interphoton times. Each photon forms a datapoint, with a pair of values: the 

detection time (i.e., photon macrotime) and some measured parameter, such as on which 

detector was the photon detected. This measured parameter must have an integer value. Each 

state has a distinct probability of producing each of the possible parameter values, which are 

recorded in the emission probability matrix.

In our previous work, the parameters were the detection channels and excitation sources 

within alternating laser excitation (25–27) (ALEX; or pulsed interleaved excitation (PIE) 

(28)) setups, but the underlying algorithm is not limited to this type of parameterization. The 

typical TCSPC acquisition card records photon nanotimes in a predefined number of time 

bins, thus photon nanotimes have an integer set of values. Hence photon nanotimes can be 

used as input for mpH2MM. However, the typical number of TCSPC time bins is 4,096 per 

excitation cycle, leading to the low probability of a photon arriving in a given time bin. This, 

in turn, leads to poor, and oftentimes slower, optimizations, especially in applications with 

low photon counts, rendering the use of raw photon nanotime bins a poor choice for using 

mpH2MM. To reduce the number of possible parameter values for mpH2MM, we introduce 

a divisor approach. A divisor is simply a threshold of TCSPC time bins, where TCSPC time 

bins between two divisors are all treated as having the same parameter value (Fig. 1). As 

an example, with a single divisor, there are two possible parameter values, before and after 

the divisor. With two divisors (as shown in Fig. 1), there are three possible values, before 

both, between, and after both; with three divisors, the pattern continues with there being 

four possible parameter values, and so on. There is a trade-off where, with more divisors, 

the resolvability increases, which increases the likelihood of detecting smaller changes 

in fluorescence lifetime, but the probability of a given photon having a given parameter 

value decreases as well, which tends to increase the probability of a failed or improper 

optimization. Therefore, we seek to find the optimal balance in assignment of these divisors.

We note that, in the case of a single divisor, the proposed approach reproduces Kim et al.’s 

promptness ratio. Adapting Eq. 2 from Kim et al.’s work, we can derive an expression for 

the fluorescence lifetime of a state characterized by a mono-exponential decay, as shown 

here in Eq. 1:

τ = T
ln p0

. (1)
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where τ is the fluorescence lifetime, T is the time between the laser pulse time and the 

divisor, and p0 is the fraction of photons detected with photon nanotimes smaller than the 

divisor value. Importantly, Kim et al. noted that the sensitivity to different fluorescence 

lifetime values and to multi-exponential decays depends on the choice of the single divisor 

value, therefore the same can be expected in our analysis. Such greater sensitivity can be 

achieved using multiple divisors. Therefore, to determine the ideal balance, we tested a total 

of eight divisor schemes, where a scheme is a method of choosing divisors, with different 

numbers of divisors and methods for determining their positions (see section “experimental 

methods”).

Simulations

Using PyBroMo (29,30), we simulate fluorescently-labeled single dye diffusing 

biomolecules transitioning between two fluorescent states with two distinct fluorescence 

lifetimes at varying rates from as slow as 10 s−1 to as rapid as 10,000 s−1. The 

fluorescence quantum yield value of each state scales linearly with the fluorescence lifetime 

of each state (see section “appendix”). Therefore, these conditions simulate single dye 

fluorescence lifetime-based experiments with fluorescence modulation solely due to excited-

state modulation (e.g., excited-state quenching or enhancement), and hence without ground-

state modulations (e.g., ground-state quenching). The short fluorescence lifetime of the first 

state is either 1.2 or 1.6 ns, and the long florescence lifetime of the second state is either 3.2 

or 3.6 ns, with all combinations of short and long lifetimes simulated. The simulated single-

molecule burst data are analyzed using FRETBursts (31) to identify single-molecule bursts. 

For simulations where both transition rates are slow compared with burst duration (<100 

s−1), different mean nanotime sub-populations are clearly distinguishable for each state. 

For faster transition rates, more bursts of intermediate mean nanotime values are present, 

forming a bridge between the short and long lifetime sub-populations (Fig. 2 a). This 

blurring of sub-populations results from transitions between states of different fluorescence 

lifetimes and quantum yields, while the dye-labeled biomolecule traverses the effective 

excitation volume. There is a bias in burst selection for bursts of the longer fluorescence 

lifetime state. This is due to the higher fluorescence quantum yield of the long lifetime 

sub-population, resulting in higher photon rates, which are more likely to have photon count 

rates above the signal-to-background threshold used for identifying bursts. Thus, in single 

dye fluorescence lifetime-based applications, where the fluorescence lifetime is linearly 

proportional to the fluorescence quantum yield (e.g., smPIFE, excited-state quenching; see 

section “appendix”), an inherent bias will occur in burst selection for longer lifetime bursts.

