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The mechanical principles behind 
the golden ratio distribution of 
veins in plant leaves
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Tree leaves are commonly composed of thin mesophyll, carrying out photosynthesis under sunlight, 
and thick veins. Although the role of leaf veins in water transportation has been known for a long time, 
their role in providing structural support and guaranteeing large sunlighted area was rarely studied 
and remains elusive. Here, with use of a novel inverse optimization approach, we aim for uncovering 
the material design principle behind the unique pattern of venation. It is intriguing to observe that 
an almost Golden Ratio (GR) distribution of leaf veins always provides optimized structural behavior. 
Specifically, our research reveals, for the first time, that this unique GR distribution of relatively strong 
vein material is helpful for maximizing the bending stiffness and leading to a large sunlighted area 
which is vital for the photosynthesis process of a leaf. Moreover, the GR distribution of leaf veins is also 
observed in a wide class of plant leaf geometries (i.e., shape, thickness), where experimental evidence 
is provided for the optimized results. Therefore, our findings can not only serve to explain the mystery 
of veins GR distribution but also provide widely applicable guidelines on designing soft structures with 
exceptional mechanical performances.

Tree leaves are generally formed by two components: mesophylls and veins. The law for the fractal distribution 
of veins among mesophylls has arisen massive curiosity among scientists. For decades, great progress has been 
made, especially in the understanding of the role played by leaf veins in hydraulic transportation during plant 
growth1–3, which further triggers the development of medicine, agronomy, and hydraulic system2–5. In contrast, 
the mechanical functions of leave veins were barely discussed in literature, and most of the studies in record focus 
on the growing and drying process of leaves6–8.

As the plants’ principal agents of photosynthesis, unfurling leaves are expected to spread themselves so as to 
maximize the sunlighted area (Fig. 1a), and this is supposed to be achieved by utilizing the distribution of veins, 
which can be considered as the structural reinforcing components of leaves. In this report, the mechanical role 
of the fractal distribution of veins is investigated from a viewpoint of structural optimization. In order to capture 
the complex configuration of venation, we adopt the method of topological optimization, which can be used to 
find the optimized material distribution within a given design space under certain prescribed constraints. This 
method has been successfully applied for understanding the intriguing geometry of biological tissues9–17. The 
problem of searching the best venation can be translated to finding the optimized layout of the structural rein-
forcements that maximizes the structural stiffness of a leaf under a self-weight pressure load on its top surface. A 
very interesting observation from our topology optimization results is that, the optimized lengths of the first two 
sections on the main vein display a golden-ratio relationship, and this phenomenon has been widely observed in 
various ovate-shape leaves18, as shown in Fig. 1b.

The effect of leaf thickness and normalized bending stiffness on optimized venation is firstly investigated. 
Optimized venations of leaves with various normalized bending stiffness are examined to clarify the role of frac-
tal veins on structural performance of leaves. The present study aims for providing insight into how plant may 
achieve more sunlighted area and better structural performance, which can be useful for the design of biomimetic 
functional structures.
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Results
Bending stiffness of leaf.  In conjunction with the geometric measurements of leaves recorded in litera-
ture19,20, the bending stiffness of mesophyll and vein can be calculated. Some parameters that characterize the 
geometrical and mechanical properties of typical leaves are listed in Table 1. For simplicity, the bending stiffness 
of vein reinforcements is normalized as 1, and the bending stiffness of leaf mesophyll is normalized as −10 9 to −10 3, 
in order to cover the full range of relative bending stiffness.

Loading condition.  As shown in Fig. 1a, tree leaves tend to unfurl themselves in order to achieve a maxi-
mum sunlighted area. This is in contrast to the dehydrated drooping leaves, which are no longer self-supportive 
as their structural stiffness has been greatly reduced. Therefore, the photosynthesis efficiency is highly related to 
the structural deformation of a leaf under its self-weight. In this study, a uniform pressure load is applied on the 
surface of a leaf so as to mimic the effect induced by its self weight. It is assumed that the veins will not change the 
local density and self-weight pressure load.

Figure 1.  (a) Unfurling leaves and drooping leaves; representing the changes in sunlighted area. (b) Golden 
ratio in typical leaves.

