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Genetic variations are investigated in human and many other organisms for many
purposes (e.g., to aid in clinical diagnosis). Interpretation of the identified variations can
be challenging. Although some dedicated prediction methods have been developed and
some tools for human variants can also be used for other organisms, the performance and
species range have been limited. We developed a novel variant pathogenicity/tolerance
predictor for amino acid substitutions in any organism. The method, PON-All, is a machine
learning tool trained on human, animal, and plant variants. Two versions are provided, one
with Gene Ontology (GO) annotations and another without these details. GO annotations
are not available or are partial for many organisms of interest. The methods provide
predictions for three classes: pathogenic, benign, and variants of unknown significance.
On the blind test, when using GO annotations, accuracy was 0.913 andMCC 0.827.When
GO features were not used, accuracy was 0.856 and MCC 0.712. The performance is the
best for human and plant variants and somewhat lower for animal variants because the
number of known disease-causing variants in animals is rather small. The method was
compared to several other tools and was found to have superior performance. PON-All is
freely available at http://structure.bmc.lu.se/PON-All and http://8.133.174.28:8999/.

Keywords: variation interpretation, mutation, animal variants, plant variants, amino acid substitution, prediction,
pathogenicity, machine learning

INTRODUCTION

Genome and exome sequencing are frequently used techniques in biology and clinical settings.
Efficient resequencing has moved the bottleneck from obtaining sequence and variation information
to variation interpretation. Many tools have been released for variant pathogenicity, also called
variant tolerance and prediction (Adzhubei et al., 2010; Choi et al., 2012; Olatubosun et al., 2012;
Capriotti et al., 2013; Kircher et al., 2014; Schwarz et al., 2014; Dong et al., 2015; Niroula et al., 2015;
Vaser et al., 2016; Rogers et al., 2018). These methods are also used for clinical diagnosis in many
countries and laboratories according to American College for Medical Genetics and Genomics
(ACMG) and the Association for Molecular Pathology (AMP) (Richards et al., 2015) guidelines.
These guidelines state that predictions could support the diagnosis if several methods agree. This
recommendation is problematic and should be reconsidered as it reduces the number of cases that
can be predicted because the method with the poorest performance dictates the outcome (Vihinen,
2020).

Variant interpretation methods have been divided into three main categories: those based on
evolutionary information, those utilizing many types of features, including evolutionary details, and
meta-predictors that use predictions from other predictors as the starting point (Niroula and
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Vihinen, 2016). Methods in the last two categories are typically
based on machine learning (ML). Several different ML algorithms
have been applied, there is not a single best one among them. The
predictor performance depends on the quality of data, used
features and their selection, implementation of the predictor,
and other factors.

Most pathogenicity/tolerance predictors classify variants into
two classes (pathogenic/benign), while some have three or more
categories. Additional categories could be useful if the predictions
are reliable because diseases are not simple binary states, as
indicated by the pathogenicity model (Vihinen, 2017). These
tools do not explain the cause and mechanism of diseases due to
harmful variants. Many other types of predictors are available for
various effects and mechanisms, including RNA splicing, protein
stability, solubility, disorder, aggregation, and localization.

In variation interpretation, most of the work has been devoted
to explaining human variants; however, there is increasing
interest and need for interpretation of variants and their
consequences also in other organisms. This knowledge is
essential for understanding diseases in non-human organisms,
obtaining insight into genetic disease mechanisms, genetic
diagnosis in veterinary and botany, and scientific inquiry and
comparison, among others. Although several predictors trained
on human data are applicable to (or at least capable of) accepting
variants from other organisms, they have not been systematically
developed and tested for alterations from other organisms.
Evolutionary methods could be easily adapted for this
purpose. However, evolutionary data alone are of limited
significance as they do not allow the development of the most
reliable predictors. Variation interpretation is a very complex
problem, and many features are needed to achieve high
prediction performance.

Some predictors have been developed and trained on plant
(Kono et al., 2018; Kovalev et al., 2018) and animal variant data
(Plekhanova et al., 2019). In animal and plant experiments, it
would be important to know whether the used strains contain
harmful variants since they may act as confounding factors in
various studies. In veterinary medicine, there is increased interest
in variants (e.g., in pet animals) also outside the most common
species of cats and dogs. Variation data and even genetic data are
scarce for many of these species. Experimental validation of
variation effects is laborious and often outside the available
resources. Therefore, in many cases, the only means to assess
the harmfulness of identified variants is to perform
computational predictions. As there are not many special tools
and even those available as generic methods have not been
systematically tested, there is no way of knowing the reliability
of the predictions. Some databases, especially the Online
Mendelian Inheritance in Animals (OMIA), are valuable.
However, there are currently data only for nine named species
(and others). Further, the number of likely disease-causal variants
is only 1,381. The best performing human variant effect
predictors have been trained on tens of thousands of variants.

