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ABSTRACT
Stem cells are critical for replenishment of cells lost to death, damage or differentiation.
Drosophila testes are a key model system for elucidating mechanisms regulating stem
cellmaintenance and differentiation. An intriguing gene identified through such studies
is the transcription factor, chronologically inappropriate morphogenesis (Chinmo).
Chinmo is a downstream effector of the Jak-STAT signaling pathway that acts in testis
somatic stem cells to ensure maintenance of male stem cell fate and sexual identity.
Defects in these processes can lead to infertility and the formation of germ cell tumors.
While Chinmo’s effect on testis stem cell behavior has been investigated in detail, there
is still much to be learned about its structure, function, and interactions with other
proteins. Using a two-hybrid screen, we find that Chinmo interacts with itself, the small
ubiquitin-like modifier SUMO, the novel protein CG11180, and four other proteins
(CG4318, Ova (ovaries absent), Taf3 (TBP-associated factor 3), and CG18269). Since
both Chinmo and CG11180 contain sumoylation sites and SUMO-interacting motifs
(SIMs), we analyzed their interaction inmore detail. Using site-directedmutagenesis of
a unique SIM in CG11180, we demonstrate that Chinmo’s interaction with CG11180
is SUMO-dependent. Furthermore, to assess the functional relevance of both SUMO
and CG11180, we performed RNAi-mediated knockdown of both proteins in somatic
cells of the Drosophila testis. Using this approach, we find that CG11180 and SUMO
are required in somatic cells of adult testes, and that reduction of either protein causes
formation of germ cell tumors. Overall, our work suggests that SUMOmay be involved
in the interaction of Chinmo and CG11180 and that these genes are required in somatic
cells of the adultDrosophila testis. Consistent with the CG11180 knockdown phenotype
in male testes, and to underscore its connection to Chinmo, we propose the name
Chigno (Childless Gambino) for CG11180.

Subjects Cell Biology, Developmental Biology, Genetics, Molecular Biology
Keywords Sex maintenance, Testis, Spermatogenesis, Germline, Germ cell tumors, Cancer,
Infertility, Chinmo, CG11180/Chigno, SUMO/Smt3

INTRODUCTION
Stem cells are critical for organ function and tissue homeostasis. Their capacity to self-
renew while producing daughter cells that differentiate into functional cell types is critical
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for the continuous replacement of cells lost to death or damage over time. While our
understanding of these important cells has increased dramatically, there is still much to
be learned. Due to their relatively simple structure and defined stem cell niche, Drosophila
testes are a key model for uncovering mechanisms controlling stem cell behavior in other
systems (de Cuevas & Matunis, 2011; Fuchs, Tumbar & Guasch, 2004; Herrera & Bach,
2019; Leatherman, 2013; Singh, 2015). In addition to elucidating mechanisms controlling
tissue homeostasis, defects in Drosophila reproductive stem cell behavior provide insight
into infertility, cancer, and aging (Han et al., 2017; Hou & Singh, 2017; Salz, Dawson &
Heaney, 2017; Spradling et al., 2011; Voog & Jones, 2010).

The Drosophila testis forms a coiled tube with the germline stem cell (GSC) niche at
its apex, and differentiated spermatids at the distal end that is connected to the seminal
vesicle (Fuller, 1993; Hardy et al., 1979). The GSC niche is made up of a tight cluster of
quiescent somatic cells, collectively called the hub, which acts as a signaling center to control
adjacent stem cells (de Cuevas & Matunis, 2011;Demarco et al., 2014;Greenspan, De Cuevas
& Matunis, 2015 PMID; Herrera & Bach, 2019). Two populations of stem cells, the GSCs
and somatic cyst stem cells (CySCs), are docked at the hub (Hardy et al., 1979). Asymmetric
division of GSCs oriented away from the hub results in production of a GSC daughter that
remains associated with the niche, and a gonialblast daughter that is displaced from the hub
(Inaba et al., 2010; Yamashita, Jones & Fuller, 2003). The gonialblast continues to divide
with incomplete cytokinesis; making a 16-cell spermatogonia that is pushed further down
the testis coil and initiates meiosis to produce 64 individualized sperm (Fabian & Brill,
2012; Fuller, 1993). Similar to GSCs, CySCs undergo self-renewing divisions to produce
a CySC that remains associated with the hub, and a daughter cyst cell that functions to
nurture spermatogenic differentiation (Zoller & Schulz, 2012). During spermatogenesis,
two non-mitotic somatic cyst cells wrap around each gonialblast and then grow in size
to envelope the differentiating spermatogonia throughout spermatogenesis (Fuller, 1993;
Zoller & Schulz, 2012).