Properties (unit) Range

Young’s modulus of leaf mesophyll (GPa) 0.04019 – 2.1520

Young’s modulus of leaf vein (GPa) 0.09919 – 23.020

leaf thickness (μm) 90.020 – 43019

leaf vein thickness (μm) 62220 – 6420

Bending stiffness of leaf mesophyll (10−6 N*m) 2.67–15.6 × 103

Bending stiffness of leaf vein (10−6 N*m) 2180–557 × 106

Table 1.  Stiffness and geometry properties of typical leaves
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Optimized venation of ovate-shape leaves.  The structural role played by the fractal venation in sup-
porting the ovate-shape leaves is firstly discussed. Figure 2 gives the optimized venation for ovate-shape leaves 
with different normalized stiffness. As described above, the optimization is carried out with 120 × 120 grid 
meshes and a vein area constraint of 5%. If we mark the first and second sections of the main vein as An and Bn, 
respectively, the corresponding computational results are listed in Table 2. It is noted that the values of the section 
lengths appearing in this article are normalized by the total length of the main vein from which An and Bn are 
taken. In particular, the An-to-Bn ratio is calculated to be 1.6192, 1.6219, 1.6187 and 1.6182 with the relative stiff-
ness ratio being −10 6, −10 5, −10 4 and −10 3, respectivy. The optimized venations and values of A B/n n for leaves with 
relative stiffness ratio being −10 9, −10 8 and −10 7 are not repeatedly given, since they are all mostly the same as those 
of −10 6. It is likely to conclude that with various normalized stiffness values, all values of A B/n n approximately take 
a Golden Ratio (GR) relationship in the optimized distribution of vein reinforcement that maximizes the struc-
tural stiffness of plate. This interesting finding provides a rationale, from a mechanical viewpoint, to the GR 
relationship widely observed in the venation of plant leaves. The GR venation can give rise to a higher structural 
bending stiffness (given prescribed areas of reinforcing materials), so as to maximize the sunlighted area.

Another interesting observation from the topology optimization results shown in Fig. 2 is that the stiffer the 
mesophyll is, the more concentrated the main vein becomes. For example, when the relative stiffness ratio is −10 6, 
the topologically optimized distribution (on the top left of Fig. 2) consists of one main vein, three pairs of branch 

Figure 2.  Comparison between optimized venations and actual veins; showing agreement in the influence of 
relative bending stiffness.

Relative bending 
stiffness D D/m v

Normalized length of the 
first section of main vein Bn

Normalized length of the 
second section of main vein An

Length ratio 
A B/n n

10−6 0.1794 05 1.6192

10−5 0.1698 0.2754 1.6219

10−4 0.1167 0.1889 1.6187

10−3 0.1658 0.2683 1.6182

Table 2.  Normalized length of the first and second sections of main vein.
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veins and tiny reticular veins. This is well compared to the venation of an actual Ilex lohfauensis leaf as pictured 
on the top right of Fig. 2. It is also observed that when the relative bending stiffness of mesophyll increases, the 
tiny veins gradually disappear. When the relative stiffness ratio grows as large as −10 3, branch veins turn incon-
spicuous. This is compared with an India rubber fig leaf (as pictured on the bottom right of Fig. 2), whose meso-
phyll is relatively stiffer. It is noted that the main vein of actual India rubber fig leaf is longer than that from the 
optimized results when the relative stiffness ratio equals to −10 3. This is possibly due to the non-mechanical 
requirement for the venation. For example, a leaf-long vein facilitates water transportation throughout the leaves.

The aforementioned optimization results provide insightful understanding of venation. It is indicated that 
providing structural support is a crucial function of leaf vein, especially when the mesophyll is relatively thin 
and soft. In the case of stiff vein and thin soft mesophyll, fractal branch veins and reticular tiny veins provide web 
supports for the mesophyll, which minimize the structural deformation and therefore guarantee sunlighted area 
of leaf. In the case of thick mesophyll, which can provide a considerably strong support to itself, a main vein with 
large diameter is desired, whilst narrow sub veins are no longer necessary.