We have developed several methods for variation
interpretation, mainly based on ML. These include PON-P
(Olatubosun et al., 2012) and PON-P2 (Niroula et al., 2015)
for human pathogenicity prediction of amino acid substitutions,

PON-Tstab (Yang et al., 2018) for variants affecting protein
stability, PON-Sol (Yang et al., 2016) and PON-Sol2 (Yang
et al., 2021) for solubility affecting variants, PON-Diso (Ali
et al., 2014) for protein disorder affecting alterations, and
PON-mt-tRNA (Niroula et al., 2016) for variants in
mitochondrial tRNA molecules. These tools are highly
accurate and among the best in their application areas. Several
aspects have to be considered in method development: data
collection, feature selection, method training, and systematic
performance benchmarking (Niroula and Vihinen, 2016).

We collected a data set of human, animal, and plant variants
and trained an ML predictor using a gradient boosting algorithm
and exhaustive feature selection. Themethod is called PON-All as
it can predict the consequences of amino acid substitutions in
proteins from any organism. Several predictors were developed
and extensively tested by reporting a full set of performance
measures. PON-All was systematically trained and tested and
found to have very high performance in predictions for all three
types of organisms. The method is fast and freely available as a
web resource.

MATERIALS AND METHODS

Data Sets
Amino acid substitutions in human, animal, and plant
sequences were collected from databases and publications.
The human variants were obtained from VariBench (Nair
et al., 2013; Sarkar et al., 2020), including 13,885 harmful
variants originally used to train PON-P2 (Niroula et al., 2015).
Additional 6369 verified clinical cases were obtained from
ClinVar (Landrum et al., 2014) and 2,058 variants in
membrane proteins (Orioli and Vihinen, 2019) from
VariBench. Only amino acid substitutions with harmful
clinical effects were collected. Duplicate cases were removed.

Human neutral variations with minor allele frequency
(MAF) 1%<MAF<25% were from ExAC and obtained from
VariBench (http://structure.bmc.lu.se/VariBench/ExAC_
AAS_20171214.xlsx). The data set had originally been used
to test the sensitivity of several predictors (Niroula and
Vihinen, 2019). Because these variants have high MAF in
populations, they are considered benign. Benign variations
used for training and testing were randomly selected. The
numbers of variations used in different stages are indicated in
Table 1. An additional set of 370 benign variants obtained
from ClinVar was used to assess specificity.

There were two sources for variations in animals. Cases with
the notation “likely causal variants” were obtained from OMIA
(Nicholas, 2003). Additional mammalian deleterious variants
were obtained from Plekhanova et al. (2019). The main
species included dogs, mice, and cattle. Plant data were taken
from the data set used to develop a random forests pathogenicity
predictor for plant protein variations (species included
Arabidopsis, Oryza sativa, and Pisum sativum) (Kovalev et al.,
2018). Altogether, there were 23,138 pathogenic variations and
27,816 neutral variations in 16,026 proteins in the three types of
species.
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As some features used in training were protein-specific, it was
necessary to partition the cases so that all variants in the same
protein were in the same data set (either training or test set) to
ensure the universality of the classification and avoid bias.
Further, we balanced the numbers of pathogenic and
neutral cases.

The blind test data set contained cases used to test PON-P2
(Niroula et al., 2015). Half of the animal variants were randomly
distributed to the blind test set. Because there were substantially
more plant variants, we randomly selected 20% of the variants for
the blind test set. In addition, the division of 10-fold cross-
validation (CV) training sets and blind test sets ensured that
the variations in any protein were always in either the training set
or blind test set. Another principle of data division was that the
numbers of harmful and neutral variations in each data set were
balanced (1:1). The data sets used for training and testing are
available in VariBench (Nair et al., 2013; Sarkar et al., 2020) at
http://structure.bmc.lu.se/VariBench/trainingall.php and http://
8.133.174.28:8999/.

Features
To train the predictor, we started with 1,085 features: 617 amino
acid features, 436 variation type features, 25 neighborhood
features, 2 evolutionary conservation features, 1 protein
feature, and 1 GO feature.

A total of 617 complete amino acid propensity scales were
from AAindex (Kawashima and Kanehisa, 2000). This feature set
has been previously used to train PON-P2 (Niroula et al., 2015),
PON-PS (Niroula and Vihinen, 2017), PON-Tstab (Yang et al.,
2018), and PON-Sol2 (Yang et al., 2021). For each variant, the
difference between the score for the original amino and the
variant amino acid was calculated.

There were two matrices to obtain variation-type features. A
total of 400 features came from the 20*20 matrix, where the two
dimensions represented original and variant residues. Another 36
features denote a 6*6 matrix representing the physical and
chemical properties of amino acids. The six amino acid
categories were hydrophobic (V, I, L, F, M, W, Y, C),
negatively charged (D, E), positively charged (R, K, H),
conformational (G, P), polar (N, Q, S), and others (A, T) and
have been previously described (Shen and Vihinen, 2004).

