Genes Genes Genomes Genetics

The Transcriptional Regulator Hbx1 Affects the **Expression of Thousands of Genes in the** Aflatoxin-Producing Fungus Aspergillus flavus

Jeffrey W. Cary,*¹ Sarah Entwistle,[†] Timothy Satterlee,[†] Brian M. Mack,* Matthew K. Gilbert,* Perng K. Chang,* Leslie Scharfenstein,* Yanbin Yin,[†] and Ana M. Calvo^{†,1} *Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana and

[†]Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois

ABSTRACT In filamentous fungi, homeobox proteins are conserved transcriptional regulators described to control conidiogenesis and fruiting body formation. Eight homeobox (hbx) genes are found in the genome of the aflatoxin-producing ascomycete, Aspergillus flavus. While loss-of-function of seven of the eight genes had little to no effect on fungal growth and development, disruption of hbx1, resulted in aconidial colonies and lack of sclerotial production. Furthermore, the hbx1 mutant was unable to produce aflatoxins B₁ and B₂, cyclopiazonic acid and aflatrem. In the present study, hbx1 transcriptome analysis revealed that hbx1 has a broad effect on A. flavus gene expression, and the effect of hbx1 increases overtime, impacting more than five thousand protein-coding genes. Among the affected genes, those in the category of secondary metabolism (SM), followed by that of cellular transport, were the most affected. Specifically, regarding the effect of hbx1 on SM, we found that genes in 44 SM gene clusters where upregulated while 49 were downregulated in the absence of hbx1, including genes in the SM clusters responsible for the synthesis of asparasone, piperazine and aflavarin, all known to be associated with sclerotia. In addition, our study revealed that hbx1 affects the expression of other transcription factor genes involved in development, including the conidiation central regulatory pathway and *flb* genes.

The opportunistic phytopathogen, Aspergillus flavus, is often found colonizing oil seed crops such as peanut, corn, sorghum, tree nuts and cotton (Robens and Cardwell 2003). Dispersal of this fungus proceeds rapidly in the field through production of asexual spores termed conidia present on specialized structures denominated conidiophores. Once the fungus has colonized the crop it can survive in the field under harsh conditions for several years by forming resistant structures termed sclerotia (Horn et al., 2014). Upon colonization of the plant, A. flavus produces a number of mycotoxins,

Supplemental material available at Figshare: https://doi.org/10.25387/g3.7304252. ¹Corresponding authors: Food & Feed Safety Research Unit, USDA, ARS, Southern Regional Research Center 1100 Robert E. Lee Blvd., New Orleans, LA 70124. Email: jeff.cary@ars.usda.gov. Department of Biological Sciences, Northern Illinois

University, 155 Castle Dr., Dekalb, IL, 60115. Email: amcalvo@niu.edu

including the highly carcinogenic family of toxins known as aflatoxins (Bhatnagar et al., 2018). Contaminated crops are often destroyed or significantly reduced in value leading to substantial economic losses in the range of one billion US dollars annually during years of severe aflatoxin outbreaks (Robens & Cardwell 2003, & Wu et al. 2008). In developing nations where legislation is often not in place to regulate the allowable levels of aflatoxins in susceptible crops, consumption of aflatoxin-contaminated food can lead to immunosuppression, liver cancer, and in some cases death (Yard et al. 2013).

Successful control of aflatoxin contamination in crops will depend in part on research efforts directed toward understanding the regulatory mechanisms controlling A. flavus dissemination and survival, as well as mycotoxin biosynthesis and pathogenicity. It has been shown that A. flavus development is genetically linked to secondary metabolism, including the production of mycotoxins (Calvo and Cary 2015). Among several important regulators of fungal development and secondary metabolism is the light-responsive global regulator VeA. This fungal-specific protein has been shown to regulate asexual and sexual development as well as production multiple secondary metabolites in many fungal genera (Calvo et al., 2016), including Aspergillus (Kato et al., 2003, Duran et al. 2007, Dhingra et al. 2013, Lind et al. 2015).

KEYWORDS

Aspergillus flavus hbx1 secondary metabolism fungal development transcriptome

Copyright © 2019 by the Genetics Society of America

doi: https://doi.org/10.1534/g3.118.200870

Manuscript received September 6, 2018; accepted for publication November 9, 2018; published Early Online November 13, 2018.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In A. flavus, loss of VeA results in increased conidiation, absence of sclerotia, and suppression of secondary metabolite production including aflatoxin, aflatrem, and cyclopiazonic acid (Duran et al. 2007). In addition to VeA, the arginine methyltransferase RmtA has been shown to be a positive regulator of both aflatoxin production and asexual development (Satterlee et al. 2016). Another example is RtfA, a homolog of a putative member of the Saccharomyces cerevisiae paf1 complex (Warner et al., 2007), that is also required for normal aflatoxin biosynthesis, sclerotial production and conidiation (Lohmar et al. 2016). Other examples are the genes encoding transcription factors mtfA (Zhuang et al. 2016) nsdC, and nsdD (Cary et al. 2012). The global regulator MtfA is a negative regulator of conidiation, required for normal maturation of sclerotia, and a positive regulator of aflatoxin production (Zhuang et al. 2016). Both nsdC and nsdD also demonstrated a role in the regulation of conidiophore development, and are essential for sclerotial formation, as well as influencing production of aflatoxin (Cary et al. 2012).

Recently homeobox domain transcription factor genes were identified in *A. flavus*, and disruption of the homeobox 1 (*hbx1*) gene abolished production of conidia and sclerotia as well as production of several mycotoxins (Cary *et al.* 2017). The *hbx1* gene was also shown to regulate expression of several development regulators such as *brlA* (Cary *et al.*, 2012), a keystone in the induction of conidiation (Adams *et al.* 1998). Alongside the effect on developmental regulators, expression of the aflatoxin specific transcription factor *aflR* and the global regulator *veA* were altered in the absence of *hbx1* possibly contributing to the observed decrease in the production of several mycotoxins such as aflatrem, cyclopiazonic acid, and aflatoxin (Cary *et al.*, 2017).

Based on the profound effect that hbx1 has on development and secondary metabolism in *A. flavus*, this gene represents a potential target for new strategies to control aflatoxin contamination of food and feed crops by *A. flavus*. To gain further insight into the regulatory scope of hbx1 we performed a transcriptome analysis. The impact of hbx1 on the gene expression profile of *A. flavus* was assessed over three-time points. Several thousand genes were under hbx1 control indicating that hbx1 is a global regulator, and its influence increased with time. An elevated number of transcription factors and developmental regulators were shown to be hbx1-dependent. Furthermore, a large numbers of secondary metabolite gene clusters are also affected by hbx1, among them seven are associated with known metabolites.

MATERIALS & METHODS

Strains used and growth conditions

Aspergillus flavus strains used in this study were the AF70 control, AF70 $\Delta hbx1$ and a genetically complemented $\Delta hbx1$ mutant (designated AF70 $\Delta hbx1$ -COM) as described in Cary *et al.* (2017). Strains were point inoculated onto double strength 5/2 agar (50 mL V8 juice, 40 g agar, pH 5.2 per liter of medium (Chang *et al.* 1993) supplemented with 3.0 g ammonium sulfate and 1 mg/ml uracil (termed 2X V8 ASU) and incubated in the light at 30° for 6 days to promote conidiation. Conidia were collected from plates in 0.01% Triton X-100 and stored at 4°. Due to the inability of the $\Delta hbx1$ mutant to conidiate, cultures were maintained at -80° as glycerol stocks containing agar plugs of fungal mycelia.