Numerical verification of the optimized results.  The optimized results are firstly verified in this section 
by comparing the numerical results of maximum deformations of leaves with various venation. Three typical 
ovate-shaped leaves with different venations are firstly compared in Fig. 3a–c, i.e., leaf with GR distributed veins, 
leaf with single main vein, and leaf with edge vein. The area percentage of veins are all 5%, and the relative stiffness 
ratio of mesophyll are −10 6. As shown in Fig. 3a, the leaf with GR distributed veins exhibited basically uniform 
displacement. Noting that the values of displacement are normalized by the total length of the leaf. The displace-
ment at the gap between branch veins are relatively larger, while the maximum displacement of 2.917 ×  −10 3 
appears in the apex of leaf. For leaf with only a single main vein in the middle, although the stiff main vein with 
higher width can significantly reduce the displacement near the vein, namely the displacement at the apex is 
decreased by more than 60% to 1.083 ×  −10 3, the leaf without web supports from fractal veins shows extremely 
large displacement. The maximum displacement of 0.414 occurs at the middle of edge of the leaf with single main 
vein. Figure 3c illustrates the displacement distribution of a leaf with edge vein. Similarly, the displacement of 
points near the vein are effectively reduced, yet the displacement of points away from the edge vein are much 
higher. The maximum displacement of leaf with edge vein is found appearing at the center.

Though the maximum displacement of leaf with edge vein (0.106) is 3534% higher than the maximum dis-
placement of leaf with GR distributed veins, it is still 74% lower than the maximum displacement of leaf with 
single main vein. The comparison indicates the crucial effect of web supports in providing structural stiffness, and 
preliminary verified that the fractal veins are effective in enhancing the structural stiffness.

Further verification is conducted by varying the length ratio of second section to first section of main vein 
A B/n n. The maximum displacement of leaves with different length ratio from 0.3 to 5.0 are plotted, as shown in 
Fig. 3d. The overall trend of maximum displacement is a nonlinearly fluctuation with the increase of length ratio. 
The maximum displacement is found to be minimized (2.917 ×  −10 3), when the length ratio is 1.6190, as the opti-
mized results given. The maximum displacement is 3.167 ×  −10 3, which is slightly higher than the minimum 
value, when the length ratio is 1.5 or 1.7. For leaf with other length ratio, the maximum displacement of are all 
apparently higher than the minimized values of 2.917 ×  −10 3. Therefore, the numerical results verified that the GR 
distributed veins are optimized for maximizing the structural bending stiffness.

Experimental verification of the optimized results.  The GR distribution of leaf veins is further veri-
fied by experimental measurements of actual leaves in this section. A total of 103 ovate-shaped leaves, including 
magnolia denudate leaves, syringa leaves, and ilex lohfauensis leaves, are scanned to measure the length ratio of 
the second section to first section of main veins.

Figure 4 demonstrates the statistics and typical scanned images of the leaf specimens. The average value of 
length ratio A B/n n measurements is 1.61203, which is very close to the golden ratio (only 0.36% relatively lower). 
For generating Fig. 4, we divide the total sampling interval of A B/n n. values into several sub-intervals of size 0.1. 
Then the numbers of samples whose A B/n n values fall in the corresponding intervals are counted. Here in order 
to address the accuracy of our predictions, we squeeze the size of the interval containing the GR value to 0.02, that 
is, [1.608, 1.628].

It is observed that nearly a half (51 out of 103) of the natural leaves exhibit almost GR vein distribution (with 
length ratio of 1.618 ± 0.01). This means that the probability of length ratio A B/n n in the small interval [1.608, 
1.628] is 49.51%. In contrast, the fractions of leaves falling in each non-GR interval are no more than 9.7%. 
Therefore, the average measurements of length ratio and its extensively appearance near the golden ratio suggest 
that the ovate-shape leaves generally tend to take a GR distributed veins. The experimental measurements in this 
study further verified that the GR distribution of leaf veins could provide optimized structural stiffness and sun-
lighted area. The GR principle may provide a helpful guideline for the design of biological tissues and biomimetic 
functional structures.