In order to represent the sequence context of variation sites,
25 neighborhood features were included. A 20-dimensional
vector of neighborhood residues counts the occurrences of
each amino acid type within a neighborhood in a window of
23 positions, that is, 11 positions before and after the variation

site (Lockwood et al., 2011). In addition, we included the
frequencies of five groups of amino acids (nonpolar, polar,
charged, positively charged, and negatively charged) in the
neighborhood window of 23 positions.

For evolutionary conservation, DIAMOND (Buchfink et al.,
2015) was used to compare each protein sequence to SwissProt
(Shomer, 1997) to find related sequences and calculate the
number of hits. DIAMOND was chosen as it is substantially
faster than BLAST (Altschul et al., 1997) but with a similar degree
of sensitivity. The identified sequences were aligned and then
used to calculate SIFT scores for evolutionary conservation of
each variant position using SIFT 4G (Vaser et al., 2016).

The protein feature was defined as the length of the protein
sequence. Additional features included whether the variation was
in the first amino acid in the peptide chain and position within
the sequence.

Features derived from Gene Ontology (GO) terms have
previously been used for variant classification (Kaminker et al.,
2007; Calabrese et al., 2009; Niroula et al., 2015). For the full set of
GO terms, we combined results from AmiGO (Carbon et al.,
2009) and QuickGO (Munoz-Torres and Carbon, 2017) using the
R Bioconductor tool GO.db (https://bioconductor.org/packages/
GO.db/). We collected all the ancestors of all GO terms and
filtered the GO entries so that each protein contained each GO
term once. Two sets of GO terms were created for each category
(pathogenic and neutral). The sum of the logarithm ratio of GO
frequencies of the pathogenic set and that of the neutral set was
calculated as follows:

LR � ∑ log
f(Pi)+1
f(Ni)+1,

where LR is the value for the GO annotations and f(Pi) and f(Ni)
are the frequencies of the ith GO term in pathogenic and neutral
data sets, respectively. To avoid uncertain ratios, we added 1 to all
the frequencies. If a protein had not been annotated with GO
terms, then LR = 0, and this feature was not considered in the
prediction. We separately trained predictors with and without
GO annotations.

We tested the usefulness of functional annotation features and
found that almost all the variation records had functional
annotations. Site-specific annotations were determined from
UniProtKB/Swiss-Prot. The variations that occurred at such
sites were identified. We collected all site terms and filtered
them so that each protein contained each site term once. Two
sets of site terms were created for the two categories (pathogenic
and neutral). The sum of the logarithm ratio of site frequencies of

TABLE 1 | Division of cases to data sets for cross-validation and blind testing. The first number is for proteins and the second for variants.

10-fold cross-validation Blind test Total

Pathogenic Neutral Total Pathogenic Neutral Total Pathogenic Neutral Total

Humans 2,173/17,504 12,141/23,600 13,383/41,104 170/1,980 669/1,967 740/3,926 2,343/19,484 12,810/25,567 14,123/45,030
Animals 117/162 116/144 232/306 109/155 125/169 233/324 226/317 241/313 465/630
Plants 913/2,601 629/1,562 1,150/4,163 228/736 152/374 288/1,110 1,141/3,337 781/1,936 1,438/5,273
Total 3,203/20,267 12,886/25,306 14,765/45,573 507/2,871 946/2,510 1,261/5,360 3,710/23,138 13,832/27,816 16,026/50,933
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the pathogenic set and that of the neutral set were defined as
follows:

FS � ∑ log
f(Pi)+1
f(Ni)+1,

where FS is the value for the site annotations and f(Pi) and f(Ni)
are the frequencies of the ith site term in pathogenic and neutral
data sets, respectively. To avoid uncertain ratios, we added 1 to all
the frequencies. If a protein had not been annotated with site
terms, then FS = 0, and this feature was not considered in the
prediction.

Algorithms
We trained predictors with three machine learning algorithms:
random forests (RF) (Breiman, 2001; Pavey et al., 2017), XGBoost
(Chen et al., 2016; Yu et al., 2020), and Light GBM (LGBM)
(Wang et al., 2017; Zhang et al., 2019). The default parameters
were used in each case. All the algorithms were implemented in
Python in the standard learn package (Pedregosa et al., 2011).
Random forests is an ensemble algorithm. It applies several
decision trees on a subset of the data set and uses the average
accuracy of each decision tree to improve the performance and
reduce overfitting. The gradient boosting model evaluates the
output features based on the combination output result of weak
prediction learner models. It minimizes a loss function to
optimize the model. Sequential models are constructed using
the decision trees until maximum accuracy is achieved.

XGBoost and LightGBM are implementations of gradient
boosting. Initial results for LightGBM and XGBoost were
similar and better than for random forests. Because of the
similar performance, we chose LightGBM which is faster due
to Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB) (Ke et al., 2017).

Reliability Assessment
The probability method was used to identify variations with high
confidence. The probability distribution function of self-sampling
probability cannot be determined. Therefore, we used
Chebyshev’s inequality, which is applicable to arbitrary
distributions. For random variables X with mean µ and
standard deviation σ, Chebyshev’s inequality guarantees that at
least 1 − (1/k2) values are distributed within k standard deviations
of the mean values:

P(μ − kσ <X< μ + kσ)≥ 1 − 1
k2
.