Sequence analysis of plant homologs

Using the amino acid sequence for Hbx1 as query (XP_002380469.1) a BLASTp search was performed to identify possible homologs of Hbx1 in selected plant species. Species and sequences used were *Arachis hypogaea* (AKN10291.1), *Zea mays* (NP_001140916.1),

Gossypium arboretum (XP_017643272.1) and Arabidopsis thaliana (AAA56907.1). A MAFFT multiple sequences alignment (https://mafft.cbrc.jp/alignment/software/) was performed to align the sequences and visualized using BoxShade (https://embnet.vital-it.ch/software/BOX_form.html).

RNA sequencing study

RNA preparation and sequencing: Inoculated approximately 5×10^5 conidia/ml of the AF70 control and the $\Delta hbx1$ -COM mutant into 500 ml peptone minimal salts (PMS; not conducive to aflatoxin production) (Buchanan and Lewis 1984) broth supplemented with 1 mg/ml uracil (PMSU) in 1 liter Ehrlenmeyer baffle flasks. Cultures were incubated at 30° in the dark with shaking at 250 rpm for 24 h. Mycelia of the AF70 $\Delta hbx1$ mutant were scraped from the surface of four 2X V8 ASU top agarose (0.5% agarose I, Amresco, Solon, OH) plates and placed in 25 mL 2X V8 ASU broth in a 50 ml Sarsteadt tube. Equal amounts of mycelia were macerated for 10 sec using a tissue grinder (Tissumizer SDT1810, Tekmar, Cincinnati, OH) then transferred into 500 ml PMSU broth in 1 liter Ehrlenmeyer baffle flask. Incubated at 30° in the dark with shaking at 250 rpm for 24 h. Collected mycelia from cultures of each of the three strains by filtering through sterile miracloth, transferred 0.5g wet weight into 25 ml of PDBU broth in 250 ml Ehrlenmeyer flasks (4 replicates) and incubated statically in the dark for 6 h (time point for initiation of aflatoxin gene expression), 24h and 48 h (approximate time points for initiation of conidia and sclerotia production, respectively). Cultures were filtered through sterile miracloth and the fungal tissue collected, frozen in liquid nitrogen and stored at -80°. The frozen mycelial samples were ground under liquid nitrogen with motar and pestle until powdered and transferred to a 50ml Sarstedt tube and stored frozen at -80 until ready for RNA extraction. RNA was isolated from 100-200 mg of the frozen ground mycelial samples using the TRI Reagent (Sigma T9424-100ML) and following the standard Direct-zol RNA MiniPrep kit (ZYMO Research, Irvine, CA) protocol using the double washes modification. RNA quality and quantity were determined using the Experion Automated Electrophoresis Station (Bio-Rad). Frozen RNA samples were shipped overnight on dry ice to North Carolina State University's Genomics Sciences Laboratory for RNA sequencing. RNA libraries were prepared using the Ultra Directional RNA library prep kit from NEB using the manufacturer's protocol for NEBNext PolyA mRNA magnetic isolation module. Sequencing was carried out by Illumina HiSeq 2500 at 125 bp single end reads.

RNA data analysis: Read mapping The single-end reads of three strains (Control, $\Delta hbx1$, $\Delta hbx1$ -COM) each with three replicates at three time points (6 h, 24 h, and 48 h) were separately aligned to the reference genome (Nierman *et al.*, 2015) using HISAT2 (Kim *et al.*, 2015) version 2.0.5. The command used was hisat2 -x reference_genome_index –U fastq_file -S output_file.sam. HISAT2 utilizes Bowtie2 (Langmead & Salzberg 2012) and was run using software version 2.3.

Read counts The mapped reads in SAM format were then analyzed using the feature Counts tool from the Subread package (Liao *et al.*, 2013) version 1.6.0. This tool was employed to return a table of read counts for each gene. The command used was featureCounts -a reference_genome. gtf -p -s 2 -o output_file –primary input_file.sam. A bash script was used to combine all the separate read count files into one table.

Differentially expressed coding genes (DEGs) The table of read counts was used as input for the R limma package (Ritchie *et al.*, 2015). This package was used to determine DEGs by comparing read counts between two strains: Control vs. $\Delta hbx1$ and Control vs. $\Delta hbx1$ -COM. These comparisons were made at all three-time points: 6 h, 24 h, 48 h.

The replicates of each condition at each time point were combined during this step of the analysis. The RPKM function in the R edgeR package (Robinson *et al.*, 2009) determined the reads per kilobase per million (RPKM) values for all the genes.

Bash and Perl scripts were developed to parse the DEGs and RPKM data. An Excel file was created with the RPKM values for all genes across all conditions. FungiFun2 (Priebe *et al.*, 2014) was used for FunCat term annotation of DEGs from Control *vs.* $\Delta hbx1$ and Control *vs.* $\Delta hbx1$ -COM. FungiDB (Basenko *et al.*, 2018) was used for GO term annotation.

Functional annotation and generation of gene lists Secondary Metabolite gene clusters (SMGs) were extracted from Ehrlich and Mack (2014). In addition, a list of transcription factors (TFs) were derived from the Fungal Transcription Factor Database (http://ftfd.snu.ac.kr/ intro.php) (Park *et al.* 2008) for *A. flavus* and mapped to differentially expressed genes in *A. flavus*. Functional annotations of these transcription factors were obtained from NCBI. R (R Core Team 2017) version 3.4.1, specifically the ggplot2 package (Wickham 2009), was used to make statistical figures. The Venn diagrams were made using the R package VennDiagram (Chen & Boutros 2011). Fungal developmentrelated genes from *Aspergillus* species were reviewed in Table S2 from Krijgsheld *et al.* (2013). FASTA sequences of these genes were used to search against the *A. flavus* genome to identify developmental genes.

The list of DEGs from the study performed by Dolezal and collaborators (Dolezal *et al.* 2013) was compared to the *hbx1* DEGs to search for potentially *hbx1*-dependent virulence genes. Furthermore, we specifically looked for virulence-related secretory genes. The list of possible virulence-related *hbx1* genes was compared to the *A. flavus* secretomerelated genes in the FunSecKB2 database (Meinken *et al.*, 2014). For higher confidence in results only the list of "curated secreted" and "highly likely secreted" genes in FunSecK2 were used.

Weighted gene network co-expression analysis The gene co-expression network was made using WGCNA (Weighted Gene Network Co-expression Analysis) with a signed network, the biweight mid-correlation method, and a soft-thresholding power of 9. Variance stabilized counts from DESeq2 were used as input to WGNCA (Langfelder and Horvath 2008). Genes with missing values or zero variance were filtered out using the goodSamplesGenes function within the WGCNA package. Visualization of gene networks using wild-type *A. flavus* data were shown using Cytoscape v3.6.0 with the Edge-weighted Spring Embedded layout with minor manual adjustment. Relative edge weight values were calculated for the entire module containing *hbx*, and First Neighbor nodes were selected for additional analysis.