Discussion
Our experiments and simulations have examined the critical role of leaf vein in providing structural support 
and guaranteeing sunlighted area. The results firstly indicate that GR commonly exits in the optimized distri-
bution of vein reinforcement for maximizing the structural bending stiffness of leaves. It is suggested that leaves 
have evolved GR distributed veins for providing higher structural stiffness. Furthermore, it is found that the 
relative bending stiffness between veins and mesophyll has a significant influence on the distribution of thinner 
veins. Multi-level fractal veins, consisting of one thick, long, main vein and numerous thin, short, sub veins, are 
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suggested to be the optimized configuration when the relative bending stiffness of mesophyll is low. In contrast, 
only the thick, long, main vein remains in the optimized configuration when the relative bending stiffness of mes-
ophyll is high. The present study provides insight into how plants may achieve better structural performance and 
more sunlight exposure. The findings and uncovered mechanical principles may also be useful for future design 
of biomimetic functional structures21–23.

It is worth mentioning that the GR distribution of leaf veins is common for plants, not a must since the actual 
shape of a leaf is influenced by many natural conditions, including weather, water, plant diseases and insect pests. 
The natural conditions lead to the commonly asymmetric shape of actual leaves with asymmetric venation. It is 
believed that a more similar vein pattern to real leaves could be obtained by properly taking relevant factors into 
consideration (by imposing corresponding constraints in the problem formulations). Other parameters, includ-
ing water transportation, leaf curvature, uniformity and aspect ratio, are still to be studied to fully exploit the 
principles behind the distribution of veins in plant leaves.

Figure 3.  Displacement of leaves with various venations; Golden-Ratio distribution exhibits maximized 
structural stiffness.
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Methods
Stiffness measurement.  Leaves of different species are freshly collected from the branches as typical leaves 
for stiffness measurements. The collected leaves are cleaned by water and then cut into separately vein part and 
mesophyll part immediately to avoid excessive loss of water. An Instron testing machine is used to test the tensile 
modulus of mesophyll and vein. In conjunction with the geometric measurements of leaves, the bending stiffness 
of mesophyll and vein can be calculated as follows

ν
=

−
D Et

12(1 )
,

(1)

3

2

where D is bending stiffness of mesophyll or vein, E, t and ν are the Young’s modulus, thickness and Poisson ratio 
of the mesophyll or vein, respectively.

Figure 4.  The length ratio A B/n n for various leaves, and typical leaf specimens; showing that nearly a half of the 
natural leaves exhibit almost GR vein distribution.
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Finite element analysis.  The deformations of typical leaves under self-weight are calculated by solving 
plate bending problems under pressure load using Finite Element Method (FEM). Specifically, the leaf mesophyll 
is simplified as a thin plate, and the leaf veins are converted into equivalent reinforcements with higher bending 
stiffness.

In the present study, 4-node square-shape plate element is used for FE analysis. For simplicity, the bending 
stiffness of vein reinforcements is normalized as 1, and the bending stiffness of leaf mesophyll is normalized as 

−10 9 to −10 3, according to Table 1. The bending stiffness of mixed elements, which contain both vein part and 
mesophyll part, are calculated by the homogenization approach24,25. A normalized uniformly distributed pressure 
load of unit magnitude is used to represent the action of leaf weight. Clamped boundary condition is prescribed 
to the joint between leaf blade and leaf petiole, where all degrees of freedom are set to be fixed.

Formulation of the optimization problem.  According to the descriptions made in the main text, the 
topological optimization problem of maximizing the structural bending stiffness of a leaf can be formulated 
under the Solid Isotropic Material with Penalization (SIMP) framework24 as
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where ρ x y( , ) is a density function which represents the distribution of vein reinforcements, P x y( , ) and W x y( , ) 
are the pressured external load and deflection of the middle surface Ω of the leaf, respectively, C is the work of 
external load which is inversely proportional to structural bending stiffness, ρ ρ= + −D x y D D D( ( , )) ( ) p

m v m  is 
the penalized bending stiffness, Dm and Dv are the bending stiffness of mesophyll and vein respectively, =p 3 is a 
penalization factor. In equation (2) A  is the upper bound of the area of the vein reinforcement, and W  is the pre-
scribed boundary displacement on Dirichlet boundary. The topology optimization is solved with use of the 
Method of Moving Asymptotes (MMA) algorithm.