When 1 − (1/k2) is 0.95, and if the range of µ±kσ does not
include 0.5, the prediction is marked as credible and classified as
pathogenic or neutral; else, the variation is considered as
unclassified (UV, unclassified variant, also called VUS, variant
of uncertain significance).

Performance Assessment
We used eight measures to evaluate the classification
performance (Vihinen, 2012; Vihinen, 2013). The measures
included positive predictive value (PPV), negative predictive

value (NPV), sensitivity, specificity, accuracy, Matthews
correlation coefficient (MCC) and overall performance
measure (OPM) (Niroula et al., 2015). The mathematical
definitions of these measures are as follows:

PPV � TP

TP + FP
,

NPV � TN

TN + FN
,

Sensitivity � TP

TP + FN
,

Specificity � TN

TN + FP
,

Accuracy � TP + TN

TP + TN + FP + FN
,

MCC � (TP × TN) − (FP × FN)��������������������������������������������(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)√ ,

nMCC � 1 +MCC

2
,

OPM � (PPV +NPV)(Sensitivity + Specificity)(Accuracy + nMCC)
8

.

The area under the curve (AUC) was calculated from the
Receiver Operating Characteristics (ROC) curve, where cases are
plotted based on sensitivity versus 1 − specificity.

TP and TN are the numbers of correctly predicted pathogenic
and neutral cases, and FN and FP are the numbers of wrong
predictions for pathogenic and neutral cases, respectively.

Coverage measures the ratio of predicted cases among all the
instances. X indicates the number of cases classified as harmful or
neutral, and Y is the total number of test variants:

Coverage � X

Y
.

The reason to measure coverage in this way is that PON-All
classifies cases into three categories while the data for training and
testing are binary (benign/pathogenic).

Feature Selection
We used the recursive feature elimination (RFE) method (Guyon
et al., 2002) to carry out multiple rounds of training. First, the
prediction model was trained with all the features, and each
feature was assigned a weight. Then, the features with the
minimum absolute weight were removed. Recursion was
repeated until the preset number of features was achieved. To
identify the optimal set of features, we trained methods in
addition to the full set of features also with 100, 50, 20, and
10 features.

RESULTS

There is an increasing interest in variation interpretation in
several organisms. Many of the current variant tolerance/
pathogenicity predictors are either just for humans or have
not been systematically benchmarked and/or trained with data
from other organisms than human. Therefore, we developed a
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PON-All tool to predict the consequences of amino acid
substitutions in any organism. The method was trained on
human, animal, and plant variants with known outcomes,
validated on a blind test set, and compared to several other
tools. The training and assessment of the performance are
described according to published guidelines (Vihinen, 2012;
Vihinen, 2013), the method is freely available, and the used
data are distributed.

Variations were collected from several sources; see Table 1.
There is a severe imbalance in the number of variants from
different sources. The number of animal variants is clearly smaller
than the others. There were 630 variants in 465 proteins in the
animal data, while the corresponding numbers were 45,030
variants in 14,123 proteins in human and 5,273 variants in
1438 plant proteins (Table 1). The ratio of human, plant, and
animal variants was 90:10:1.

The largest numbers of disease-causing animal variations are
known in rodents (mice and rats). However, we excluded these
variants because they are typical models for human diseases and the
corresponding variants are largely included in the human data set.
Further, using these cases in the blind test could biased the analysis.
The included animal variants originate from animal conditions.

In the case of animal variants, we selected a substantially larger
ratio to the test set to facilitate reliable performance assessment.
Totally, we had 50,933 variants in 16,026 proteins, thus covering a
wide spectrum of different sequences. A total of 23,138 of the
variants were pathogenic and 27,816 were benign.

Predictor Training
When training the methods, we followed the principles for
systematic ML method training presented earlier (Niroula and
Vihinen, 2016). We started by choosing the ML algorithm. Three
ML algorithms were tested based on our earlier experience in
variation interpretation. We implemented predictors with
LGBM, RF, and XGBoost and performed 10-fold cross-
validation (CV) Table 2. The methods were trained on all the
features. Because the two versions of gradient boosting were
somewhat better than when using RF, we chose LGBM as it is
faster. The OPMwas 0.67, accuracy 0.88, and MCC 0.75. Further,
the predictors were quite balanced. Due to the use of GOSS and
EFB technologies, LightGBM was the fastest to train and test.

Next, we performed feature selection. We collected 1,085
features, including 617 amino acid features, 436 variation type
features, 25 neighborhood features, 2 evolutionary conservation
features, 3 protein features, 1 Gene Ontology feature, and 1
functional annotation feature. RFE was used to recursively
reduce the number of features. To decide the optimal number
of features, we tested the performance in 10-fold CV with
different numbers of features: all, 100, 50, 20, or 10. We
wanted to proceed with the smallest possible number of
features as the event space is large. The ratio of human, plant,
and animal variations in the 10-fold CV for this purpose was 100:
10:1.