Data availability

Table S1 contains calculated expression values of sequenced RNA samples along with corresponding p-values. Table S2 contains a selected list of fungal developmental regulators that are shown to be *hbx1*-dependent. Table S3 is a subset of Table S1 that shows all known transcription factors in *A. flavus* and their corresponding expression pattern in regard to presence or absence of *hbx1*. The data are publicly available at NCBI's SRA repository with the SRA Accession #: PRJNA494425. Supplemental material available at Figshare: https://doi.org/10.25387/g3.7304252.

RESULTS

Hbx1 is not conserved in plants species

To determine if the *hbx1* product is conserved among plants and thus a possible viable target for control of *A. flavus*, a BLASTp search was

performed to identify potential homologs. The best BLASTp hit for Hbx1 from *Arachis hypogaea, Zea mays, Gossypium arboretum*, and *Arabidopsis thaliana* were chosen for comparison to the *A. flavus* protein. Among these hits the query coverage of the results was very low (9–18%) localizing only around the homeobox domain located in Hbx1. Amino acid sequences of all species were then run through a MAFFT multiple sequence alignment. The results of the alignment are visualized in Figure 1. This result, together with the low percentage values, indicates that Hbx1 from *Aspergillus* is not conserved in these common plant hosts.

hbx1 is a global genetic regulator in A. flavus

Across the time points assessed, absence of *hbx1* caused a significant change in expression levels in more than 5000 genes in the *A. flavus* genome. Nearly 2000 genes were downregulated at each time point. In addition, while at the 6 h time point only 980 genes presented an increase in their expression, that number approximately doubled at the later time points (Figure 2, Table 1). Although a similar total amount of genes showed altered expression at each time point, there were not always the same DEGs at all three-time points. Only 350 genes of the entire genome were consistently upregulated by the loss of *hbx1*, while 507 genes experienced a significant decrease in expression at all three times points (Figure 3).

hbx1 is indispensable for normal secondary metabolism in A. flavus

To elucidate the regulatory scope of hbx1 in *A. flavus*, a series of functional enrichment analyses were performed with the transcriptome data. Using the FungiFun2 platform we performed a Gene Ontology search using FunCat terms (Figure 4) (Priebe *et al.* 2014). The analysis revealed multiple enriched categories, with the largest one being related to metabolism, followed by cellular transport and cell rescue (the former particularly at 48 h) (Figure 4). Within this division of categories, metabolic genes involved in secondary metabolism were the largest group affected by loss of *hbx1*. At all-time points, most of the DEGs associated with secondary metabolism were downregulated in the absence of *hbx1*. GO terms were also used for functional analysis from FungiDB and are represented in Figure S2. This data also supports the pattern that secondary metabolism is the largest *hbx1*-affected category.

In a previous study we discovered that hbx1 is a positive regulator of aflatoxin, aflatrem, and cyclopiazonic acid biosynthesis (Cary *et al.* 2017). The current transcriptome analysis provides further insight into hbx1 regulation of biosynthetic gene clusters of those mycotoxins (Figure 5). In the aflatoxin cluster the majority of the genes are suppressed in the mutant strain. Previously mRNA transcripts from the aflatrem clusters were detected at approximately 48 h in the wild- type (Nicholson *et al.* 2009), coinciding with our observations (Figure 5), however such an increase was not observed in the hbx1 deletion mutant. In addition, all the genes in the cyclopiazonic acid genes cluster were down regulated in the absence of hbx1 (Figure 5).

Other gene clusters involved in the production of secondary metabolites known to be associated with sclerotial development were also affected, particularly at the last time point, such as the asparasone, piperazine, and aflavarin gene clusters (Figure 6). In addition, other secondary metabolite gene clusters in *A. flavus*, without a described associated product (orphan clusters) were shown to be regulated by *hbx1* (Figure S3). Other clusters were also affected but to a lesser extent (Table S1).

hbx1 is a master regulator of developmental regulatory genes and other transcription factors in A. flavus

The *hbx1* gene is necessary for normal conidiation and sclerotial development in *A. flavus* (Cary *et al.*, 2017), and it was shown to affect

A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	1 1 1 1	MNYLHHEYAYAGHAAVPMEQPIAYDPT MNYLHHEYAYAGHAAVPMEQPIAYDPT MMGFDDTCNTGLVLGLGPSPISNNYNSTIRQSSVYKLEPSLTLCLSGDPSVTVVTGA MAGGRVVSCNNTNSVG-GSSNLSVLLQNQRVPSSSEPMDPLFIPRPGSSPYSFFVSGTRS M
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	28 50 59 60 32	LCDQLVEMHRTLSTHHDLAGVRVGNIYCDSLMTSAGQKITSRQRWTP QLCRQTSSHSGVSSFSSGRVVKRERDGGEESPEEEEMTERVISDYHEDEEGISARKKLRL MVSFEDVHGGNRSFFRSFDEEENGDEDLDEYFHQPEKKRRLT EERPRARRRRRAARCGGGGGELDGGGDHKKRRLT
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	55 97 119 102 67	AHPSMMHPMEGYIYPHPPFDMIDFYHQPIMDYEEYAENLSRPRLTK TPLQLQILERIFDQGNGTPSKEKIKEITSELSHHGQISETNVYNWFQNRARSKRKUQNN TKQSALLEESFKDHS-TLNPKQKQVLARQLNLRPRQVEVWFQNRRARTKLKQTEV VDQVQFLEKSFEVEN-KLEPERKTQLAKELGLQPRQVAIWFQNRRARWKTKQLEKD DEQVEMLELSFREER-KLETGRKVHLAAELGLDPKQVAVWFQNRRARHKSKLLEEE
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	101 157 174 157 122	EQVETLEAQFQAHP-KPSSNVKRQLAAQTNLSLPRVANWFQNRRAKAKQQKRQEEF D
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	156 157 175 162 122	ERMQKAKTEAEEAARIKIENAEKSESNPDVKEETDKETPKQSSDQTMSDDRTKTPASNSR
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	216 180 196 185 143	SKHHKTKSESAREATFASLQRALNAAVAAREHYSPDEQGQPATIHEGSVSPTTTYSGMNN
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	276 180 200 189 147	HGDSRAAQSSSTTPFSEWENAKETAMSWSASQSPQEHLGYSAAESLTVPELDGSHQNVQH
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	336 180 200 189 147	SDTLQFHSSQNEEWSGQVQGTKSFPGYHSSNDAEASYSAAQYTLHPESSLSRRGSSDDLA EETIDSQQQQHSTIIMTNA
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	396 199 219 208 166	DSLEGIGIHAAGLPIRTDRSSWKEAGKELDLAARRKRPRPAAIGTSRSSSMLAGSAASMS
A.flavus A.hypogaea A.thaliana G.arboreum Z.mays	456 199 237 241 205	PTTRLPSYGSAPGVRQSKSAQCLNSRYAGVRKASAAQRSPLNLSSFAEAGALGTSKPEMS -SATNRHKMLVVGSTAKGAFSISSKP

Figure 1 - Multiple sequence alignment of *Aspergillus flavus* Hbx1 and possible closest predicted proteins in selected plant species. BLASTp search was carried out to find possible homologs in selected plant species and with the best hits. A MAFFT Sequence Alignment (https://www.ebi. ac.uk/Tools/msa/mafft/) was performed to show homology of amino acid sequences.