Before quantitatively analyzing the data using the mpH2MM approach, we tested photon 

statistics methods that assisted in indicating the presence or absence of within-burst 

dynamics in FRET, such as BVA (14) and two-channel kernel-based density distribution 

estimator (2CDE) (32), but adapted to identifying within-burst transition dynamics in 

fluorescence lifetime data. Our tests have shown that these approaches are not useful for 

analyzing within-burst dynamics in single dye SMFS data (see detailed discussion in the 

Supporting Material and Figs. S1 and S2).
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Then, we perform mpH2MM analyses of all burst photon data, using our divisors schemes, 

and we compare the results of the mpH2MM analyses of the simulated data with the known 

ground-truth parameter values. The main purpose of mpH2MM here, and in general, is to 

identify underlying states. Since the number of underlying states is usually unknown prior to 

analysis, and since mpH2MM is able to optimize models with any number of states, multiple 

optimizations must be conducted with different state models. After this, the model that best 

represents the data will be identified. Therefore, a statistical discriminator is necessary for 

identifying the ideal model. Similar to FRET-based applications, we find that the integrated 

complete likelihood (ICL) (22) is a good statistical discriminator. Models with more states 

than necessary are considered over-fit, where the model contains non-existent states, or splits 

what should be a single state into multiple ones based on what is actually statistical noise in 

the data. On the other hand, models with fewer states than necessary are under-fit, missing 

certain states entirely or treating two states as one. We find that the ICL selects the correct 

number of states in most cases (Figs. 2 b, c, and S3–S6). The two key limitations are that 

the number of consecutive photons in a given state must be sufficient (Figs. 2 b and S4–S6), 

and that there must be a sufficient number of instances of a given state for it to be detectable. 

When these limitations came into play, the ICL was usually minimized for the single state 

case (Figs. 2 c and S4–S6). The ICL was rarely minimized for three-state models, indicating 

that the ICL rarely selects an over-fit model (Table S1). These over-fit models all show 

features of over-fitting that make it a simple task for the user to screen for such models (Fig. 

S7).

To assess the influence of the size of the dataset, we also analyzed truncated versions of our 

simulated data. In most cases, the ICL remained minimized at nearly identical results (Figs. 

S8–S11).

Then we assess the accuracy of the Viterbi algorithm, which finds the most-likely state of 

each photon given the optimized model and the recorded photon data. Since the simulation 

records the state of the molecule for each photon detection time, we could compare this 

state with that determined by the Viterbi algorithm. We found that the Viterbi algorithm was 

~95% accurate in assigning the correct photons to their underlying states (Fig. 2 d and e). 

For states represented by fluorescence decays with a single fluorescence lifetime component, 

all divisor schemes we tested have nearly identical accuracy. However, divisor schemes with 

more divisors were more likely to select the two-state model based on ICL, while the ICL of 

divisor schemes with fewer divisors were more likely to select under-fit single-state models. 

Since, in many cases, practical systems will involve multi-component decays, it is therefore 

advisable to rely on divisor schemes with multiple divisors (see Table S1).

Comparing ground-truth transition rates with those detected by mpH2MM, we note a degree 

of deviation. The recovered transition rates from the short fluorescence lifetime state are 

consistently faster than the ground-truth values, while the recovered transition rates from the 

long fluorescence lifetime states are consistently slower (Figs. 3 a and b, S12–S14, repeats 

of this figure for other lifetime combinations, and Fig. S15 for more detailed summary). 

This deviation is likely due to there being proportionally more photons emitted from the 

long lifetime state per unit time compared with the short fluorescence lifetime state, biasing 

the results toward the long fluorescence lifetime state. In all cases, the deviation was still 
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a factor of at most three compared to ground-truth transition rates that can be considered 

comparable, and thus mpH2MM extracts reasonable dynamics so long as transition rates are 

within an order of magnitude of the burst duration.