Further, the methods were implemented with or without
rejection and with or without GO features. Classification with
the reject option was found useful in PON-P2 (Niroula et al.,
2015) to distinguish the category for UVs and obtain reliable
predictions for benign and pathogenic cases. UV variants cannot
be classified as pathogenic or benign. This class also implies the
heterogeneity of phenotypes in different individuals bearing the
same variant and is a normal feature for certain variants.

The results of the performance assessment are in
Supplementary Tables S1, S2. The performances are clearly
better when using the GO feature and when applying the
rejection option. The results overall are very similar within the
different tests for different numbers of features indicating that the
number of features can be substantially reduced without a major
impact on the performance. The implementation without
rejection and GO feature had the best performance with a
predictor trained on 50 features (OPM, 0.479), but differences
were minimal for methods trained with different numbers of
features, effectively in the third decimal place (Supplementary
Table S2). Similarly, the differences in the other measures were
very small or non-existent.

GO features have been useful in several predictors, such as
SNPs&GO (Capriotti et al., 2013) and PON-P2 (Niroula et al.,
2015). However, GO annotations are far from complete, and the
coverage in non-human organisms can be very low, or the
annotations may be completely missing. Therefore, to facilitate
as many predictions as possible, we developed methods both with
and without GO features.

When using GO features (but without the rejection option)
(Supplementary Table S1), the overall performance is
substantially better than without GO details (Supplementary
Table S2). The results for 50 features were the best (OPM,
0.673), but those for 20 features were very close (OPM, 0.671).
The results for the other measures were also very close
irrespective of the number of features, thus indicating that the
number of features could be significantly reduced.

Without GO but with rejection, the best OPM was achieved
with all features (OPM 0.671). However, differences are marginal
in the third decimal. The results with the GO feature
(Supplementary Table S1) but without rejection are close to
those for methods with rejection but without GO annotations
(OPM 0.676 without rejection). The performance is further
increased when rejection is applied (OPM shifted from 0.812
to 0.832, MCC from 0.865 to 0.880). The coverage of predictions
increased substantially when GO features were not used, typically

TABLE 2 | Comparison of method performance in 10-fold cross-validation when
using all the features for training. The numbers are averages.

Measure RF XGBoost LGBM

TP 1,528 1,633.4 1,651.3
TN 2,307.9 2,364.3 2,343.1
FP 222.7 166.3 187.5
FN 498.7 393.3 375.4
PPV 0.87 0.91 0.90
NPV 0.82 0.86 0.86
Sensitivity 0.75 0.81 0.81
Specificity 0.91 0.93 0.93
Accuracy 0.84 0.88 0.88
MCC 0.68 0.75 0.75
OPM 0.59 0.67 0.67
AUC 0.83 0.87 0.87
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by 20%, thus allowing predictions for many more variants. There
is thus a balance between the number of cases that can be
predicted and the optimal performance.

Based on the results, we chose to train the final predictors
with 20 features. It is beneficial to use a smaller set of features
to better cover the event space (as it is smaller), thereby
increasing representativeness and reducing the risk of
overfitting. The flowchart of PON-All is shown in Figure 1.
We trained two predictors, one with and one without GO
terms. The selected features are listed in Supplementary
Tables S3, S4. Of the 20 features on both lists, 15 were
shared by the two methods. The selected features represent
different types of features, including amino acid features,
variation type and neighborhood features, evolutionary
conservation features, and protein feature. The unique
features in the method with GO annotations included
amino acid propensities, neighborhood features,
conservation feature, and GO annotations. In the method
without GO annotations, the unique features were for
amino acid features and neighborhood feature. The
importance of the features is indicated in Supplementary
Tables S3, S4. The protein feature is the most informative,
followed by sums of log odd ratios for GO terms and functional
site terms. Sequence conservation features, the number of

homologs and SIFT 4G feature, are followed in significance
by position within sequence and number of nonpolar amino
acids. The other selected features have clearly lower
significance in the case of the predictor with the GO
feature. The highest scores for features in the case of
prediction without GO feature are for protein feature,
number of SwissProt homologs, position within a sequence,
number of nonpolar amino acids, and SIFT 4G score.

We trained the final predictors with 20 features both when
including and excluding GO annotations and named the tool
PON-All because it can predict the effects of amino acid
substitutions in proteins from any organism, unlike many
existing methods. By default, predictions are made using GO
features. However, if the annotations are missing, a predictor not
requiring these features is used.

Performance Assessment With Blind Test
Data Set
The performance of the method was tested with the blind test set,
data that were withdrawn in the initial partitioning and not used
during method development. Table 3 shows results for PON-All
with and without GO annotations. There are results for the entire
test data set and separately for the three groups of organisms. As

FIGURE 1 | Flowchart for PON-All predictor.
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the ratios of variations in the groups are widely different, it is
important to look at them separately. Otherwise, the largest
group, for human variations, would dominate the overall output.