Figure 2 Number of genes influenced by *hbx1* A) Number of up-regulated (green) and down-regulated (orange) DEGs in $\Delta hbx1$ vs. control at the 6 h, 24 h, and 48 h time points. B) Volcano plot of log2 folder change vs. log10 P-value of all the genes in $\Delta hbx1$ vs. control at the 6 h, 24 h, and 48 h time points. DEGs are pink dots, other genes are shown as green dots. Pink dots with positive log2 fold change values are up-regulated DEGs. Pink dots with negative log2 fold change values are down-regulated DEGs. The x-axis represents the log2 of the fold change as determined by Limma. The y-axis is the log10 of the adjusted p value from Limma. The cut off-fold change value to determine differential expression is greater than 2 or less than 0.5. The cut off-adjusted p value to determine differential expression was greater than 0.05. Additional statistical representation of other comparison are in volcano plots located in Figure S1.

the expression of key developmental regulators, such as *brlA*, the master regulator of the asexual development (conidia) in *Aspergillus*. In addition, *hbx1* also affected the expression of *veA*, which regulates multiple aspects of fungal development as well as influencing production of secondary metabolites (Calvo *et al.*, 2016). In our current study, a list of selected *A. flavus* developmental regulatory genes (experimentally characterized in *A. flavus* and/or in other fungi), was applied to our data analysis to better understand the mechanism of action of *hbx1* in *A. flavus* regulatory networks (Table S2). Our results revealed that several additional developmental transcription factors were also *hbx1*-dependent, such as the terminal gene in the central conidiation pathway, *wetA* (Wu *et al.*, 2017) the fluffy genes *flbA*, *flbC*, *flbD*, and *fluG* (Purschwitz *et al.*, 2008, Garzia *et al.*, 2010, & Kwon *et al.*, 2010, Chang *et al.*, 2012), as well as the mating gene MAT1-1 (Ramirez-Prado *et al.*, 2008).

Our *hbx1* data analysis also extended to other *A. flavus* transcription factors. A list of *A. flavus* transcription factors were obtained from the Fungal Transcription Factor Database and used to search for DEGs. Annotations of the transcription factors were derived from NCBI. From these results, of the over six hundred transcription factors identified in this fungus, almost four hundred of them are influenced by *hbx1* (Table S3). A subset of well-characterized genes from that list are also represented in Table 2.

Prediction of hbx1-dependent genes possibly involved in virulence

Previously Dolezal *et al.* (2013) analyzed the transcriptome of *A. flavus* during the infection of maize kernels. This study compared the gene expression profile of *A. flavus* during infection of viable

kernels to that of non-viable. The data from this study was assessed into two groups, genes that were upregulated during infection of viable kernels and those downregulated. We compared these groups of genes to the *hbx1*-dependent transcriptome from our study. In total, 1125, 1451, and 1672 genes were differentially expressed in both studies at the 6, 24, and 48 h, respectively (Table S4). Table S4 also shows genes that exhibited the same trend over three-time points as well as genes that presented an expression pattern opposite that depicted in the Dolezal *et al.* virulence study compared to *hbx1*-dependent DEGs. Among them, 75 genes were found upregulated during infection of viable seeds but downregulated in the *hbx1* mutant. Conversely 20 genes were found to present lower expression levels during infection while having increased expression in the *hbx1*mutant.

In the aforementioned study, genes encoding transcription factors, involved in secondary metabolism, as well as the fungal secretome were upregulated and predicted to be potential virulence factors (Dolezal *et al.*, 2013). We further compared differentially expressed secretory genes from that study to the *hbx1* transcriptome study. From this selected data set, 164, 196, and 235 secretory genes where differentially expressed in the absence of *hbx1* at 6, 24, and 48 h respectively (Table S5).

Identification and visualization of gene regulatory networks correlated with hbx1 expression and knockout

Expression values (variant stabilized read counts) from the RNA-seq data were subjected to WGCNA to identify networks of genes that are

Table 1 – Percentage of A.flavus hbx1-dependent DEGs at each time point

		6 h	24 h	48 h	All 3 time points
Up regulated	Percent of total DEGs	16.17%	28.76%	36.42%	5.78%
	Percent of total genome	7.27%	12.93%	16.37%	2.60%
Down regulated	Percent of total DEGs	30.45%	32.90%	31.14%	8.37%
-	Percent of total genome	13.68%	14.79%	13.99%	3.76%

Figure 3 - Venn diagram visualizing the overlap of up regulated and down regulated genes in $\Delta hbx1$ vs. Control at the 6 h, 24 h, and 48 h time points.

co-expressed with wild-type *hbx1*, and therefore potentially impacted by the *hbx1* deletion. The homeobox transcription factor showed highest co-expression correlation with a hypothetical protein (AFLA_ 061410), (Figure 7), which was significantly upregulated in the *hbx1* mutant (~4 fold), and shared a high sequence similarity to a putative DNA methyltransferase. The putative hypothetical proteins downregulated in the *hbx1* mutant (AFLA_013180 and AFLA_066950) share a sequence similarity with an S-adenosyl-methionine dependent methyltransferase and a flavin adenine dinucleotide -binding proteins, respectively. These putative methyltranferases highly associated with hbx1 expression (and affected in the hbx1 mutant) are excellent candidate regulatory genes for near-downstream regulation by hbx1.

DISCUSSION

Previous studies showed that development is genetically associated with secondary metabolism, (Calvo *et al.* 2002; Calvo and Cary 2015). Recent

Figure 4 - FunCat terms associated with DEGs found in $\Delta hbx1$ vs. Control at 6 h, 24 h, and 48 h. The minus log10 of the p-value of DEGs in each term is proportional to the length of the bars. FunCat annotations and p-value as determined by FungiFun2(https://elbe.hki-jena.de/fungifun/fungifun.php): (i) metabolism is shown in orange, (ii) cellular transport, transport facilities and transport routes in light brown, (iii) cell rescue, defense & virulence in dark green, (iv) development in purple, (v) protein with binding function or cofactor requirement (structural or analytic) in black, (vi) protein synthesis in dark brown, (vii) energy in magenta, and (viii) interaction with the environment in light green. Down regulated genes are to the left of the origin and up regulated to the right.

Figure 5 Heat map of RPKM values of genes on a log scale found in secondary metabolite gene clusters of aflatrem, aflatoxin, and cyclopiazonic acid (CPA). The RPKM value of each gene was calculated by averaging all the RPKM values of all replicates corresponding to that treatment at three different time points: 6 h, 24 h, and 48 h.

published work also demonstrated that the *hbx1* gene is one of those genetic links that is required for normal conidiation, sclerotial formation as well as secondary metabolism in the aflatoxin-producer and agriculturally important fungus *A. flavus* (Cary *et al.*, 2017). In the current study we showed that while homeobox domains similar to that present in the Hbx1 protein are found throughout various phyla, the rest of the *A. flavus* Hbx1 amino acid sequence is not conserved *in planta*. This suggests that *hbx1* could be a good target for strategies to control *A. flavus* infection that would not result in any off-target effects in agriculturally important crops susceptible to this opportunistic pathogen.