Finally, we turn to assessing the accuracy of fluorescence lifetimes in states assessed by 

mpH2MM. This can be assessed in multiple ways. If a single divisor is used, it can be 

treated using Eq. 1. However, for multi-divisor schemes, multiple potential lifetimes can 

be calculated, and thus deriving the fluorescence lifetime is non-trivial. We therefore prefer 

to use the results of the Viterbi algorithm to assign photons to states, build fluorescence 

decays, and extract the fluorescence lifetime values from these decays. Further confirming 

the accuracy of Viterbi/mpH2MM, these decays are consistent with the ground-truth 

fluorescence lifetimes. The extracted fluorescence decays closely mirror the ground-truth 

(Figs. 3 b, c, and S12–S14). Fitting these fluorescence decays to exponential decays, we 

retrieve fluorescence lifetimes that are within 0.2 ns of the ground-truth (Fig. 3 e and f). 

When we use multi-exponential decays, specific lifetime components were less precise with 

fittings; however, the correspondence of the decays with the available ground-truth photons 

indicates that our inaccuracies were more a result of the lack of photons in each lifetime 

component, due to the short time of our simulations, and, given larger datasets, similarly 

accurate fluorescence lifetimes could likely be extracted.

Individual dwells in a state lack sufficient photons to construct fluorescent decays, but 

the mean photon nanotimes in dwells can still be used. Whether dealing with bursts or 

dwells within bursts, the mean of the distribution is slightly larger than the simulated 

ground-truth lifetime values. We found that this is the result of two primary factors: 1) 

background photons, which are equally probable at any point in the fluorescence decay; 

and 2) the exclusion of the instrument response function (IRF). When background photons 

are excluded, mean photon nanotimes decrease, but still exhibit larger values than the 

ground-truth values of the simulation (Fig. 3 e).

Regarding the shape of the acquired mean nanotime histograms, while histograms of burst-

based mean photon nanotimes have variable shapes, indicative of multiple sub-populations, 

once we use mpH2MM and the Viterbi algorithm to segment the data into dwells in states, 

the dwell-based mean photon nanotimes of each state generally follow a central distribution. 

Naively, following the central limit theorem (CLT), the histogram of mean photon nanotimes 

in a state would be expected to follow a normal distribution. However, as photon nanotimes 

cannot have negative values, especially for short fluorescence lifetime states, the distribution 

cannot strictly be described by Gaussians. Additionally, since the CLT is true for a sufficient 

amount of photon nanotimes sampled from a given distribution, and since time dwells in 

a state sometimes include many photon nanotimes but in other times just a few, we expect 

to get mean photon nanotime histograms per state that deviate from a Gaussian distribution 

also due to instances with means of lower amount of photons. Nevertheless, we still report 

the mean nanotime histograms in dwells per state, and they are clearly centrally distributed 

with varying widths, but we do not impose the use of Gaussians in fitting due to the above 

explanations.
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Overall, our simulations demonstrate that mpH2MM is capable of disentangling within-burst 

dynamics in single dye fluorescence lifetime data. While some systematic bias favors states 

with higher intrinsic brightness, the fundamental recovery of both fluorescence lifetime 

states and the transition rate data is sound.

smPIFE-based millisecond transitions in unbound α-synuclein monomer

After testing the applicability of the multi-divisor approach and mpH2MM on simulations, 

we demonstrate the usefulness of this approach on an important biomolecular system. 

α-Synuclein (α-syn) is an intrinsically disordered protein that self-associates into oligomers, 

aggregates, and amyloid fibrils, and is implicated in the molecular etiology of Parkinson’s 

disease, among other neurodegenerative diseases (33–35). Upon binding to membranes or 

self-associating, α-syn can gain partial folded structures (36–43). However, when unbound, 

α-syn is mostly unstructured (44) and exhibits conformational dynamics with relaxation 

times in the hundreds of nanoseconds, as has been shown before in the analyses of 

single-molecule FRET measurements (38,45). These important findings were focused on 

the dynamics of the distance between pairs of dye-labeled residues far apart in the main 

polypeptide chain, and using the 3–10 nm distance sensitivity that single-molecule FRET 

provides (2). These results report on the dynamic nature of the disordered unbound α-syn 

within the 3–10 nm distance scale typically characterizing nonlocal interactions in small 

proteins.