Signaling between hub cells, CySCs, and GSCs is critical for niche homeostasis
and continued fertility (Greenspan, De Cuevas & Matunis, 2015; Herrera & Bach, 2019;
Leatherman, 2013). Key pathways involved in GSC and CySC maintenance include the
Janus kinase-signal transducer and activator of transcription (Jak-STAT), Hedgehog (Hh),
and bone morphogenetic protein (BMP) pathways. Jak-STAT and Hh signaling in CySCs
are induced via secretion of activating ligands from the hub to promote CySCmaintenance
(Amoyel et al., 2013; Kiger et al., 2001; Leatherman & DiNardo, 2010; Michel et al., 2012;
Tulina & Matunis, 2001; Zhang et al., 2013), while secretion of BMP activating ligands
from hub cells and CySCs promote GSC self-renewal (Kawase et al., 2004; Leatherman &
DiNardo, 2008; Leatherman & DiNardo, 2010; Michel et al., 2011; Shivdasani & Ingham,
2003). Thus, defects in hub and CySC function can lead to either loss of GSCs or the
expansion of undifferentiated GSCs as germline tumors. Because cyst cells produced by
CySCs are required for spermatogenic differentiation, defects in cyst cell differentiation
can also cause germ cell tumors and infertility (Hudson et al., 2013; Kiger, White-Cooper
& Fuller, 2000; Lim & Fuller, 2012; Matunis et al., 1997; Schulz, SI & Fuller, 2002; Tran,
Brenner & Di Nardo, 2000).
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Jak-STAT signaling was among the first pathways shown to control testis stem cell
maintenance (Kiger et al., 2001; Tulina & Matunis, 2001). In the germline, Jak-STAT
activation promotes adhesion of GSCs to the hub (Leatherman & DiNardo, 2010), while it
acts in CySCs to repress cyst differentiation by altering gene transcription (Herrera & Bach,
2019). Among the genes induced by the Jak-STAT pathway in CySCs is the transcription
factor, chronologically inappropriate morphogenesis (Chinmo). Chinmo is evolutionarily
conserved as ZFP509/ZNF509 in mammals and functions to regulate hematopoiesis,
neural and eye development, as well as GSC and CySC behavior in Drosophila (Flaherty
et al., 2010; Grmai et al., 2018; Grmai et al., 2021; Ma, Wawersik & Matunis, 2014; Tseng et
al., 2022). In CySCs, chinmo has been shown to promote CySC maintenance, with over-
expression of Chinmo in somatic support cells causing CySC expansion that leads to GSC
over-proliferation (Flaherty et al., 2010). Chinmo is also known to regulate maintenance
of male CySC sexual identity. Indeed, loss of chinmo function in the adult testis has
been shown to cause conversion of male CySCs to ovarian follicle stem cells (FSCs)
(Grmai et al., 2018; Ma, Wawersik & Matunis, 2014). Under these conditions, CySCs fail
to splice mRNA encoded by the evolutionarily conserved double-sex (dsx) gene into its
male form (Grmai et al., 2018), causing formation of germ cell tumors and infertility.
Interestingly, loss of the mammalian dsx homolog, double-sex/mab-3 related transcription
factor-1 (Dmrt1), in post-natal mouse testes, causes feminization of somatic Sertoli cells
that support spermatogenesis in a manner similar to Drosophila cyst cells (Matson et al.,
2011). Thus, not only does Chinmo regulate CySC self-renewal and sex-maintenance, but
it acts to promote sex-maintenance through mechanisms that are conserved between flies
and mammals.

To better understand mechanisms by which Chinmo impacts CySC behavior, other
aspects of Drosophila development, and to understand the roles of ZFP509 and other
putative Chinmo orthologs in mammals, structure function analyses are critical. Inspection
of the Chinmo cDNA and ORF reveals several notable features. Genomic analyses
indicate the existence of six distinct chinmo transcripts encoding a 604 amino acid and
an 840 amino acid protein, respectively (https://flybase.org/). Chinmo is a member of
the BTB-ZF (broad-complex, tramtrack and bric-à-brac - zinc finger) protein family,
which frequently plays a role in transcriptional regulation (Siggs & Beutler, 2012). In
mammalian BTB-ZF proteins, the ZF domain determines sequence specificity while the
BTB domain promotes oligomerization and the recruitment of transcriptional repressors
(Siggs & Beutler, 2012). The various mammalian BTB-ZF domain proteins are involved
in lymphocyte development, fertility regulation, skeletal morphogenesis, and neural
development. In Drosophila, BTB-ZF genes other than chinmo, such as fruitless, abrupt,
and lola, are involved in neurological development and control a variety of processes, such
as cell differentiation, organ formation, and sex-specific behavior (Ito et al., 1996; Sato et
al., 2019; Zhu et al., 2006). We find that Chinmo also contains several putative motifs for
covalent or noncovalent interaction with the post-translational modifier SUMO (Small
Ubiquitin-like Modifier) (Kerscher, 2007). SUMO can be covalently linked to specific
target proteins to modify their activity, localization, interactions, and half-life (Kerscher,
2007; Kerscher, Felberbaum & Hochstrasser, 2006). Functionally, proteins that undergo
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modification by SUMO perform essential roles including those in transcription, mRNA
processing, DNA replication, intracellular transport, DNA-damage response, and stress
tolerance (Flotho & Melchior, 2013; Ryu, Ahn & Hochstrasser, 2020) . One example of a
sumoylated protein that functions in testes CySCs is Cubitus interruptus (Ci), which acts
in the Hh signaling pathway and is critical for CySC maintenance (Lv et al., 2016). The
sumoylation sites found in Chinmo thus raise the possibility that SUMO targets Chinmo
for modification and regulates its interactions and essential functions.

Here, we show that Chinmo interacts with itself, SUMO, and five other proteins, 3
of which are novel in function (CG4318, Ova (Ovaries absent), Taf3 (TBP-associated
factor 3), CG18269, and CG11180). CG11180 encodes an uncharacterized Drosophila
protein orthologous to human PINX1 which functions to regulate ribosome biogenesis
and telomerase activity (annotations on https://flybase.org/; Larkin et al., 2021). CG11180
was identified six times in our Chinmo interactor screen and was thus chosen for
further analysis. We show that the interaction between Chinmo and CG11180 requires
CG11180′s SIM, indicating SUMO-dependency. Furthermore, Chinmo’s interaction
with both CG11180 and SUMO are functionally relevant in vivo as knockdown of either
of these two proteins in somatic cells of the adult Drosophila testis yields germ cell
tumor phenotypes similar to those observed after somatic chinmo knockdown. Due to its
interactions with Chinmo and its tumor associated germ cell differentiation defects, we
propose to name CG11180, Chigno (Childless Gambino). Together, our data suggest that
SUMOmay functionally link the activity of Chinmo and CG11180/Chigno in somatic cells
of the adult Drosophila testis, thereby playing a key role in male fertility and spermatogenic
differentiation.

MATERIALS AND METHODS
Portions of this text were previously published as part of a preprint: https://doi.org/10.1101/
2021.11.03.467147.

Yeast two-hybrid assays
Two-hybrid screening and assays were performed as described in the Matchmaker™
Pretransformed Libraries User Manual (Takara PT3183-1) using a Drosophila Mate
& Plate™ Library—Universal Drosophila (Normalized A+ RNA isolated from embryo
(∼20 hr), larval, and adult stage Drosophila melanogaster) Cat. No. 630485. Briefly, a
fusion of Chinmo(native) with the Gal4 DNA Binding domain (BD) was expressed in yeast
(AH109) and thenmated to yeast two-hybrid library of normalizedDrosophila melanogaster
cDNA clones transformed in a MATa GAL4 reporter strain (Y187). Chinmo interactors
were identified as colonies that robustly activated the ADE2, HIS3 reporter genes and
formed blue colonies on SD/-Ade/-His/-Leu/-Trp/X-alpha-Gal media. Individual clones
were isolated, sequenced, and retested (see Fig. 1C). Yeast strains and plasmids are listed
in Table S2.