Sensitivity analysis.  The MMA algorithm, which searches the optimal results based on gradient informants, 
requires explicit sensitivities of objective function and constraint functions. The sensitivity of the objective function, 
i.e., the partial derivative of the objective function with respect to the design variables, can be calculated as
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where ρi is the density of the i-th element, wi is the corresponding element displacement vector, ki is the element 
stiffness matrix when the Young’s modulus of the i-th element takes a unit value. In equation (3), n is the total 
number of finite elements.

Similarly, the sensitivity of the constraint function in this study can be given by

ρ
= = … .

A i nd
d

1, 1, ,
(4)i
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The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

References
	 1.	 Motose, H., Sugiyama, M. & Fukuda, H. A proteoglycan mediates inductive interaction during plant vascular development. Nature. 

429, 873–878 (2004).
	 2.	 Liu, X., Zhang, Y., Yang, C., Tian, Z. & Li, J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant 

development. Sci. Rep. 6, 24563, https://doi.org/10.1038/srep24563 (2016).
	 3.	 Saiki, S. T., Ishida, A., Yoshimura, K. & Yazaki, K. Physiological mechanisms of drought-induced tree die-off in relation to carbon, 

hydraulic and respiratory stress in a drought-tolerant woody plant. Sci. Rep. 7, 2995, https://doi.org/10.1038/s41598-017-03162-5 
(2017).

	 4.	 Brodribb, T. J., Field, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 
144, 1890–1898 (2007).

	 5.	 Boyce, C. K., Brodribb, T. J., Field, T. S. & Zwieniecki, M. A. Angiosperm leaf vein evolution was physiologically and environmentally 
transformative. Proc. R. Soc. B. 276, 1771–1776 (2009).

	 6.	 Bar-Sinai, Y. et al. Mechanical stress induces remodeling of vascular networks in growing leaves. PLoS Comput. Biol. 12, e1004819, 
https://doi.org/10.1371/journal.pcbi.1004819 (2016).

	 7.	 Jeong, S., Park, S. H. & Kim, C. H. Simulation of morphology changes in drying leaves. Comput. Graph. Forum. 32, 204–215 (2013).
	 8.	 Xiao, H. & Chen, X. Modeling and simulation of curled dry leaves. Soft Matter. 7, 10794–10802 (2011).

http://dx.doi.org/10.1038/srep24563
http://dx.doi.org/10.1038/s41598-017-03162-5
http://dx.doi.org/10.1371/journal.pcbi.1004819


www.nature.com/scientificreports/

8ScIEntIfIc REPOrTS |  (2018) 8:13859  | DOI:10.1038/s41598-018-31763-1

	 9.	 Aage, N., Andreassen, E., Lazarov, B. S. & Sigmund, O. Giga-voxel computational morphogenesis for structural design. Nature. 550, 
84, https://doi.org/10.1038/nature23911 (2017).

	10.	 Sutradhar, A., Paulino, G. H., Miller, M. J. & Nguyen, T. H. Topological optimization for designing patient-specific large craniofacial 
segmental bone replacements. Proc. Natl. Acad. Sci. USA 107, 13222–13227 (2010).

	11.	 Qin, Z., Compton, B. G., lewis, J. A. & Buehler, M. J. Structural optimization of 3D-printed synthetic spider webs for high strength. 
Nat. Commun. 6, 7038, https://doi.org/10.1038/ncomms8038 (2015).

	12.	 Soler, A. & Zaera, R. The secondary frame in spider orb webs: the detail that makes the difference. Sci. Rep. 6, 31265, https://doi.
org/10.1038/srep31265 (2016).

	13.	 Ji, H., Li, X. & Chen, D. Cymbiola nobilis shell: Toughening mechanisms in a crossed-lamellar structure. Sci. Rep. 7, 40043, https://
doi.org/10.1038/srep40043 (2017).