To gain insight into *A. flavus hbx1* mechanism of action we investigated the extent of its regulatory scope performing a transcriptome study using RNA sequencing. Our analyses revealed a broad effect of *hbx1* on the genome; in the absence of *hbx1* more than 20% of the *A. flavus* genome presents changes in expression. In addition, we observed that the number of genes governed by *hbx1* increases with time in the fungal culture. Based on our results, Hbx1 is a dynamic transcriptional regulator that, while it controls the expression of 857 genes at all time points assessed, a greater number of

hbx1-dependent genes were affected at specific time points analyzed.

Our functional enrichment analysis indicated that while categories involved in cell rescue and defense, development and cellular transport were shown to be under the control of *hbx1*, the largest group of *hbx1*dependent genes corresponds to the category of metabolism. Twelve secondary metabolite gene clusters, out of 56 clusters identified in A. flavus, including the kojic acid cluster (Ehrlich and Mack, 2014 & Ammar et al. 2017), were under hbx1 control. Of these 12 clusters, five of them were not associated with a known metabolic product, however the remaining clusters have already been characterized. Four of these clusters have been shown to be involved in the synthesis of potent mycotoxins, aflatoxin, aflatrem (split into two clusters), and cyclopiazonic acid (Yu et al., 2004, Chang et al., 2009, Nicholson et al., 2009). In addition, genes in the clusters involved in the production of asparasone, piperazine, and aflavarin were also shown to be suppressed in the absence of *hbx1*. These three metabolites are associated with sclerotial development (Calvo and Cary 2015). Both asparasone and aflavarin are specifically found within these structures (Cary et al. 2014, & Cary et al. 2015), and genes located in the piperazine cluster have been shown to

Figure 6 Heat map of RPKM values of genes on a log scale found in sclerotia related -secondary metabolite gene clusters of asparasone, piperazine, and aflavarin. The RPKM value of each gene was calculated by averaging all the RPKM values of all replicates corresponding to that treatment at three different time points: 6 h, 24 h, and 48 h.

Table 2 Annotated hbx1-dependent transcription factors. A list of *A. flavus* transcription factors was obtained from the Fungal Transcription Factor Database and compared to the list of hbx1 dependent DEGs. Annotations were retrieved from NCBI (full list is shown in Table S3). Expression values are those between the wild type (WT) and $\Delta hbx1$ at all time points assayed

Gene	AFLA ID	Description	6 h	24 h	48 h
abp2	AFLA_081210	ARS binding protein Abp2, putative	-0.02695	-1.05237	-0.83165
aflO	AFLA_139220	aflO/ omtB/ dmtA/ O-methyltransferase B	-8.01939	-10.9727	-2.94881
aflP	AFLA_139210	afIP/ omtA/ omt-1/ O-methyltransferase A	-9.18684	-11.8992	-2.50201
aflR	AFLA_139360	aflR / apa-2 / afl-2 / transcription activator	-6.93292	-5.75199	-5.3899
amdA	AFLA_048870	C2H2 transcription factor (AmdA), putative	-1.27305	0.369593	-0.66252
amdR	AFLA_028560	C6 transcription factor (AmdR), putative	-1.0392	-0.75555	-0.66391
amdX	AFLA_002290	C2H2 transcription factor (AmdX), putative	-1.02402	-1.62432	-0.7989
amyR	AFLA_026160	C6 transcription factor (AmyR), putative	0.718895	1.399027	1.196918
areA	AFLA_049870	GATA transcriptional activator AreA	-0.76928	-2.688	0.534173
areB	AFLA_136100	GATA transcription factor (AreB), putative	0.136046	-1.10235	0.413972
azf1	AFLA_054800	C2H2 transcription factor (Azf1), putative	-0.59027	-3.74734	-3.02994
brlA	AFLA_082850	C2H2 type conidiation transcription factor BrIA	0.391684	-2.17902	-2.37438
cnjB	AFLA_051900	zinc knuckle transcription factor (CnjB), putative	3.893041	0.290236	2.115113
creA	AFLA_134680	C2H2 transcription factor (Crea), putative	-0.50862	-0.56638	-1.0953
ctf1B	AFLA_012010	C6 transcription factor (Ctf1B), putative	-0.04607	0.620485	1.55645
erg2	AFLA_069460	C2H2 transcription factor (Egr2), putative	-1.55121	-0.57147	-1.05583
flbC	AFLA_137320	C2H2 conidiation transcription factor FlbC	-0.72449	-2.36931	-0.71241
flbD	AFLA_080170	MYB family conidiophore development protein FlbD, putative	-1.18991	-2.3671	-3.69073
hpa3	AFLA_131640	HLH transcription factor (Hpa3), putative	-0.97532	-1.5551	-2.37946
ΜΑΤ-α-1	AFLA_103210	mating-type protein MAT alpha 1	0.301373	0.231333	3.258805
mbf1	AFLA_086430	coactivator bridging factor 1 (Mbf1), putative	0.637772	1.803474	0.237383
nirA	AFLA_093040	C6 transcription factor (NirA), putative	-0.36009	-1.05781	0.124633
nosA	AFLA_025720	C6 transcription factor NosA	-5.37861	-8.60563	-3.24851
nsdD	AFLA_020210	sexual development transcription factor NsdD	-0.29566	-1.18101	-0.97544
pcaG	AFLA_012100	NDT80_PhoG domain protein PcaG	-1.3881	-1.5446	-0.30405
regA	AFLA_073870	C6 transcription factor RegA, putative	-0.25045	0.20309	1.643673
rfeC	AFLA_044060	C2H2 transcription factor (RfeC), putative	-0.42645	-1.10049	0.597632
rpn4	AFLA_017640	C2H2 transcription factor (Rpn4), putative	0.491655	0.477596	3.176475
seb1	AFLA_110650	C2H2 transcription factor (Seb1), putative	-0.18746	-0.02585	1.021753
sep1	AFLA_048110	forkhead transcription factor (Sep1), putative	-0.65362	-1.43862	-0.5192
snt2	AFLA_029990	PHD finger and BAH domain protein (Snt2), putative	0.07615	-0.12486	1.163666
srrA/skn7	AFLA_034540	stress response transcription factor SrrA/Skn7, putative	-0.77849	-1.28158	0.119597
ssb3	AFLA_093820	ssDNA binding protein Ssb3, putative	-0.00201	0.813483	-1.02252
steA	AFLA_048650	sexual development transcription factor SteA	-0.53006	-1.08547	-0.48395
stuA	AFLA_046990	APSES transcription factor StuA	-1.62823	-2.5412	-1.79524
swi5	AFLA_031400	C2H2 transcription factor Swi5	-0.54244	-1.11596	-0.0182

affect their development (Forseth et al. 2012). Fungi concentrate secondary metabolites in reproductive structures for defense against herbivores and insects (Wicklow 1988, Gloer 1995, Gloer 1997, & Gloer 2007). Horn et al. (2009, 2014) reported ascospore-bearing ascocarps embedded within sclerotia of A. flavus and A. parasiticus. In these aflatoxin-producers, sclerotia play an important role as resting structures capable of surviving environmental extremes remaining viable after several years in the crop fields (Coley-Smith and Cooke 1971), and the hbx1-dependent secondary metabolites present in them contribute to their survival against biotic stress and possibly abiotic stresses. Since deletion of *hbx1* results in abolishment of sclerotia in the fungus, it is possible that the effect of *hbx1* on the expression of some of these secondary metabolite gene clusters specifically associated with a particular morphological structure could be indirect, by affecting developmental regulators that are repressed in the absence of hbx1. Whether the effect on these clusters is direct or indirect, these studies indicate an important role of hbx1 in A. flavus survival, promoting the formation of resistant structures and a chemical arsenal critical for defense against microbes, predators and other environmental insults.