In the results for the entire data set and when using GO
annotations, the OPMwas 0.763, accuracy 0.913, andMCC 0.827.
Overall, the method is well balanced (Table 3). Without GO
features, the performance dropped somewhat, OPM to 0.628,
accuracy to 0.856, and MCC to 0.712. The results for the option
without rejection were further reduced. The overall coverage with
GO and with rejection was 0.776 and without rejection complete
(1.000). The corresponding figures for predictions without GO
terms were 0.551 and 1.000. Thus, the increase in coverage comes
with reduced overall performance.

ClinVar provides community-assessed variation information.
It would have been interesting to train the tool with benign cases
from this database, but there were only 370 cases. They were used
for an additional test of specificity. After removing variants used
for PON-All training, there were 298 variants left. The specificity
for this data set was 0.982 with the GO feature and 0.84 without
the GO parameter. The coverages were 0.729 and 0.515,
respectively. The specificity is very similar to that of PON-P2
on a much larger ExAC data set (Niroula and Vihinen, 2019).

When we compared the results for variants in humans,
animals, and plants separately (Table 3), predictions for
humans were somewhat increased from those for all variants,
OPM of 0.781 (vs. 0.763), accuracy of 0.921 (vs. 0.913), and MCC
of 0.841 (vs. 0.827). The differences are about the samemagnitude
also for the other measures. The predictions are about the same
degree lower for plants as they are increased for humans in
comparison to the total. For example, the best results, those with
GO features and rejection in plants, were for OPM 0.751 vs. 0.763
for all variants and, similarly, accuracy 0.909 vs. 0.913 and MCC
0.817 vs. 0.827. The corresponding measures for animals were
substantially lower, 0.588, 0.830, and 0.678. The reason for the
drop in the scores for animals is that only a small number of
animal-specific variants were available. Overall, the results for
PON-All were good, and the tool can be used for reliable
predictions of unknown cases.

To further test the impact of data sets, we trained separate
predictors for human, animal, and plant variants using the PON-

All training data. The results of the blind test are shown in
Supplementary Table S5. The performance scores for humans
and plants are close to those for PON-All. Interestingly, the
performance of the human-specific predictor is slightly lower
than for PON-All. OPM in a blind test with GO is 0.774 while the
figure for PON-All is 0.781, the corresponding figures for
accuracy are 0.918 and 0.921 and for MCC 0.836 and 0.841.
Similarly, all the other scores are also very close to those for PON-
All. Thus, the differences are very small in the third decimal.
Similar observations were made with plant variants.

The coverage is also slightly lower for the human-specific
prediction, whereas the specific predictor has somewhat higher
coverage in plants. The coverage of the animal-specific predictor
is clearly lower (0.605 vs. 0.707) than the results for PON-All. The
training data for animal variants was so small that this is expected.
What is somewhat unexpected is that the scores are better for the
specific than the generic predictor. MCC of the specific tool with
GO feature and rejection is 0.803 versus 0.678. Similarly, accuracy
is 0.903 versus 0.830 and OPM 0.734 versus 0.588. One could have
expected human variants to increase the performance of animal
cases, but that seems not to be the case.

Even the results for animal variant predictors are promising,
especially when considering that only 306 variants were used for
training. The blind test set for animals contained 324 variants. In
conclusion, the performances of the PON-All were close to those
for specific predictors, and since the generic predictor has been
trained with a large number of cases, the method can predict the
effects of variants in all kinds of proteins in all organisms. PON-All
was slightly better for human and plant variants. Only in the case of
the animal variants, the specific tool was somewhat better. In
conclusion, the generic PON-All is overall the best choice. We
would argue this to be true also in the case of animal variants, as the
large body of cases for humans will allow details for predictions in
animals, as well. However, this may be species-dependent.

The largest portion of variations were for humans. Most
previous methods that can be used for other organisms have
been trained on human data only. Therefore, we tested the
performance when animal and plant variants were predicted
with a human-specific predictor. The results are in
Supplementary Table S6. Compared to generic PON-All

TABLE 3 | Performance assessment in the blind test set with and without the GO feature. The results are shown with and without (in brackets) rejection.