Interestingly, we have recently used smPIFE, among other methods, to investigate the 

conformational dynamics of the unbound α-syn monomer (46). Histograms of burst-based 

mean nanotimes indicated that there are at least two interconverting α-syn sub-populations, 

each with distinct mean photon nanotime values. These results indicate that structures in the 

<3-nm distance sensitivity of PIFE, typically considered local for proteins, persist for longer 

times than the FRET measurements have shown for nonlocal interactions. Fluorophore-

protein stacking interactions and other interactions that are irrelevant to protein structural 

changes typically exhibit sub-microsecond relaxation times (47,48). Thus, it is unlikely 

that these results are due to an interaction of the protein and the sCy3 dye, which are not 

related to actual structural changes. However, we note that such a possibility cannot be 

categorically ruled out. Following this, burst recurrence analysis of single particles (RASP) 

(49) indicated a signature of transition dynamics between these sub-populations in the 

millisecond timescale. RASP, however, reports on between-burst dynamics, which represents 

timescales longer than the ones that may occur within bursts. We therefore applied our 

divisor approach with mpH2MM to this data to see if within-burst dynamics could be 

detected, and perhaps the transition rates quantified.

We test this on the unbound α-syn monomer singly labeled with sCy3 at residues 26, 56, 

and 140. Across multiple divisor schemes that we tested, the ICL predicts two states. While 

two states are consistently identified, the transition rates for different labeling residues vary. 

At residue 26, the transition rates are <100 s−1, with almost no within-burst transitions 

found. At residues 56 and 140, however, the transition rates were larger than that value 

(<330 s−1), indicating a degree of within-burst dynamics. The difference in the transition 

rates for the different labeled residues could indicate slightly different dynamics, but all on 
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a timescale within the same order of magnitude of a few milliseconds. Using the Viterbi 

algorithm to segment the data into dwells in states, we generate histograms of the mean 

fluorescence lifetimes of dwells, enabling the recovery of state-relevant sub-populations 

without relying on fitting the burst-based mean nanotime histograms to sums of Gaussians 

or other fitting functions (Fig. 4). We are then able to determine the mean photon nanotime 

of each state. For all labeled residues, these are centered at ~1.0 and ~2.2 ns. It is important 

to remember in that context that PIFE reports on dye-protein proximities within 0–3 nm 

(5,6), where 3 nm yields no fluorescence enhancement, hence low fluorescence lifetime 

values, and close to 0 nm yields the maximal fluorescence enhancement, hence highest 

fluorescence lifetime values. Additionally, in PIFE, the distance that is indirectly reported 

from changes in fluorescence lifetimes is between the sCy3 dye and protein parts that 

are in close proximity, which sterically obstruct the sCy3 cis-trans photoisomerization. 

Such effects at such proximities are well within what is considered as local interactions in 

proteins. Therefore, the ~1.0 ns sub-population represents an α-syn conformation with high 

degree of steric obstruction to the sCy3-labeled residues, and the ~2.2-ns sub-population 

represent a different α-syn conformation with lower degree of steric obstruction to the 

sCy3-labeled residue.

Thus, we demonstrate that mpH2MM is capable of quantitatively characterizing transition 

dynamics in experimental data, such as smPIFE of the unbound α-syn monomer.

DISCUSSION

Using the divisor-based approach in mpH2MM, we are able to reduce the intractably large 

and exponentially distributed parameter of fluorescence nanotimes into a tractable set of 

parameters, enabling the detection of within-burst lifetime state dynamics using mpH2MM. 

This is especially powerful as both the fluorescence decays of states and transition rates 

are simultaneously recovered. This was applied in the case of smPIFE data, where the 

primary parameter is the mean fluorescence nanotime per state. Given a sufficiently bright 

sub-population, we are able to resolve transition rates and mean fluorescence lifetime values 

reliably.

Using mpH2MM analysis, we recover the millisecond dynamics occurring between two 

major states in the unbound α-syn monomer. In these results, each state has a different mean 

fluorescence nanotime value that can, among other factors, represent different degrees of 

steric restriction imposed on the sCy3 dye conjugated to a specific residue in α-syn. This, 

in turn, reports on millisecond dynamics in structures that locally influence the vicinity 

of the dye-conjugated residue. We show that this millisecond local structural dynamics 

occurs within bursts in the vicinity of residues 56 in the edge region of the N-terminal 

segment of α-syn, and 140 at the terminus of the acidic C-terminal segment of α-syn. 

We could not recover within-burst lifetime-based dynamics in the vicinity of residue 26 

in the N-terminal segment. However, the burst-based mean nanotime histograms report on 

multiple sub-populations, which points toward lifetime-based dynamics in the vicinity of 

this residue slower than burst durations. Combined with past results from smFRET-based 

measurements (38,45), we can propose that α-syn is a protein that exhibits intrinsic disorder 

characteristics between residues far apart along the primary sequence, perhaps representing 
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no stable nonlocal interactions, with millisecond stable local interactions that may promote 

stable local structural elements. Now, with the ability to identify and quantify within-burst 

dynamics in smPIFE measurements, and by doing so enhance the description of dynamics in 

biomolecules, we believe smPIFE could be used to study many other biomolecular systems.