The *hbx1* gene is also necessary for conidiation. Our transcriptome analysis also indicated that the *brlA* central regulatory pathway is under *hbx1* control, not only affecting *brlA*, but also *wetA*, a developmental

regulator conserved in *Aspergillus* species (Wu *et al.*, 2018). Furthermore, the aconidial phenotype of $\Delta hbx1$ resemble that of the fluffy mutants described in *A. nidulans* that revealed the *flb* regulatory pathway (reviewed by Ruger-Herreros *et al.* 2011; Krijgsheld *et al.* 2013). Indeed, *A. flavus flbA*, *flbC*, *flbD*, and *flbE* homologs (Chang *et al.*, 2012) are down regulated in the absence of *hbx1* while in the same strain at the early time point *fluG* had a significant increase of expression. This indicates that *hbx1* is a regulator of these conidiophore biogenesis genes, and expression of some of these genes over time is significantly different from that observed in the control strain.

It is possible that Hbx1 might not bind directly to the promoters of the central regulatory pathway genes but affects their expression by controlling expression of genes upstream in the regulatory hierarchy. Examples of these might be genes like *ppoC* and *stuA*. Both of these genes have been shown to affect conidiophore development via *brlA* (Dutton *et al.*, 1997, Tsitsigiannis *et al.*, 2004, & Sheppard *et al.*, 2005). In addition, other developmental genes were also under the influence of *hbx1*, for instance, the spore hydrophin gene *rodA* (Carrion *et al.*, 2013) and also the *nosA* gene, encoding a putative Zn(II)(2)Cys(6) transcription factor previously described in several *Aspergillus* species (Vienken and Fischer 2006, Soukup *et al.*, 2012, Zhao *et al.*, 2017). In *A. nidulans, nosA* is necessary for cleistothecial

AFLA_056120		Gene ID	Weight	Functional Annotation	Gene ID	Weight	Functional Annotation
AFLA_061040 AFLA_077800		AFLA_061410	0.1536	hypothetical	AFLA_106230	0.0570	carboxylesterase
AFLA_038770 AFLA_079430		AFLA_126380	0.0798	glutamyl-tRNA(gln) amidotransferase subunit A	AFLA_074460	0.0568	hypothetical
AFLA_0227140 AFLA_078500 AFLA_002620 AFLA_074	AFLA_078500 AFLA_074570		0.0719	hypothetical	AFLA_011310	0.0565	vps9-ankyrin repeat-containing protein
AFLA_061410 AFLA	074460	AFLA_136370	0.0717	alcohol dehydrogenase	AFLA_079430	0.0555	amidase
AFLA_045370 AFL	LA_136900	AFLA_112100	0.0704	hypothetical	AFLA_107470	0.0553	hypothetical
AFLA_040840	FLA_126380	AFLA_078500	0.0672	bZIP transcription factor	AFLA_038770	0.0548	alcohol dehydrogenase
AFLA_027410	AFLA_122020	AFLA_118760	0.0666	hypothetical	AFLA_119150	0.0545	hypothetical
AFLA_054140	AFLA_136370	AFLA_043230	0.0662	UDP-glucose:sterol glycosyltransferase	AFLA_040960	0.0545	N-hydroxyarylamine O-acetyltransferase
AFLA_021090	AFLA_136160	AFLA_066950	0.0660	hypothetical	AFLA_086860	0.0542	NUDIX domain protein
AFLA 013180	AFLA 112100	AFLA_101930	0.0651	succinate-semialdehyde dehydrogenase	AFLA_021090	0.0539	sporulation-associated protein
AFLA 025380	AFLA 119150	AFLA_136160	0.0644	SNF2 family helicase/ATPase	AFLA_045370	0.0529	ankyrin
AFLA_043230	FLA 118760	AFLA_136900	0.0638	hypothetical	AFLA_002620	0.0523	endonuclease/exonuclease/phosphatase family
AFLA_066950	101020	AFLA_051390	0.0624	copper-transporting ATPase	AFLA_038640	0.0520	fatty acid synthase alpha subunit
AFLA_038640 AFLA_011310	A 096960	AFLA_074570	0.0600	efflux pump antibiotic resistance protein	AFLA_054140	0.0520	hypothetical
AFLA_040960 AFLA	107470	AFLA_116430	0.0598	UDP-glucose dehydrogenase (UGD1)	AFLA_027410	0.0516	involucrin repeat protein
AFLA_051390 AFLA_069100 AFLA_10	106230	AFLA_061040	0.0595	alpha-xylosidase	AFLA_122020	0.0512	oxidoreductase, 2OG-Fe(II) oxygenase family
		AFLA_077800	0.0593	hypothetical	AFLA_040840	0.0508	serine/threonine protein kinase
Fold change Edge Weigh	ht	AFLA_027140	0.0583	ADAM metalloprotease (AdmB)	AFLA_025380	0.0503	hypothetical
		AFLA_074870	0.0576	hypothetical	AFLA_056120	0.0500	GTPase activating protein (Gyp7)

Figure 7 Weighted Gene Co-expression Network Analysis was conducted using read counts from the isogenic control strain to identify genes co-expressed with *hbx1* (AFLA_069100) and illustrated using Cytoscape (left). Edge coloration reflects the TOM value, indicating the relative significance of gene Co-expression ("Edge Weight"). The Node color reflects gene rlog2 fold changes in the 24 h sample of *hbx1* knockout mutant relative to control ("Fold change"). Yellow indicates no change in relative expression levels. The functional annotation from *Aspergillus flavus* strain 3357 (Accession: GCA_000006275.2) is indicated for each AFLA gene Identifier (right).

primordium maturation (Vienken and Fischer 2006), and its homolog in *A. flavus* has been reported to be required for sclerotial production (Zhao *et al.*, 2017). It is likely that the reduction in the expression of *nosA* in the *A. flavus hbx1* mutant could contribute to prevent sclerotial formation in this strain.

Since hbx1 has a broad effect on A. flavus development and metabolism, we also investigated possible connections between hbx1 and virulence during corn infection based on the previous report by Dolezal et al. (2013). In our study, the DEGs identified from the hbx1-dependent transcriptome were compared to those identified by Dolezal et al. (2013) in viable and non-viable infected corn kernels. This allowed us to predict genes possibly involved in virulence that are controlled by hbx1. Genes identified as upregulated in the corn infection study but suppressed in the $\Delta hbx1$ transcriptome study could potentially be involved in virulence. Approximately 300 DEGs were identified at all time points that fit this description. Among them is the pes1 gene (AFLA_069330), that in Aspergillus fumigatus was found indispensable for virulence in the Galleria mellonella model (Reeves et al., 2006). Other genes in this group were shown to affect spore germination and secondary metabolism, such as sfk1. In Penicillium roqueforti, silencing of sfk1 alters condial germination and prevents production of roquefortine C, andrastin A, and mycophenolic acid (Torrent et al., 2017). Out of the mentioned group of 300 DEGs, 75 were consistently suppressed in the $\Delta hbx1$ mutant (Table S4). In this subgroup, beyond genes located in the aflatoxin gene cluster, most of these genes have not been investigated, and could be potential genes of interest in future studies to identify A. flavus virulence factors.