Measure All variants Humans Animals Plants

w GO wo GO w GO wo GO w GO wo GO w GO wo GO

TP 1,945 (2,278) 1,201 (1,928) 1,274 (1,552) 789 (1,327) 72 (102) 64 (112) 603 (624) 341 (489)
TN 1,855 (2,284) 1,344 (2,109) 1,421 (1,780) 1,052 (1,659) 118 (143) 98 (140) 318 (361) 201 (310)
FP 143 (365) 177 (540) 138 (326) 148 (447) 4 (26) 14 (29) 4 (13) 15 (64)
FN 217 (433) 251 (783) 94 (268) 154 (493) 35 (53) 12 (43) 88 (112) 85 (247)
PPV 0.932 (0.862) 0.872 (0.781) 0.902 (0.826) 0.842 (0.748) 0.947 (0.797) 0.821 (0.794) 0.993 (0.980) 0.958 (0.884)
NPV 0.895 (0.841) 0.843 (0.729) 0.938 (0.869) 0.872 (0.771) 0.771 (0.730) 0.891 (0.765) 0.783 (0.763) 0.703 (0.557)
Sensitivity 0.900 (0.840) 0.827 (0.711) 0.931 (0.853) 0.837 (0.729) 0.673 (0.658) 0.842 (0.723) 0.873 (0.848) 0.800 (0.664)
Specificity 0.928 (0.862) 0.884 (796) 0.911 (0.845) 0.877 (0.788) 0.967 (0.846) 0.875 (0.828) 0.988 (0.965) 0.931 (0.829)
Accuracy 0.913 (0.851) 0.856 (0.753) 0.921 (0.849) 0.859 (0.761) 0.830 (0.756) 0.862 (0.778) 0.909 (0.887) 0.844 (0.720)
MCC 0.827 (0.703) 0.712 (0.509) 0.841 (0.697) 0.714 (0.518) 0.678 (0.515) 0.714 (0.555) 0.817 (0.777) 0.695 (0.466)
AUC 0.913 (0.851) 0.856 (0.753) 0.921 (0.85) 0.855 (0.758) 0.818 (0.751) 0.858 (0.775) 0.929 (0.895) 0.842 (0.747)
OPM 0.763 (0.617) 0.628 (0.429) 0.781 (0.611) 0.630 (0.438) 0.588 (0.434) 0.631 (0.470) 0.751 (0.701) 0.608 (0.391)
Coverage 0.776 (1.000) 0.555 (1.000) 0.746 (1.000) 0.546 (1.000) 0.707 (1.000) 0.580 (1.000) 0.913 (1.000) 0.578 (1.000)
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(Table 3), in the case of animal variants, some scores are better for
animal data. In the case of plant variants, the generic predictor
provides better results. These results can be explained mainly by
the small number of available animal variants. Human cases
provide additional strength for the prediction. Plants are so
different from humans that a similar effect is not seen. The
coverage of animal variants with human-specific predictors is
somewhat smaller than for PON-All and substantially reduced
for plant variants. Comparison to animal and plant-specific
predictors in Supplementary Table S5 indicates that the
measures for the human-based predictions are clearly lower,
except for coverage of animal variants. There, the wider
distribution of human training cases leads to increased
performance.

Comparison to Other Tools
It was not possible to compare the performance to non-human
variant predictors because they are not available as predictors
or they are based on the same data sets as used herein. The
method for mammalian variants (Plekhanova et al., 2019) is
an ML tool chosen among several tested algorithms. The data
set contained human, mouse, dog, and cattle variants.
Fourteen features without selection were used. Two
methods have been described for plant variants. One of
them is specific for A. thaliana (Kono et al., 2018) and was
trained on the same data as PON-All. The method is based on
the likelihood ratio test implemented with the
BAD_Mutations pipeline (Kono et al., 2016). The other
plant predictor was trained on Arabidopsis cases (Kovalev
et al., 2018) using transfer learning based on 18 features but
without feature selection.

We compared the performance of PON-All to several widely
used generic variant tolerance predictors. The compared tools
included CADD (Kircher et al., 2014), FATHMM (Rogers et al.,
2018), MetaLR and MetaSVM (Dong et al., 2015),
MutationTaster (Schwarz et al., 2014), PolyPhen2 (1), PON-P2
(Niroula et al., 2015), PROVEAN (Choi et al., 2012), and SIFT 4G
(Vaser et al., 2016). Table 4 indicates that, with the GO feature,
the scores are better than for PON-P2, which has the closest
performance. The other methods have clearly lower performance.
These results are in line with many previous benchmarks that
have shown PON-P2 to be the best or among the best tools
(Niroula and Vihinen, 2019; Orioli and Vihinen, 2019; Sarkar
et al., 2020). The coverage of PON-All is almost 20% higher than
that for PON-P2, thus providing a significant improvement when
also the performance scores are improved.

In the case of CADD, results are provided for three widely used
thresholds since the developers did not optimize the threshold. By
putting the value to 20, it was possible to increase the
performance. However, this came with the cost of increased
false-positive hits. As previous benchmarks have indicated
(Niroula and Vihinen, 2019; Orioli and Vihinen, 2019),
CADD has a substantial false hit rate so that about 1/3 of
benign variants are classified as pathogenic. PON-P2,
MetaSVM, and MetaLR had the best performances after PON-
All (Table 4). PON-P2 is the closest to PON-All. The scores for
MetaSVM and MetaLR are clearly lower.T
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Example of Application
To highlight the applicability and performance of the PON-All
tool, we predicted all possible amino acid substitutions in three
related proteins. Predictions were made for Bruton tyrosine
kinase (BTK) pleckstrin homology (PH) domains. The
sequences were obtained from UniProtKB for human
(Q06187-1), mouse (P35991-1), and Drosophila melanogaster
(P08630-1) BTK. The sequences were aligned with Clustal
Omega (Sievers et al., 2011). Harmful variants in human BTK
cause X-linked agammaglobulinemia (XLA), a primary
immunodeficiency (Mohamed et al., 2009), in mouse X-linked
immunodeficiency (Khan et al., 1995). In Drosophila, the related
protein, BTK29A, is involved, for example, in survival and male
genital development (Hamada et al., 2005). Numerous XLA-
causing variants are known in humans and listed in BTKbase
(Väliaho et al., 2006). In xid mice, variant E41K in the PH domain
is the causative alteration. Drosophila ficp variant is due to
intronic alteration and causes alternative splicing and deletion