Protein domain prediction
Prediction of SIMs and sumoylation consensus sites was done using GPS SUMO
(https://sumo.biocuckoo.cn/). Only high confidence SIMs and sumoylation sites are
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Figure 1 Chinmo protein domains and interactors. (A) Chinmo contains a BTB protein interaction do-
main spanning residues 32 to 98 and two zinc finger domains (ZNF) spanning from 517 to 540 and 545 to
568. Two stop codons in the cDNA terminate translation at residue 604, (continued on next page. . . )

Full-size DOI: 10.7717/peerj.16971/fig-1
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Figure 1 (. . .continued)
or, if read-through occurs, at residue 840. Furthermore, SUMO interaction motifs and sumoylation sites
are shown in yellow and orange respectively. Note that a putative SIM domain in Chinmo is contained
within the BTB protein-interaction domain. (B) Two-hybrid analysis shows that Chinmo interacts
with five novel proteins (encoded by CG4318, Ova (Ovaries absent), Taf3 (TBP-associated factor 3),
CG11180, and CG18269) and other Chinmo proteins. Left: graphic representation of BD-Chinmo (blue)
and its interactors (red). BD-Chinmo/AD-empty vector is a negative control. Middle: The presence of
BD-Chinmo (in pOBD2/TRP1) and the indicated AD constructs (in pOAD/LEU2) was confirmed by
growth on growth media lacking tryptophan and leucine (-T-L). Right: The interaction between Chinmo
constructs and Chinmo interactors is confirmed by growth on media lacking lacking tryptophan, leucine,
histidine, and adenine (T-L-H-A). Plates were imaged after three days of growth. (C) Shown are the
gene/protein name, approximate coordinates of the cDNA fragment identified, description, and reference.

reported (Zhao et al., 2014). Other domains in Chinmo and CG1180/Chigno were mapped
using https://prosite.expasy.org (Sigrist et al., 2013). Sequences and transcript analyses were
retrieved from flybase.org (Larkin et al., 2021).

Cloning and site-directed mutagenesis
BD-Chinmo clones were derived using a commercially available cDNA clone (SD04616)
as template and PCR primers specific for the long and short Chinmo open-reading
frame. The resulting Chinmo amplicons were recombined into two-hybrid plasmid
pOBD2 (www.addgene.org; pOBD2 (Plasmid #196826) http://depts.washington.edu/
sfields/protocols/pOBD2.html). Mutagenic primers and the Q5 site-directed mutagenesis
kit (NEB E0554S) were used to generate the BD-Chinmonon-stop and the CG11180/Chigno-
sim*mutant. All clones were confirmed using sequence analysis and, in the case of Chinmo,
western blotting.

Fly stocks
c587-Gal4 (Kai & Spradling, 2003) and eyaA3-Gal4 (Leatherman & Dinardo, 2008) were
used to drive UAS-transgene expression in the somatic CySCs and early cyst cells
(the CySC lineage). UAS- lines include: UAS-CG11180-RNAi (Bloomington stock #
28629; TRiP.JF03044;), UAS-Smt3-RNAi (Bloomington stock #28034; TRiP.JF02869),
UAS-CG5694-RNAi (Bloomington stock #62485;TRiP.HMJ23969), UAS-CG4318-RNAi
(Bloomington stock #51720;TRiP.HMC03257), UAS-Bip2/Taf3-RNAi (Bloomington
stock #43174;TRiP.GLI01516). y,w1118 flies were used as wild type, with controls generated
by mating c587-Gal4 or EyaA3-Gal4 to y,w1118 flies unless otherwise noted. Fly stocks
were obtained from Bloomington Stock Center (http://flystocks.bio.indiana.edu/) unless
otherwise specified.

Testis collection & immunostaining
Flies were raised at 25 ◦C unless otherwise indicated. To prevent Gal4-UAS activity
during development, flies were reared at 18 ◦C and allowed to eclose as adults for
48–72 h, after which flies were shifted to 25 ◦C. Adult testes were dissected, fixed and
immunostained at designated ages as described (Matunis et al., 1997). At least two replicas
of each immunostaining experiment were performed with data for quantitative analyses.
Antibodies used for immunostaining were Rabbit anti-Vasa at 1:500 (R. Lehmann) or Rat
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anti-Vasa at 1:60 (A.C. Spradling/D. Williams; DSHB), mouse anti-Hts/1B1 (H. Lipshitz;
DSHB) at 1:4, and goat anti-rabbit Alexa 568 (Invitrogen; A-11011), goat anti-rat RRX
(Jackson Labs; 112-295-068), or goat anti-mouse Alexa 488 (Jackson Labs; 205-545-108)
at 1:500. Nuclei were stained using DAPI at 1 µg/mL (Roche) for 3 min.

Microscopy & phenotype classification
Samples were mounted in 70% glycerol containing 2.5% DABCO (Sigma) and p-
phenylenediamine anti-fade agent (Sigma) at a final concentration of 0.2 mg/mL. Slides
were viewed with an Olympus BX51 microscope equipped with a DSU spinning disc
confocal system and Q-imaging RETIGA-SRV CCD camera. Images were captured and
analyzed with Slidebook software by 3I. For scoring of phenotype severity, wild type testes
with high-level DAPI staining restricted to the testis apex where less differentiated germ
cells reside (Tulina & Matunis, 2001) were scored as normal. An increase in DAPI-bright
region extending up to 10% the length of the testes coil was scored as mild, 10–30% scored
as moderate, and greater than 30% of the testes coil scored as severe. Testes with expansion
of less differentiated DAPI-bright germ cells but lacking an obvious testes coil were scored
as severe aberrant/underdeveloped. Data shown in graphs represent pooled numbers from
at least two replicates of each genotype/treatment.