While the divisor-based mpH2MM approach has been shown here to uniquely aid in 

analyzing fluorescence lifetime-based within-burst dynamics, it is important to mention 

that the 2Dfluorescence lifetime correlation (2D-FLC) methodology (17,18,50) can help in 

such analyses. In 2D-FLC, inverse-Laplace transforms of 2D nanotime correlation functions 

produce 2D lifetime population maps. While the 2D-FLC is reported to be sensitive to 

within-burst dynamics as rapid as the typical microsecond interphoton times, the necessity 

of inverse-Laplace transformation of the data might require more photon data relative to 

the divisor-based mpH2MM approach. Notably, our measurements typically lasted for 1–4 

h, striving to achieve the best burst search and selection results with the best statistics. In 

contrast, when performing 2D-FLC, Ishii and Tahara performed data acquisition for a total 

of 25 h (18). In that context, it is noteworthy that our simulated datasets were attained 

from simulations of only 10 min, and that was still sufficient for retrieving the ground-

truth parameters at a fair accuracy. Therefore, we assume that, while both approaches 

might be complementary in analyzing single dye fluorescence lifetime-based dynamics, 

the divisor-based mpH2MM approach might fit the low number of photon nanotimes in 

each single-molecule burst for a lesser amount of bursts. Importantly, dynamics in the 

millisecond and sub-millisecond timescales many times do not provide a full picture of the 

fluorescence-based dynamics. In many ways, different modalities of fluorescence correlation 

spectroscopy (FCS) employed on freely-diffusing single molecules traversing through a 

confocal spot can also report on fluorescence-based dynamics in the microsecond timescale 

or even faster (see full coverage in a recent review (2)). However, these approaches might 

not solely report on transitions between different conformationally related states but also 

between bright fluorescent states and dark photo-blinked states, and it might be difficult to 

distinguish between these different processes solely based on FCS of single dye fluorescence 

data.

In this work, we tested the application of the divisor-based mpH2MM approach for 

analyzing fluorescence lifetime-based single-molecule burst data assuming that the 

fluorescence lifetimes are linearly proportional to the fluorescence quantum yield (51), 

and also assuming fluorescence modulation is due solely to excited-state modulation 

(e.g., quenching or enhancement). However, ground-state modulation, such as ground-state 

quenching, could also exist in the data but not be represented by dynamics between 

fluorescence lifetime states. At the extreme case, such ground-state modulation that leads to 

fluorescence dynamics will be seen as dynamics between two states with different brightness 

values and no difference in fluorescence lifetime values. Therefore, to shed light on these 

additional possibilities, we suggest data treatments as were previously suggested by Kondo 

et al. (50), namely to present also the brightness in units of photons per millisecond of each 

dwell or burst, where a single molecule was identified as being in a given fluorescence 

lifetime state, in a 2D brightness versus lifetime map. In such a map, sub-populations off the 

diagonal represent a fraction of ground-state and excited-state modulation dynamics.
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While the divisor-based approach to integrating photon nanotimes into mpH2MM is 

typically applicable to PIFE, it is also possible to apply it to other modalities that include 

photon nanotimes, such as with single-molecule FRET. However, since FRET efficiencies 

and fluorescence lifetimes are intrinsically linked, barring additional complicated protein 

interactions, this also has the potential to introduce redundant data. Nevertheless, there 

are situations in which the ratiometric FRET efficiency parameter values differ from 

the FRET efficiency parameter values calculated from donor fluorescence lifetimes. One 

such case is when the doubly labeled system exhibits within-burst donoracceptor distance 

dynamics that can even be faster than the typical interphoton times. This deviation occurs 

due to the dynamics, where the high FRET state has not only lower donor lifetime than 

the lower FRET state but also less donor fluorescence photons, a situation analogous 

to the changes in both fluorescence lifetime and quantum yield in PIFE. Understanding 

the sources of these differences paved the way for Seidel and co-workers to develop an 

analytical framework dubbed FRET-Lines (52) to retrieve the underlying FRET dynamics 

from multi-parameter fluorescence detection (MFD) time-resolved smFRET measurements 