Secreted proteins such as hydrolytic enzymes are essential for successful infection of the host by the fungus (Lo Presti *et al.*, 2015 -de Jonge *et al.*, 2011 & Kale and Tyler 2011). With this in mind, we focused on analyzing components of the secretome regulated by *hbx1*, specifically those genes that may play a role in virulence. FunSecKB2 analysis revealed that among the genes in the Dolezal *et al.* (2013) study, approximately 50 secretome-related genes were upregulated during infection of viable seeds, while those same genes were downregulated in our transcriptome study of the *hbx1* deletion mutant, at least at one time point, suggesting that this set of *hbx1*-dependent genes could be potentially be involved in virulence, for example genes encoding

proteases (*i.e.*, AFLA_057670), amylases (*i.e.*, AFLA_123170) and other hydrolases (*i.e.*, AFLA_065010, AFLA_088610, and AFLA_125970).

Weighted gene co-expression network analysis has been used to identify novel gene interactions by determining patterns of co-expression among several biological samples, which infers a functional relationship between genes. This process has been used to analyze RNA-seq data from *Aspergillus* species (Baltussen *et al.* 2018, Korani *et al.* 2018), and functional studies have demonstrated the validity of WGCNA (Calabrese *et al.*, 2017, Wang *et al.* 2017). Here we identify the network of co-expressed genes using the isogenic control strain and identified several genes that are both significantly co-expressed with *hbx1* and show altered expression patterns in the *hbx1* knockout mutant. Three genes of particular interest that demonstrated altered regulation and relatively high correlation values are annotated as hypothetical proteins (AFLA_ 013180, AFLA_061410, and AFLA_066950). The impact of these hypothetical genes on *A. flavus* biology will be the focus of future studies of *hbx1*-dependent gene regulation.

We demonstrated that the expression of thousands of genes is affected by *hbx1*. In addition, we showed that *hbx1*-dependent regulation in *A. flavus* is dynamic in a time-dependent manner. The *hbx1* gene is required for the production of structures needed for dissemination and survival of *A. flavus* and the production of detrimental secondary metabolites. This, together with the fact that Hbx1 is not conserved in other phyla suggest that this global regulator could be a target to develop novel methodologies to control the adverse health and economic impacts due to infection and aflatoxin contamination of many important crops by *A. flavus*.

ACHNOWLEDGEMENTS

This work was supported by USDA grant 58-6435-4-015 and the Department of Biological Sciences at Northern Illinois University. SE and YY are supported by NSF (DBI-1652164) and NIH (1R15GM114706) grants.

LITERATURE CITED

- Adams T., M. Boylan, and W. Timberlake,1998 BrlA is necessary and sufficient to direct conidiophore development in *Aspergillus nidulans*. Cell. 54: 353–362. pmid:3293800
- Ammar, H. A., A. Y. Srour, S. M. Ezzat, and A. M. Hoseny,
 - 2017 Identification and characterization of genes involved in kojic

acid biosynthesis in Aspergillus flavus. Ann. Microbiol. 67: 691–702. https://doi.org/10.1007/s13213-017-1297-8

Baltussen, T. J. H., J. P. M. Coolen, J. Zoll, P. E. Verweij, and W. J. G. Melchers, 2018 Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in *Aspergillus fumigatus* conidia. Fungal Genet. Biol. 116: 62–72. https://doi.org/ 10.1016/j.fgb.2018.04.013

Basenko, E., J. Pulman, A. Shanmuga, O. Harb, K. Crouch *et al.*,
2018 FungiDB: an integrated bioinformatic resource for fungi and oomycetes. J. Fungi (Basel) 4: 39. https://doi.org/10.3390/jof4010039

Bhatnagar, D., K. Rajasekaran, M. Gilbert, J. W. Cary, and N. Magan, 2018 Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination. World Mycotoxin J. 11: 47–72. https://doi.org/10.3920/WMJ2017.2283

Buchanan, R. L., and D. F. Lewis, 1984 Regulation of aflatoxin biosynthesis: Effect of glucose on activities of various glycolytic enzymes. Appl. Environ. Microbiol. 48: 306–310.

Calabrese, G. M., L. D. Mesner, J. P. Stains, S. M. Tommasini, M. C. Horowitz et al., 2017 Integrating GWAS and co-expression network data identifies bone mineral density genes SPTBN1 and MARK3 and an osteoblast functional module. Cell Syst. 4: 46–59.e4. https://doi.org/10.1016/j. cels.2016.10.014

Calvo, A. M., R. A. Wilson, J. W. Bok, and N. P. Keller, 2002 Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular Biology Reviews, Cell Syst. 66: 447–459. doi: https://doi. org/10.1128/mmbr.66.3.447-459.2002

Calvo, A. M., and J. W. Cary, 2015 Association of fungal secondary metabolism and sclerotial biology. Front. Microbiol. 6. https://doi.org/ 10.3389/fmicb.2015.00062

Calvo, A. M., J. M. Lohmar, B. Ibarra, and T. Satterlee, 2016 Velvet Regulation of Fungal Development, *Growth, Differentiation and Sexuality. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research)*, Vol. I, edited by Wendland, J. Springer, Cham.

Carrion, S. D., S. M. Leal, M. A. Ghannoum, V. Aimanianda, J. Latge et al., 2013 The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J. Immunol. 191: 2581–2588. https://doi.org/10.4049/ jimmunol.1300748

Cary, J., P. Harris-Coward, L. Scharfenstein, B. Mack, P. K. Chang, and Q. Wei, 2017 The Aspergillus flavus Homeobox Gene, hbx1, Is Required for Development and Aflatoxin Production. Toxins. 9: 315. https://doi. org/10.3390/toxins9100315

Cary, J. W., Z. Han, Y. Yin, J. M. Lohmar, S. Shantappa *et al.*, 2015 Transcriptome analysis of *Aspergillus flavus* Reveals *veA*-dependent regulation of secondary metabolite gene clusters, including the novel aflavarin cluster. Eukaryot. Cell 14: 983–997. https://doi.org/10.1128/ EC.00092-15

Cary, J. W., P. Y. Harris-Coward, K. C. Ehrlich, B. M. Mack, S. P. Kale et al., 2012 NsdC and NsdD Affect Aspergillus flavus Morphogenesis and Aflatoxin Production. Eukaryot. Cell 11: 1104–1111. https://doi.org/ 10.1128/EC.00069-12

Cary, J. W., P. Y. Harris-Coward, K. C. Ehrlich, J. D. Mavungu,
S. V. Malysheva *et al.*, 2014 Functional characterization of a *veA*-dependent polyketide synthase gene in *Aspergillus flavus* necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genet. Biol. 64: 25–35. https://doi.org/10.1016/j.fgb.2014.01.001

Chang, P. K., J. W. Cary, D. Bhatnagar, T. E. Cleveland, J. W. Bennett *et al.*, 1993 Cloning of the *Aspergillus parasiticus* apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl. Environ. Microbiol. 59: 3273–3279.