RESULTS
Identification of Chinmo interactors
Chinmo contains a BTB protein interaction domain (amino acids (aa) 32–98), two Zinc
Finger Domains (aa 517–545 and 545–573), three putative SUMO-interacting motifs
(SIM) (aa 71–75, 773–777, 780–784), and at least 5 SUMO consensus sites (K288, K414,
K447, K476, K779) (Fig. 1A). These domains and motifs raise the possibility that Chinmo
interacts with multiple different proteins, (e.g., other Chinmo proteins or transcriptional
repressors), SUMO, and sumoylated proteins. However, additional analyses are required
to identify Chinmo interacting proteins that could provide functional clues. Therefore, we
used a two-hybrid screen to identify these proteins and investigate Chinmo’s interactions
in detail. To perform this analysis, we obtained a Chinmo 4259 nucleotide (nt) cDNA
(SD04616) to clone the Chinmo ORF in frame with the Gal4 DNA Binding domain (BD)
into the pOBD2 two-hybrid vector. Inspection of theChinmo coding sequence in this cDNA
clone revealed an 1,815 nt ORF, terminating in a single STOP codon. This ORF translates
into a 604 aa Chinmo protein containing all indicated protein interaction domains and
motifs (Fig. 1A). Curiously, we noticed that omission of the STOP codon (potentially by
read-through) yields a 2,529 nt ORF encoding a previously reported 840 aa long Chinmo
protein isoform (http://flybase.org/reports/FBgn0034528). To assess potential differences
between the short and long Chinmo ORFs, we generated the following BD-Chinmo clones:
BD-Chinmonative (with the Stop at nt 1,813), and BD-Chinmonon-stop (lacking the Stop
codon at position 1813), and BD-ChinmoSTOP (omitting sequences after the Stop codon
at position 1,813) (Fig. S1A). Western blots showed that all versions of BD-Chinmo
expressed fusion proteins were of the expected size, ∼90 kDa for BD-Chinmonative and
BD-ChinmoSTOP compared to ∼135 kDa for the BD-Chinmonon-stop (Rinehart, 2017).
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To identify Chinmo interacting proteins, we used the BD-Chinmonative clone, which
expresses a fusion of the Gal4-BD to 604 aa of Chinmo corresponding to the shorter
transcript variant, to screen a two-hybrid library of D. melanogaster cDNAs fused to the
Gal4 Activation Domain (AD-cDNA) (See materials and methods). In this screen, we
identified 5 different AD-cDNA fusions (CG11180, CG4318, Ova, Taf3, and CG18269).
These constructs resulted in reporter gene activation (ADE2, HIS3) when co-expressed
with BD-Chinmo and robust growth on media lacking adenine and histidine (referred to
as -H-A) (Fig. 1B). As a negative control, BD-Chinmo alone (Chinmo/AD) did not result
in reporter gene activation as expected (see Figs. 1B and 1C). Two Chinmo-interactors
identified in our screen (CG4318 and Ova) are transcription factors functionally linked
to germline differentiation (FlyBase, 2021; Yang et al., 2019), and Taf3 is involved in
transcriptional activation and regulation (Chopra et al., 2008). CG11180 and CG18269
encode proteins of unknown function (Fig. 1C). While an interaction between CG4318
and Chinmo was previously identified in a high throughput interactome study (Shokri et
al., 2019), interactions between Chinmo and the other four proteins are novel.

As part of our screen for Chinmo interactors, we also included an AD-Chinmo clone
and found that it interacts with the BD-Chinmonative clone used for library screening.
In support of choosing BD-Chinmonative for our 2-hybrid screen, we did not discern a
difference in the interaction between the different BD-Chinmo clones (Native, Non-Stop,
and Stop) and AD-Chinmo (Fig. S1B). In summary, our 2-hybrid screen identified 5 novel
Chinmo-interacting proteins and also revealed that Chinmo dimerizes with itself.

Chinmo interaction with SUMO
Because Chinmo has several SIMs (Fig. 1A) and we did not identify SUMO in our screen,
we also directly assayed Chinmo’s predicted interaction with SUMO. SUMO/Smt3 is a
structurally highly conserved protein with the yeast and Drosophila orthologs bearing
42% sequence identity and 57% similarity. Thus, we tested the interaction of ScSmt3
from yeast (AD-SUMO) with all three BD-Chinmo variants. In our assay, AD-SUMO
interacted with all three BD-Chinmo variants (BD-Chinmonative, BD-Chinmonon-stop,
and BD-ChinmoSTOP) on media lacking histidine. BD-Slx5, a SUMO interacting protein
with multiple SIMs, served as a positive control and as expected, AD-SUMO alone
(empty/SUMO) did not result in reporter gene activation. Using a more stringent selection
(SD-H-A) recapitulated our finding that SUMO interacts robustly with BD-Chinmonative

and BD-ChinmoSTOP. However, the interaction of Chinmonon-stop with SUMOwas weaker,
as apparent from reduced growth on SD-H-A media (Fig. 2A). An ONPG ß-galactosidase
assay to quantitate the interaction of SUMO and Chinmo also showed that the STOP and
Native Chinmo clones showed equivalent reporter gene activation, while the interaction
of AD-SUMO and the Chinmonon-stop was reduced to background levels (Fig. 2B). In
summary, our data show that both BD-Chinmonative and BD-ChinmoSTOP interact with
SUMO, and that this interaction may depend on the SIM (aa 71–75) in Chinmo.

The interaction of Chinmo with CG11180/Chigno depends on SUMO
Both Chinmo and the partial cDNA of CG11180/Chigno (aa 373–621) isolated in
our screen contain SIM domains (Fig. 3A). Therefore, we also assessed if Chinmo’s
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Figure 2 Chinmo interacts with SUMO. (A) Two-hybrid analysis shows that BD-Chinmo Native and
BD-Chinmo Stop (and to a lesser degree BD-Chinmo Non-Stop) interact with AD-SUMO. Left: Graphic
representation of the three BD-Chinmo clones (Native, Stop, and Non-Stop) (blue) and AD-SUMO (red).
Negative (BD-empty vector with AD-SUMO) and positive controls (BD-Slx5 with AD-SUMO) are as in-
dicated. Middle: The presence of the indicated BD-Chinmo constructs (in pOBD2/TRP1) and AD-SUMO
(in pOAD/LEU2) was confirmed by growth on growth media lacking tryptophan and leucine (-T-L).
Right: Interactions are confirmed by growth on media lacking tryptophan, leucine, histidine, and adenine
(T-L-H and -T-L-H-A). Plates were imaged after three days of growth. (B) Quantification of the interac-
tion of SUMO with the indicated Chinmo proteins using a quantitative ONPG assays and strains shown in
A. Tukey Kramer multiple comparison procedure was used to determine significant differences in SUMO
interaction.