(53–55). In parallel to this approach, we provide the mpH2MM approach for analyzing and 

quantifying within-burst dynamics in such confocal-based single-molecule measurements 

that refer to ratiometric FRET efficiency, donor and acceptor fluorescence lifetimes, 

fluorescence anisotropies, and other parameters. However, note that we currently do not 

gain any additional useful information from applying the MFD approach, compared with 

our previously implemented version of mpH2MM, if neither the donor nor the acceptor are 

undergoing changes independent of FRET. Nevertheless, there are modalities, such as the 

combined PIFE-FRET (19), in which this analysis can be useful, to decouple three types 

of within-burst dynamics: 1) FRET dynamics, 2) PIFE dynamics, and 3) photophysical 

dynamics. In fact, retrieving the mean values from mpH2MM analyses of PIFE-FRET could 

help in linking these values to their underlying physical meanings by using the existing 

theoretical framework of PIFE-FRET (8).

Incorporating more parameters combats the limited information content of single-molecule 

methods, which favor high time resolution, at the expense of spatial information. The more 

parameters are available in analysis, the greater is the ability to resolve and predict the 

unique properties of each conformational sub-population. The divisor approach removes one 

more limitation by allowing any parameter, including ones that do not centrally distribute, 

to be converted into a tractable ratiometric parameter that can then be used in data analyses 

such as mpH2MM. This, in turn, brings us one step closer to a full picture of the microstates 

of biomolecules.

EXPERIMENTAL METHODS

smPIFE measurements of sCy3-labeled α-syn variants

The whole preparative procedure, from the expression, through the dye labeling, to the 

purification, were explained in full by Zaer and Lerner (20).

All smPIFE measurements and burst analyses of α-syn were performed and analyzed 

exactly as recently explained in Chen, Zaer et al. (46).
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PyBroMo simulations

In PyBroMo, 20 particles in an 8 × 8 × 12-μm3 box are simulated with a diffusion 

constant of 12 μm2/s. The time step of the simulation was set to 500 ns. Once single-

molecule diffusion trajectories were built, then PyBroMo simulated the macrotime of photon 

detections. The point spread function (PSF) numerically solved and provided by PSFlab 

(56) is used to calculate the photon detection rate of each simulated single molecule at 

each moment, with different photon rates at the center of the PSF, better known as the 

molecular brightness values per each state. Then, the instantaneous photon rates are used 

for sampling detected photons out of the Poisson distribution with these photon rates. Then, 

background photons are added using a background count rate of 500 counts per second. 

Four different molecular brightness values were simulated for each molecule, one for each 

of the possible states, of which two will be selected once the final trajectory is built. Since 

molecular brightness and lifetime in fluorescence lifetime-based applications such as PIFE 

have been shown to linearly depend on each other, a universal base molecular brightness 

and base fluorescence lifetime are set as 275,000 counts per second, and 4.0 ns respectively. 

Then, ratios of 0.3, 0.4, 0.8, and 0.9 are set as degrees of effects on reducing the molecular 

brightness and the fluorescence lifetime. Multiplying the base value by the ratio leads to 

the actual value used in each simulation. For the simulation of states with multi-exponential 

fluorescence decays, an additional decay with a base lifetime of 1.2 ns is incorporated. 

This shorter lifetime component is also scaled with the ratio of the brightness and lifetime 

reduction effect. This shorter lifetime component contributes 10% of the photons in the 

simulations of states with multi-exponential fluorescence decays.

PyBroMo simulates photon detection times. However, it does not yet simulate either photon 

nanotimes or dynamic transitions between lifetime-based states. Therefore, these effects 

were added through additional layers after PyBroMo simulations. To simulate photon 

nanotimes, a Monte-Carlo simulation is used, simulating an exponential fluorescence decay, 

and then adding an additional delay pulled from the experimental IRF of our setup, 

described in Zaer and Lerner (20). Drawing on previous work, transitions between states are 

made by stitching photon trajectories together. First, dwell times in each state are simulated 

by taking random exponential distributions based on the transition rate. This forms time 

windows for each molecule when it is in a given state. Then, for each simulated state, 

photons within those time windows are selected, and stitched together to create the final 

photon trajectories of simulations.

Burst search and selection

Both simulated and experimental data are imported into FRETBursts (31), and background 

is first assessed for each time interval of 30 s. Then, burst search is performed by selecting 

bursts with an instantaneous count rate of F = 6 times the background rate, with the 

instantaneous count rate calculated using a sliding window of m = 10 photons. Bursts are 

further refined to require a minimum width of 1 ms, a minimum peak count rate of 20,000 

counts per second, and a minimum size of 25 photons.

This provided the base burst selection on which all downstream processing was conducted. 