of the PH domain (Baba et al., 1999). Thus, variants in the BTK
PH domain are related to important functions in all the three
organisms; thereby, it is of interest to investigate the effects of
variants in these domains.

All the 19 possible single amino acid substitutions in each
position were generated and predicted with PON-All. The results
are shown in Figure 2, where the predicted pathogenic and
benign variants are color-coded. Mouse and Drosophila
sequences were aligned with human BTK by either deleting
amino acids or adding empty lines to keep the sequences in
alignment. The human BTK PH domain (PDB id 6tt2) to the
right indicates the number of predicted harmful variants by a
rainbow coloring scheme. The maximum number of harmful
variants in a position was 14, shown in bright red. These residues
are in the middle of secondary structural elements. The majority
of the variants in tolerant positions, gray for those where no
harmful variants were predicted and blue with small numbers of
harmful variants, are mainly in the ends of secondary structural

FIGURE 2 | Visualization of PON-All predictions (without GO terms) for human, mouse, and Drosophila BTK PH domains. The sequences were adjusted based on
multiple sequence alignment so that corresponding amino acid positions in the three proteins are on the same line. Red indicates predicted pathogenic variation, benign
variants are blue, UVs are gray, and the original residue is white. The distribution of the number of pathogenic variants is shown to the right in the human PH domain (PDB
6tt2). The color scheme for the numbers of pathogenic variants is the scale in the figure.
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elements and in surface loops. Interestingly, positions 7 and 8 in
the middle of the first β-strand tolerate all substitutions. The
differences in vulnerabilities are also clearly visible in the graphs
for the mouse and fruit fly sequences.

The method facilitates the first-time systematic comparison of
site vulnerabilities for sequences from various organisms.

PON-All Web Application
PON-All is freely available as a web application at http://
structure.bmc.lu.se/PON-All/ and http://8.133.174.28:8999/.
The program has a user-friendly web interface that accepts
variations in protein sequence, as amino acid substitutions, or
in a VCF file (human). Batch submission, including all variants
and proteins of interest, is accepted and recommended. PON-All
provides a complete report, which is sent to the user by email
when ready.

DISCUSSION

Wehave developed the first generic variant pathogenicity predictor
that has been trained and tested on variants also from animals and
plants. PON-All shows good performance for the prediction of the
three types of organisms. Because the number of animal variants
was clearly smaller than that for plants or humans, the drop in the
performance is understandable. We could have increased animal
variants by including cases from rodent databases. However, we felt
that it would have biased the data as lots of these variants are
generated to model human conditions. Overfitting is a potential
problem in gradient boosting methods. Independent cross-
validation and blind test set results are well in line. If the
method were overfitted, there would be discrepancies in the
performance for the different data sets and partitions. Further,
we have used extensive data set and a minimal number of features,
which are the classical remedies for overfitting.

PON-All has improved performance in comparison to the
other methods. In addition to higher reliability, the tool has also
increased coverage, up to 20% in comparison to PON-P2. This is
important and facilitates reliable predictions in substantially
increased numbers. These methods will never reach 100%
coverage because disease-causing variants display a continuum.
Some variants can be disease-related in some individuals, but not
in all who carry the variant. PON-All is good at recognizing such
cases and ranking them as UVs.

The use of GO features and the reject option clearly improved
the performance. This is the default mode of prediction; however,
apart from human and some well studied model organisms not a
feasible option. GO annotations are scarce or missing for less
investigated organisms. Even in these cases, predictions are still
rather reliable. The coverage of such variants was reduced. Still, the
new method makes a significant contribution also in these cases.

Fifteen out of the 20 features per predictor are shared with the
tools that have been trained with or without GO features. Thus, in
addition to the GO feature, some others differ between the two
installations. This indicates the interplay between features and
that it is important to perform proper feature selection. Some of
the previous tools have been developed without feature selection,
just using all the features that were originally collected. When the
numbers of variants are small, as in this study, especially for
animals, the event space remains very large if feature selection is
not applied. A small number of training and test cases cannot
cover such a space, and the representativeness is low (Schaafsma
and Vihinen, 2018).

Methods like this are used for variant interpretation and
recognition of pathogenic or, more generally, harmful variants.
PON-All can be used for all organisms. In the case of variants in
pathogens, it has to be remembered that harmful variants in such
organisms mean harmful variants for that organism, not for
human or other target organisms.
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