Full-size DOI: 10.7717/peerj.16971/fig-2

interaction with CG11180/Chigno is SUMO-dependent. For this analysis, we focused on
the functional role of a SIM mutant (sim*) in AD-CG11180/Chigno for two reasons:
(i) One of Chinmo’s SIMs resides within the BTB domain and a sim* mutant may
affect its dimerization, and (ii) Chinmo has multiple sumoylation sites that potentially
interact with the SIM in CG11180/Chigno (unlike the Chigno clone). For our analyses,
we created an AD-CG11180/Chignosim∗ mutant by site-directed mutagenesis, replacing
the SIM in CG11180/Chigno (VIVID) with alanine’s (AAAAA). We then tested both the
AD-CG11180/Chignosim∗ mutant and the AD-CG11180/Chigno clone for the ability to
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Figure 3 Chinmo’s interaction with CG11180/Chigno depends on a SIM in Chigno. (A) Comparison
of protein domains and motifs in CG11180/Chigno (red) and Chinmo (blue). Coordinates of SIMs and
sumoylation consensus sites as shown. Note that the SIM domain in Chinmo is contained within the BTB
protein-interaction domain. The black arrow demarcates the CG11180/Chigno protein fragment encoded
by the cDNA isolated in our screen (373–621). (B) Left: Graphic representation of BD-Chinmo constructs
(blue) and AD-CG11180/Chigno, either containing or lacking the SIM at residues 71 to 75 (red). Neg-
ative controls (empty pOBD2/TRP1) and a positive control (p53/T) are as indicated. Middle: The pres-
ence of the indicated BD constructs (blue: pOBD2/TRP1) and either AD-CG11180/Chigno WT or AD-
CG11180/Chigno sim* (pOAD/LEU2) was confirmed by growth on growth media lacking tryptophan and
leucine (-T-L). Right: Interactions are confirmed by growth on media lacking tryptophan, leucine, histi-
dine, and adenine (-T-L-H-A). Plates were imaged after three days of growth.

Full-size DOI: 10.7717/peerj.16971/fig-3

interact with BD-SUMO, BD-Chinmo, and an empty BD control plasmid. We found that
AD-CG11180/Chigno interacts with both BD-SUMO and BD-Chinmo. In contrast, the
AD-CG11180/Chignosim∗ mutant failed to interact with both BD-SUMO and BD-Chinmo
(Fig. 3B). As a negative control, the empty BD vector failed to elicit reporter gene activation
with both the AD-CG11180/Chignosim∗ mutant and the AD-CG11180/Chigno clone.
Additionally, the positive control (p53/T) showed reporter gene activation, as expected.
Together, these results suggest that the VIVID sequence in CG11180/Chigno constitutes a
bona-fide SIM that could be required for the interaction with Chinmo.

Rinehart et al. (2024), PeerJ, DOI 10.7717/peerj.16971 10/25

https://peerj.com
https://doi.org/10.7717/peerj.16971/fig-3
http://dx.doi.org/10.7717/peerj.16971


CG11180/Chigno and SUMO are required in somatic cells of the adult
Drosophila testis
We next assessed the functional significance of identified Chinmo-interacting proteins in
vivo. Because Chinmo functions in somatic CySCs of adultDrosophila testes (Flaherty et al.,
2010; Grmai et al., 2018;Ma, Wawersik & Matunis, 2014), we performed RNAi knockdown
of Chinmo-interacting proteins in somatic support cells using the Gal4-UAS system
(Brand & Perrimon, 1993). Specifically, UAS-RNAi constructs against Chinmo-interactors
identified through our screen, as well as SUMO/Smt3, were expressed using the c587-Gal4
driver (Kai & Spradling, 2003) which is frequently used to induce high-level gene expression
in CySCs and early cyst cells (Demarco et al., 2014; Lv et al., 2016;Ma, Wawersik & Matunis,
2014). Adult testes were then isolated and processed for fluorescence immunostaining.
Because functional CySCs and cyst cells are critical for normal germ cell differentiation,
and inhibition of Chinmo results in germ cell differentiation defects associated with
over-proliferation of under-differentiated germ cells, testes were assayed for germ cell
differentiation defects in our initial analysis presented here.

We find that somatic knockdown of CG4318, ova, or Taf3 show no germ cell
differentiation defects in 0–4 day old adult testes (Fig. S2). Similar results were obtained
for 7–12 day old testes, though ova knockdown caused lethality in aged flies and these
data will be reported elsewhere. However, RNAi knockdown of CG11180/Chigno and
SUMO/Smt3 using the c587-Gal4 driver caused developmental lethality in flies reared at
25 ◦C. For technical reasons, we were unable to test a UAS-RNAi construct for the impact
of CG18269.

To assess if CG11180/Chigno functions in adult testes, experiments were adapted to
prevent developmental lethality. Specifically, flies carrying the somatic c587-Gal4 driver
and a UAS-CG11180-RNAi construct were reared at lower temperature (18 ◦C) to reduce
Gal4 function. Upon emergence from their pupal cases (eclosion), adultmale flies were then
upshifted to 25 ◦C to permit full Gal4 activation. Under these conditions, we found that
knockdown of CG11180/Chigno in somatic cells of the adult testis results in formation of
germ cells tumors marked by over-proliferation of undifferentiated germ cells that are not
observed in controls carrying only the c587-Gal4 driver or UAS-Chigno-RNAi construct
(Fig. 4; Table S1). Severity of phenotype varied (Fig. 4), with ∼38% of 6–10 day old testes
showingmild to severe germ cell over-proliferation phenotypes (Figs. 4B–4D, 4G; Table S1),
and∼4%displaying a severely aberrant/unformed phenotypewhere testes lack their normal
coiled structure and show an absence of spermatogonial differentiation (Figs. 4E–4G; Table
S1). Defects in spermatogonial differentiation and the over-proliferation of undifferentiated
germ cells was confirmed by immunostaining for fusomes, a germline specific organelle
that shows distinct morphology in GSCs and gonialblasts compared to differentiating
spermatogonia (Fig. S3). Consistent with adult induction of RNAi knockdown after
temperature upshift, phenotype severity increases with age, with∼44% of testes showing a
phenotype 6–10 days after somatic knockdown while ∼65% are phenotypic at 14–18 days
(Fig. 4G; Table S1).