	14.	 Alston, M. E. & Barber, R. Leaf venation, as a resistor, to optimize a switchable IR absorber. Sci. Rep. 6, 31611, https://doi.
org/10.1038/srep31611 (2016).

	15.	 Lin, C. Y., Kikuchi, N. & Hollister, S. J. A novel method for biomaterial scaffold internal architecture design to match bone elastic 
properties with desired porosity. J. Biomech. 37, 623–636 (2004).

	16.	 Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. & Aksay, I. A. Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001).
	17.	 Xin, Z. & Wu, C. Topology optimization of the caudal fin of the three-dimensional self-propelled swimming fish. Adv. Appl. Math. 

Mech. 6, 732–763 (2014).
	18.	 Durham, T. The Nature Study: Yellow Poplar {Golden Ratio} http://taylordurham.com/projects/naturestudy/golden.html (2000).
	19.	 Liu, X. F. Research on relationship between topological structure and mechanical property of plant leaf. PhD Thesis (SouthChina 

University of Technology) (2010).
	20.	 Gibson, L. J., Ashby, M. F. & Easterling, K. E. Structure and mechanics of the iris leaf. J. Mater. Sci. 23, 3041–3048 (1988).
	21.	 Gao, H. & Yao, H. Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc. Natl. Acad. Sci. USA 101, 7851–7856 

(2004).
	22.	 Gao, H., Ji, B., Jager, I. L., Artz, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. 

Acad. Sci. USA 100, 5597–5600 (2003).
	23.	 Yao, H. et al. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc. Natl. Acad. Sci. USA 

107, 987–992 (2010).
	24.	 Bendsoe, M. P., Sigmund, O. Topology optimization: theory, methods, and applications. (Springer Science & Business Media, 2013).
	25.	 Wang, S., Ng, J., Xiao, M. & Chan, C. T. Electromagnetic stress at the boundary: Photon pressure or tension? Sci. adv. 2, e1501485, 

https://doi.org/10.1126/sciadv.1501485 (2016).

Acknowledgements
The authors are grateful to the financial supports of the National Key Research and Development Plan Program 
(2016YFB0201600), National Natural Science Foundation (11502042, 11872138, 11732004, 11702048, 11472605 
and 11772076), Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT), 111 Project 
(B14013) and Fundamental Research Funds for the Central Universities, China.

Author Contributions
Z.S. and X.G. designed and directed this study. Z.S., T.C., Y.Z. and S.S. performed the FEM analysis and 
parameter studies. T.C., W.Z., S. T., D.Z. and C.L. programed the optimization algorithm. Z.S., T.C., R.C. and H.C. 
contributed to the experiments. All authors contributed to the analysis of results and writing of the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/nature23911
http://dx.doi.org/10.1038/ncomms8038
http://dx.doi.org/10.1038/srep31265
http://dx.doi.org/10.1038/srep31265
http://dx.doi.org/10.1038/srep40043
http://dx.doi.org/10.1038/srep40043
http://dx.doi.org/10.1038/srep31611
http://dx.doi.org/10.1038/srep31611
http://dx.doi.org/10.1126/sciadv.1501485
http://creativecommons.org/licenses/by/4.0/

	The mechanical principles behind the golden ratio distribution of veins in plant leaves

	Results

	Bending stiffness of leaf. 
	Loading condition. 
	Optimized venation of ovate-shape leaves. 
	Numerical verification of the optimized results. 
	Experimental verification of the optimized results. 

	Discussion

	Methods

	Stiffness measurement. 
	Finite element analysis. 
	Formulation of the optimization problem. 
	Sensitivity analysis. 

	Acknowledgements

	Figure 1 (a) Unfurling leaves and drooping leaves representing the changes in sunlighted area.
	Figure 2 Comparison between optimized venations and actual veins showing agreement in the influence of relative bending stiffness.
	Figure 3 Displacement of leaves with various venations Golden-Ratio distribution exhibits maximized structural stiffness.
	Figure 4 The length ratio for various leaves, and typical leaf specimens showing that nearly a half of the natural leaves exhibit almost GR vein distribution.
	Table 1 Stiffness and geometry properties of typical leaves.
	Table 2 Normalized length of the first and second sections of main vein.