Whenever mean nanotimes are discussed, a threshold is set denoting the end of the IRF. 
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The mean delay of photons arriving after this threshold relative to said threshold is then 

calculated, and this is the mean nanotime. Photons arriving before this threshold are 

excluded from the mean nanotime analysis. This method is applied equally to burst- and 

dwell-based mean nanotimes and used in BVA calculations.

mpH2MM analysis

In mpH2MM, photons must be assigned indices, which are assigned based on the bin 

into which the photon nanotime is collected. We test a total of eight different divisor 

schemes that assign photons to bins differently. These divisor schemes differ in how many 

divisors are used, and whether or not the IRF was assigned to its own bin. Thus, divisor 

schemes can be assigned into two groups: the non-IRF and with IRF divisor schemes. 

For non-IRF scheme, the divisors were set to equally divide the total photon nanotimes 

of all photons within bursts into bins. Thus, if there was one divisor, it would be placed 

at the 50th percentile; if two divisors, at the 33rd and 66th percentiles. The IRF schemes 

followed a similar pattern, except that an additional divisor was set at the end of the IRF, 

and the percentiles were assigned according to the nanotimes of only photons that arrived 

after the IRF divisor. We test from one to four divisors in the non-IRF scheme, and one 

to four divisors (which have n + 1 divisors due to the additional divisor of the IRF) in 

the IRF scheme. All analyses were performed using the H2MM_C python package (22). 

Model optimizations were performed on single-, two-, and three-state models. The Viterbi 

algorithm was then applied to determine the most-likely state path-based optimized model, 

and to determine the ICL of each optimization. The state path was then segmented into 

state dwells, on which duration and mean photon nanotimes could be assessed. Further, 

using the most-likely state assignment, the photon nanotimes are assembled to create state-

based fluorescent decays. Finally, for analysis of the accuracy of the state assignment, 

the state assigned by Viterbi is compared with the ground-truth of the simulation. For 

this comparison, photons are assigned as correct, incorrect, or not applicable, when the 

ground-truth origin of the photon was either background or from a molecule that did not 

contribute the majority of photons in the burst. In this final case, the result of applying 

the Viterbi algorithm is ignored. For the assessment of the fraction of photons correctly 

assigned to a state, these background photons are excluded. For mpH2MM analysis of α-syn 

data, optimizations are carried out for increasing numbers of states until the ICL ceases to 

decrease.

Supporting Material

Supporting Material contains additional details on methods for (i) calculating BVA and 

2CDE, (ii) figures mirroring Figs. 2 and 3 for other combinations of long and short lifetime 

states, and for truncated simulations, (iii) figures detailing over-fit models, (iv) recovered 

transition rates compared with the ground truth, (v) a table of the number of states in the ICL 

selected model for all simulations.

Data availability

All the code, simulations, experimental and simulated data files, and the data analyses in 

Jupyter Notebooks are available publicly over Zenodo, in the following hyperlink: https://

doi.org/10.5281/zenodo.6591249.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We would like to thank Drs. Asaf Grupi, Dan Amir, and Elisha Haas from the Mina & Everard Goodman Faculty 
of Life Sciences in Bar Ilan University for sharing the plasmids of α-syn bearing single cysteine mutations. This 
project was supported by the Israel Science Foundation (grant 556/22 to E.L.; grant 3565/20 to E.L., within the 
KillCorona – Curbing Coronavirus Research Program), by the National Institutes of Health (grant R01 GM130942 
to E.L. as a subaward), by the Milner Fund (to E.L.), and by the Hebrew University of Jerusalem (start-up funds to 
E.L.).

APPENDIX

In general, fluorescence quantum yield and fluorescence intensity are linearly proportional 

to the fluorescence lifetime. In PIFE, the primary modulator of both fluorescence intensity 

and lifetime is via the competition between emission from a bright excited-state isomer and 

the photo-isomerization into dark states. Thus, we can derive the relationship through Eq. 2 

(51):

φf = kf
kf + kic + kNt

= kfτ (2)

where φf is the fluorescence quantum yield, kf is the radiative rate due to fluorescence, kic 

is the nonradiative rate due to internal conversion, kNt is the rate of de-excitation through 

excited-state isomerization, and τ is the observed fluorescence lifetime. Thus φf and τ are 

directly and linearly proportional.
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WHY IT MATTERS