To determine if SUMO/Smt3 functions in somatic cells of adult testes, we used another
common CySC/early cyst-Gal4 driver (EyaA3-Gal4; Demarco et al., 2014; Leatherman &
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Figure 4 Somatic knockdown of the Chinmo interactor, CG11180/Chingo, in adult testes impacts
germ cell proliferation and differentiation. (A–F) Adult testes 7–10 days after eclosion immunostained
with anti-Vasa (red) and DAPI (blue) to reveal germ cells or nuclei respectively. Vasa and DAPI shown
alone in black and white (A’–F’ and A’’–F’’, respectively). (continued on next page. . . )

Full-size DOI: 10.7717/peerj.16971/fig-4
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Figure 4 (. . .continued)
Testes apex containing the GSC niche indicated with an asterisk. Scale bars= 70 µm. (A) c587-Gal4/+
control testis showing presence of undifferentiated germ cells with spherical morphology and bright DAPI
staining near the GSC niche and differentiating spermatogonia with dim DAPI staining extending away
from the niche. (B–F) c587-Gal4/+; UAS-CG11180-RNAi/+ flies reared at 18 ◦C then upshifted to 25 ◦C
showing defects in germ cell differentiation marked by expansion of undifferentiated germ cells that dis-
play spherical morphology and bright DAPI staining. Representative images of testes with mild (B), mod-
erate (C), and severe (D) phenotype are shown. A severe aberrant/unformed testis at low (E) and high
magnification (F) lacking an obvious testes coil while showing expansion of undifferentiated germ cells is
also shown. (G) Graph showing percentage of control and c587-Gal4/+; UAS-CG11180-RNAi/+ testis dis-
playing phenotype at specific ages, with phenotype severity increasing over time after somatic CG11180
knockdown. Sample sizes are: c587-Gal4/+ (7-16d), n= 56; UAS-CG11180 RNAi/+ (7-14d), n= 22; c587-
Gal4/+; UAS-CG11180 RNAi/+ (6-10d), n = 77; c587-Gal4/+; UAS-CG11180 RNAi/+ (10-14d), n = 67;
c587-Gal4/+; UAS-CG11180 RNAi/+ (14-18d), n= 34.

Dinardo, 2008) to induce expression of the UAS-SUMO/Smt3-RNAi transgene. Under
these conditions, flies were viable whether reared at 25 ◦C, or at 18 ◦C then upshifted to
25 ◦C. Furthermore, under both conditions, adult males displayed a similar phenotype as
CG11180/Chigno knockdown testes, with germ cell tumors marked by over-proliferation
of undifferentiated germ cells (Figs. 5A–5B). Like CG11180/Chigno knockdown testes,
this phenotype was observed at varying degrees (Fig. 5; Table S1), with ∼96% of testes
showing a phenotype in samples reared at 25 ◦C (Figs. 5A, 5D; Table S1). Phenotype
induction was also observed after temperature upshift, with 1–3 day old testes lacking
a phenotype, but ∼93% of testes developing a phenotype 7 days after upshift (Fig. 5B,
5D; Table S1). Confirmation of germline differentiation defects and over-proliferation of
undifferentiated germ cells was confirmed via fusome staining (Fig. S3). Taken together,
these data suggest that CG11180/Chigno and SUMO/Smt3 play an important role in
the regulation of somatic cell behavior in adult testes, with indirect impacts on germ cell
proliferation and differentiation. However, it should be noted that the phenotypes observed
after somatic SUMO knockdown should not necessarily be interpreted as solely related to
Chinmo since SUMO depletion is likely to affect a variety of other processes, including Hh
signaling in the testis CySCs (Lv et al., 2016). Specific mechanisms by which these genes
function in the testis soma, and their connection to each other as well as Chinmo, are
topics for future studies.

DISCUSSION
In this study we set out to identify Chinmo-interacting proteins using a two-hybrid
screen and targeted two-hybrid assays. Our results suggest that Chinmo, a putative
BTB-zinc finger transcription factor, interacts directly with three uncharacterized proteins,
several transcriptional regulators, SUMO/Smt3, and itself. Chinmo dimerization is not
surprising as BTB-zinc finger transcription factors are known to homo and hetero-dimerize
via their BTB domains. Because most BTB-domain proteins are transcription factors,
their homo-dimerization is predicted to increase affinity for their targets and modulate
transcriptional repression properties. In contrast, some BTB domain proteins also act as
substrate adapters for ubiquitin E3 ligases, targeting heterologous substrate proteins they
bind for ubiquitination (Perez-Torrado, Yamada & Defossez, 2006).
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Figure 5 Somatic knockdown of SUMO/Smt3 in the adult testis causes proliferation of undifferenti-
ated germ cells. (A–C) EyaA3-Gal4; UAS-Smt3-RNAi adult testes immunostained with anti-Vasa (red)
and DAPI (blue) to detect germ cells and nuclei respectively. Vasa (A’–C’) and DAPI (A’’–C’’) are dis-
played individually in black and white. The testes apex containing the GSC niche is indicated with an as-
terisk. Scale bar= 70 µm. (A) 7-10d EyaA3-Gal4; UAS-Smt3-RNAi testis reared at 25 ◦C displaying se-
vere overproliferation of undifferentiated germ cells as indicated by expansion of spherical germ cells with
strong DAPI fluorescence (compare to control in Fig. 4A). (B) 7-10d EyaA3-Gal4; UAS-Smt3-RNAi testis
upshifted from 18 to 25 ◦C for 7 days displaying a similar phenotype marked by overproliferation of un-
differentiated germ cells. (C) 1-3d Eya A3-Gal4; UAS-Smt3-RNAi testis raised at 18 ◦C then upshifted for
1 day is similar to controls. (D) Graph showing variance in phenotype severity in EyaA3-Gal4; UAS-Smt3-
RNAi testes with different treatments as compared to controls. Samples sizes are: EyaA3-Gal4/+ (25 ◦C)
7-10d, n = 36; EyaA3-Gal4/UAS-Smt3 RNAi (25 ◦C) 6-10d, n = 28; EyaA3-Gal4/UAS-Smt RNAi (18◦–
25 ◦C) 1-3d, n= 16; EyaA3-Gal4/UAS-Smt3 RNAi (18–25 ◦C) 7-10d, n= 12.