Single dye-based single-molecule spectroscopic experiments, which rely on fluorescence 

lifetime, simplify sample preparation. However, methods for data analysis have 

lagged behind those of their two dye Förster resonance energy transfer (FRET)-based 

counterparts. Particularly, while methods to detect sub-millisecond dynamics existed 

for single-molecule FRET, for their single dye lifetime-based counterparts, they were 

lacking. Products of this work enable detection and quantification of sub-millisecond 

within-burst dynamics in lifetime-based single-molecule fluorescence spectroscopy 

measurements. Using the presented divisor-based approach, we demonstrate the ability 

to quantify lifetime-based states, their mean fluorescence lifetimes, and their transition 

rates for dynamically interconverting singly labeled biomolecules. We then show the 

usefulness of the method on retrieving millisecond dynamics in single-molecule photo-

isomerization-related fluorescence enhancement (smPIFE) measurements, which was 

difficult to achieve before.
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FIGURE 1. 
The divisor-based approach to analyzing within-burst fluorescence lifetime dynamics. (a) 

Simulated burst of photons originating from a molecule dye labeled with sCy3, which 

undergoes fluorescence lifetime transition while traversing the laser focus. The absolute 

detection times of photons (i.e., the photon macrotimes) are represented on the vertical 

axis, and the photon nanotimes on the horizontal axis. The vertical lines indicate divisors 

separating photon nanotimes into bins. (b) The simulated decays of the states are given in 

colored lines. The IRF is given in grey lines. (c) The same burst but with photons organized 

by bins, not nanotimes. (d) The probability of a photon arriving in each divisor for the two 

states.
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FIGURE 2. 
Sensitivity of mpH2MM in divisor-based fluorescence lifetime analysis. (a) Selected 

examples of mean nanotime histograms of simulated data. Vertical bars indicate the ground-

truth lifetime values. Filled-bar histograms are mean nanotimes of bursts, blue of data 

including simulated background, while teal bars are the same data but with background 

photons excluded from calculation of mean nanotimes. Stepped-line histograms show mean 

nanotimes of dwells in a state within a burst determined by mpH2MM analysis. (b and c) 

The minimization of the statistic, ICL, and its capability to correctly identify the number 

of states. Color indicates the number of divisor schemes where the ICL was minimized for 

the ground-truth two-state models. In (b), the size of the spot indicates the mean number of 

photons in a dwell within a burst, for the state with the least number of photons per dwell. In 

(c), the size of the spot indicates, for the less populated state, how many photons from that 

state were available across all bursts. (d and e) Violin plots of the fraction of photons whose 

most-likely state from mpH2MM analysis determined by the Viterbi algorithm matched that 

of the state known by the ground truth. In (d), different divisor schemes for simulations 

using single exponential decays are compared. In (e), different divisors and simulations 

with mono- and bi-exponential decays are compared. Numbers indicate the number of 

mpH2MM models of the given divisor/decay combination whose ICL was minimized for the 

ground-truth two-state model.

Harris and Lerner Page 20

Biophys Rep (N Y). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Assessment of mpH2MM in determining transition rates and lifetimes. (a and b) The 

ground-truth transition rate versus mpH2MM. Horizontal axis compares transition rate from 

the (a) 3.6 ns or (b) 1.6 ns states. In all panels, the transition rate from the other state is 

held constant at 500 s−1. Plus signs (+) indicate mpH2MM optimizations with all photons, 

while × signs indicate optimizations where background photons were excluded. (c and d) 

Comparison of fluorescence decays of the ground-truth (blue) and reconstructed based on 

most-likely state derived from the Viterbi algorithm employed on the results of mpH2MM 

analyses of the simulated data (red). Black line shows bi-exponential fitting of Viterbi-based 

fluorescence decay. Both are for simulations with 500 s−1 transition rate for both states (i.e., 

the transition rates are symmetric); (c) 3.6 ns state, (d) 1.6 ns state. (e) Violin plot showing 

the mean nanotimes of all states using mpH2MM for all ICL selected models of simulations 

with states of 1.6 and 3.6 ns. Blue plots for data with background photons included, green 

for data with background photons excluded, and red of mean nanotimes derived from the 

ground-truth. (f) Violin plots of mono-exponential fittings of Viterbi-derived fluorescence 

decays of same data as in e). G.T., ground-truth.
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FIGURE 4. 
mpH2MM analysis of the unbound α-syn monomer labeled at residues (a) 26, (b) 56, and 

(c) 140 with sCy3. Barred histograms indicate mean nanotimes of state dwells within bursts, 

while lined histograms indicate burst-based mean nanotimes.
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