Full-size DOI: 10.7717/peerj.16971/fig-5

Among the Chinmo-interacting proteins, CG4318, Ova, Taf3, and SUMO stand out for
their previously identified roles in Drosophila reproductive tissues. Specifically, CG4318
encodes a putative transcription factor expressed in the germline that was previously
identified as a Chinmo-interacting protein through a two-hybrid screen designed to
map the Drosophila transcription factor interactome (Shokri et al., 2019). Identification of
CG4318 in this study, therefore, validates our experimental approach. Additionally, Ova
is required for fertility in female flies and functions to support ovarian germline stem cell
differentiation (Yang et al., 2019), while Taf3 is required for the expression of germline
genes in primordial germ cells (Yatsu et al., 2008) and is known to interact with proteins,
like Chinmo, that contain BTB domains (Pointud et al., 2001). In the present study, we did
not observe an obvious phenotype for the knockdown of CG4318, Ova, and Taf3 in somatic
cells of the testis. It is, therefore, possible that these proteins interact with Chinmo in the
germline, or in other tissues with Chinmo expression such as the nervous system where
Chinmo regulates neuronal temporal identity during post-embryonic brain development
(Yu & Lee, 2007).

Since Chinmo has multiple SUMO-interacting motifs and SUMO consensus sites, we
also predicted to identify SUMO or sumoylated proteins in our screen. While we failed
to isolate a Drosophila SUMO clone in our initial screen, we confirmed the interaction of
Chinmo with SUMO in a two-hybrid assay with yeast ScSMT3. It is, therefore, possible that
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theDrosophila cDNAprey librarywe used did not contain a functional dmSmt3 clone or that
dmSmt3 interactions and conjugation fail to take place in budding yeast cells. Supporting
the latter, an AD-dmSmt3 construct we cloned and expressed in the yeast smt3-331ts
strain fails to complement this temperature-sensitive mutant at 37 ◦C (data not shown).
Accordingly, humanHsSUMO3 (which is related to fly DmSmt3) also fails to complement a
deletion of ScSmt3 in yeast, reportedly because hsSUMO3 is not compatible with precursor
processing and E1 activation (Newman et al., 2017;Ureña et al., 2016). Therefore, a notable
caveat to our data is that interactions between Chinmo, Chigno and Drosophila Smt3 are
subject to confirmation through ongoing studies. Consistent with a role for Drosophila
SUMO functioning in concert with Chinmo, however, SUMO and sumoylation genes are
expressed in the Drosophila germline during spermatogenesis (Hashiyama, Shigenobu &
Kobayashi, 2009). As previously noted SUMO has also been shown to play a role in CySC
regulation in Drosophila testes. Specifically, SUMOylation promotes CySC self-renewal via
upregulation of the Hedgehog (Hh) signaling pathway (Lv et al., 2016). Indeed, the Hh
pathway transcription factor, Cubitus interruptus (Ci), interacts directly with the SUMO
E2-conjugating enzyme, Lesswright (Lwr). Additionally, inhibition of Lwr in somatic
support cells causes a reduction in CySC number and pre-mature cyst cell differentiation
(Lv et al., 2016). Interestingly, a reduction of CySCs might be expected to cause defects
in GSC maintenance, rather than the over-proliferation of undifferentiated germ cells we
observe after somatic knockdown of SUMO/Smt3. Therefore, while Lv et al. clearly show
a role for sumoylation in modulating Hh-mediated CySC self-renewal, our observations
indicate that SUMO must play additional roles in somatic support cells. Our data suggest
that one of these roles may be non-covalent binding of SUMO to Chinmo to facilitate
interactions with other proteins that are sumoylated or contain SIMS, though future
analyses are required to verify these interactions in vivo.

Less is known about function of the novel proteins, CG18269 and CG11180/Chigno.
While we did not yet assess the impact of CG18269 knockdown, there is some evidence
suggesting the gene product of CG18269 may function in the testis. Specifically, CG18269
is downregulated in testis where germ cells are subjected to oxidative stress (Tan, Suda &
Baeg, 2018). Furthermore, while CG18269 expression levels are low in adult Drosophila
tissues, RNA-Seq indicates an enrichment in the adult testis (Chintapalli, Wang & Dow,
2007). Thus, it is possible that CG18269 functions alongside Chinmo in the adult germline
and/or somatic cells of the testis niche.

The main focus of analysis of Chinmo interactors fell on CG11180/Chigno because
somatic knockdown of CG11180/Chigno caused formation of germ cell tumors. This
provides evidence that CG11180/Chigno functions in somatic support cells where Chinmo
regulates somatic sex maintenance and stem cell renewal. This notion is further supported
by a whole-genome RNAi screen where CG11180/Chigno knockdown in the CySC lineage
leads to male infertility marked by lack of germ cell differentiation (Fairchild, Islam &
Tanentzapf, 2017). Further discussion of potential roles for CG11180/Chigno in adult
testes and the significance of its interactions with Chinmo are presented below. A model
by which SUMO may coordinate function of Chinmo-Chinmo as well Chinmo-Chigno
interactions is also presented (Fig. 6).
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Figure 6 Hypothetical model of Chinmo/SUMO/Chigno interaction in testes.Hypothetical model of
interactions between the conserved BTB-ZF protein Chinmo (green dimer), the PINX1-related protein
Chigno/CG11180 (purple), and SUMO (S). Both Chinmo and Chigno/CG11180 have SUMO interacting
motifs (SIMs) for non-covalent SUMO binding that may aid in their interaction or the interaction with
other SUMO-associated and/or sumoylated proteins. Additionally, Chinmo has several putative sumoyla-
tion sites that may facilitate SUMO-related processes such as regulation of Chinmo’s transcriptional activ-
ity, it’s localization or association with chromatin, and possibly disassembly and/or turnover of this com-
plex.

Full-size DOI: 10.7717/peerj.16971/fig-6

CG11180/Chigno function and the significance of Chinmo-Chigno
interactions
As previously indicated, formation of germ cell tumors marked by germline over-
proliferation and germ cell differentiation defects after somatic knockdown of
CG11180/Chigno provides physiological evidence for CG11180/Chigno function in
somatic cells of the testes. The direct interaction between CG11180/Chigno and Chinmo
also suggests that these two proteins can function together in this tissue. Indeed, a
CG11180/Chigno clone encompassing amino-acids 373–621 was identified six times in our
2-hybrid screen. GivenChinmo’s function as a transcription factor, it is tempting to propose
that Chigno/Chinmo interactions serve to modulate Chinmo’s function in gene regulation.
In support of CG11180/Chigno as a transcripitonal regulator, an interactome screen for
modulators of insulin signaling identified a potential interaction between CG11180/Chigno
and the transcription factor, FOXO (Vinayagam et al., 2016). Additionally, the conserved
G-patch domain present in CG11180/Chigno has been linked to transcriptional regulation
(Bohnsack et al., 2021). If CG11180/Chigno does function in somatic support cells to
modulate Chinmo function, it will be interesting to determine if CG11180/Chigno serves
to positively or negatively regulate Chinmo function. Indeed, while loss of Chinmo function
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in CySCs results in germ cell tumors due the conversion of CySCs to ovarian FSCs (Ma,
Wawersik & Matunis, 2014), germ cell tumors with undifferentiated germ cells are also
observed after Chinmo over-expression due to CySC over-proliferation (Flaherty et al.,
2010). Further research must, therefore, be performed to directly examine the role of
CG11180/Chigno in regulating CySC self-renewal, differentiation, and sex-maintenance,
while also exploring genetic interactions between Chinmo and CG11180/Chigno that
might affect these behaviors.

Novel functions of a Chigno/Chinmo complex may also be predicted based on presence
of CG11180/Chigno’s conserved G-patch domain and function of its closest mammalian
ortholog, PINX1. As previously noted, PINX1 is a tumor suppressor and telomerase
inhibitor that has also been implicated in regulation of mRNA splicing and ribosome
biogenesis (Chen et al., 2014; Guglielmi & Werner, 2002; Mouffok et al., 2021; Zhou & Lu,
2001). The conserved G-patch domain has also been linked to other functions including
regulation of DEAH-box RNA helicases which control critical processes such as RNA
metabolism, mRNA splicing, and ribosome biogenesis that are also linked to PINX1
function (Bohnsack et al., 2021 PMID 33857358). Thus, it is possible that a Chigno/Chinmo
complex could act to regulate RNA processing to alter cell behavior, though it is also
possible that CG11180/Chigno may function alone or in complex with other proteins to
mediate these functions. Studying how dysregulation of these processes impact CySC and
cyst behavior, and the role of CG11180/Chigno and Chinmo in RNA processing is an
interesting line of inquiry for the future.

Role of SUMO in regulation of CG11180/Chigno and Chinmo
Sumoylation plays a pivotal role in transcriptional repression and the formation of protein
complexes via protein sumoylation and SIMs (Kerscher, 2007; Wilkinson & Henley, 2010).
As we have identified SUMOas a potential Chinmo interacting protein, it is, therefore, likely
that sumoylation of Chinmo on one or several consensus site lysines regulates its activity
and interactions as a transcription factor. Indeed, SUMO (ScSmt3) interacts strongly with
the native and STOP variants of Chinmo that both produce∼90 kDa proteins (Fig. 2A and
Rinehart, 2017). However, deletion of a Chinmo STOP codon at position 604 (non-stop)
results in expression of an artificially-lengthened Chinmo protein of ∼135 kDa that fails
to interact strongly with SUMO. Whether this longer Chinmo protein exists in vivo and
whether this observation is physiologically relevant or merely indicates the misfolding of
an artificially-lengthened protein in yeast is currently not clear.

In our analysis we also noted that a bona-fide SIM is situatedwithin the BTBdimerization
domain of Chinmo. This suggests that SUMO-binding of this SIM could alter Chinmo’s
conformation or interfere with its ability to dimerize and/or hetero-dimerize. Indeed,
CG11180/Chigno also contains a SIM motif that is located at amino-acids 470–474 that
facilitates binding to Chinmo; suggesting that SUMO binding might alter Chinmo-Chigno
interactions. Consistent with this, we found that (1) CG11180/Chigno also interacts with
SUMO and (2) mutation of CG11180/Chigno’s SIM completely abolished the interaction
of CG11180/Chigno with both SUMO and Chinmo (Fig. 3). This may suggest that
sumoylation of Chinmo could be required for its interaction with CG11180/Chigno.
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SUMO could, therefore, be utilized to recruit the Chinmo monomer to chromatin-
associated CG11180/Chigno, or vice versa. A hypothesized model depicting the capacity
of SUMO binding to modulate Chinmo-Chigno as well as Chinmo-Chinmo interactions
is shown in Fig. 6. The functional significance of SUMO’s interactions with Chinmo and
Chigno and whether SUMO binding mediates formation of Chinmo homodimers and/or
Chinmo-Chigno interactions in vivo remains to be determined.

CONCLUSIONS
We hypothesized that a structure/function analysis of Chinmo and its interacting proteins
will further our understanding of mechanisms controlling stem cell renewal and sex-
maintenance in Drosophila. In summary, our study provides evidence for a complex
relationship of Chinmo with other transcription factors and several proteins, such as
SUMO, involved in somatic and germline regulation. Specifically, our structure-function
analyses, combined with RNAi studies suggest that a Chinmo/Chigno/SUMO complex
may function in somatic support cells to ensure fertility and prevent germ cell tumors
formation. However, it is also likely that some of the Chinmo interactions we have
identified are not specific to the testis soma, but rather play important regulatory roles
in germ cells or other tissues (e.g., neurons). Future studies will investigate details of the
subcellular localization of Chigno, provide a more detailed structure-function analysis
of the predicted Chinmo/Chigno/SUMO complex, and focus on its precise role in the
Drosophila testes and other tissues.
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