Chang, P., B. W. Horn, and J. W. Dorner, 2009 Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet. Biol. 46: 176–182. https://doi. org/10.1016/j.fgb.2008.11.002

Chang, P. K., L. L. Scharfenstein, B. Mack, and K. C. Ehrlich, 2012 Deletion of the *Aspergillus flavus* orthologue of *A. nidulans fluG* reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Appl. Environ. Microbiol. 78: 7557–7563. https://doi.org/10.1128/AEM.01241-12

Chen, H., and P. C. Boutros, 2011 VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12: 35. https://doi.org/10.1186/1471-2105-12-35

Coley-Smith, J. R., and R. C. Cooke, 1971 Survival and germination of fungal sclerotia. Annu. Rev. Phytopathol. 9: 65–92. https://doi.org/ 10.1146/annurev.py.09.090171.000433

Dhingra, S., A. L. Lind, H. Lin, Y. Tang, A. Rokas et al., 2013 The fumagillin gene cluster, an example of hundreds of genes under veA control in Aspergillus fumigatus. PLoS One 8: e77147. https://doi.org/10.1371/journal.pone.0077147

Dolezal, A. L., G. R. Obrian, D. M. Nielsen, C. P. Woloshuk, S. R. Boston et al., 2013 Localization, morphology and transcriptional profile of Aspergillus flavus during seed colonization. Mol. Plant Pathol. 14: 898–909. https://doi.org/10.1111/mpp.12056

Duran, R. M., J. W. Cary, and A. M. Calvo, 2007 Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Microbiol. Biotechnol. 73: 1158–1168. https://doi.org/10.1007/ s00253-006-0581-5

Dutton, J. R., S. Johns, and B. L. Miller, 1997 StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J. 16: 5710–5721. https://doi.org/10.1093/emboj/ 16.18.5710

Ehrlich, K., and B. Mack, 2014 Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae. Toxins (Basel) 6: 1916–1928. https://doi.org/ 10.3390/toxins6061916

Forseth, R. R., S. Amaike, D. Schwenk, K. J. Affeldt, D. Hoffmeister et al., 2012 Homologous NRPS-like gene clusters mediate redundant smallmolecule biosynthesis in Aspergillus flavus. Angew. Chem. Int. Ed. 52: 1590–1594. https://doi.org/10.1002/anie.201207456

Garzia, A., O. Etxebeste, E. Herrero-García, U. Ugalde, and E. A. Espeso, 2010 The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces *brlA* expression and asexual development in *Aspergillus nidulans*. Mol. Microbiol. **75**: 1314–1324. https://doi.org/10.1111/j.1365-2958.2010.07063.x

Gloer, J. B., 1995 Antiinsectan natural products from fungal sclerotia. Acc. Chem. Res. 28: 343–350. https://doi.org/10.1021/ar00056a004

Gloer, J. B., 1997, pp. 249–268 in "Applications of fungal ecology in the search for new bioactive natural products," in The Mycota, Ed. 1st, edited by Wicklow, D. T., and B. Soderstrom. Springer, Berlin.

Gloer, J. B., 2007 "Applications of fungal ecology in the search for new bioactive natural products," in The Mycota, Vol. IV, Ed. 2nd, edited by Kubicek, C. P., and I. S. Druzhinina. Springer-Verlag, New York, NY.

Horn, B. W., G. Geromy, M. Carbone, and I. Carbone, 2009 Sexual reproduction in Aspergillus flavus. Mycologia 101: 423–429. https://doi.org/ 10.3852/09-011

Horn, B. W., R. B. Sorensen, M. C. Lamb, V. S. Sobolev, R. A. Olarte *et al.*, 2014 Sexual reproduction in *Aspergillus flavus* sclerotia naturally produced in corn. Phytopathology 104: 75–85. https://doi.org/10.1094/ PHYTO-05-13-0129-R

de Jonge, R., M. D. Bolton, and B. P. Thomma, 2011 How filamentous pathogens co-opt plants: The ins and outs of fungal effectors. Curr. Opin. Plant Biol. 14: 400–406. https://doi.org/10.1016/j.pbi.2011.03.005

Kale, S. D., and B. M. Tyler, 2011 Entry of oomycete and fungal effectors into plant and animal host cells. Cell. Microbiol. 13: 1839–1848. https://doi.org/10.1111/j.1462-5822.2011.01659.x

Kato, N., W. Brooks, and A. M. Calvo, 2003 The expression of sterigmatocystin and penicillin genes in *Aspergillus nidulans* Is controlled by *veA*, a gene required for sexual development. Eukaryot. Cell 2: 1178–1186. https://doi.org/10.1128/EC.2.6.1178-1186.2003

Kim, D., B. Langmead, and S. L. Salzberg, 2015 HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12: 357–360. https://doi.org/10.1038/nmeth.3317 Korani, W., Y. Chu, C. C. Holbrook, and P. Ozias-Akins, 2018 Insight into genes regulating postharvest aflatoxin contamination of tetraploid peanut from transcriptional profiling. Genetics. 209:143–56. Epub 2018/03/17. doi: https://doi.org/10.1534/genetics.118.300478

Krijgsheld, P, R. Bleichrodt, G. J. van Veluw, F. Wang, W. H. Müller et al.,
2013 Development in Aspergillus. Stud Mycol. 74: 1–29. pmid:23450714

Kwon, N., A. Garzia, E. A. Espeso, U. Ugalde, and J. Yu, 2010 FlbC is a putative nuclear C2H2 transcription factor regulating development in *Aspergillus nidulans*. Mol. Microbiol. 77: 1203–1219. https://doi.org/ 10.1111/j.1365-2958.2010.07282.x

Langfelder, P., and S. Horvath, 2008 WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9: 559. https://doi.org/ 10.1186/1471-2105-9-559

Langmead, B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359. https://doi.org/10.1038/nmeth.1923

Liao, Y., G. K. Smyth, and W. Shi, 2013 FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923–930. https://doi.org/10.1093/bioinformatics/btt656

Lind, A. L., J. H. Wisecaver, T. D. Smith, X. Feng, A. M. Calvo *et al.*, 2015 Examining the evolution of the regulatory circuit controlling secondary metabolism and development in the fungal genus *Aspergillus*. PLoS Genet. 11: e1005096. https://doi.org/10.1371/journal. pgen.1005096

Lohmar, J. M., P. Y. Harris-Coward, J. W. Cary, S. Dhingra, and A. M. Calvo, 2016 RtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in *Aspergillus flavus*. Appl. Microbiol. Biotechnol. 100: 5029–5041. https://doi.org/10.1007/s00253-016-7418-7

Meinken, J., D. K. Asch, K. A. Neizer-Ashun, G. Chang, Jr., and X. J. Min, 2014 FunSecKB2: A fungal protein subcellular location knowledgebase. Computational Molecular Biology, 4: 1–17. https://doi.org/10.5376/ cmb.2014.04.0007

Nicholson, M. J., A. Koulman, B. J. Monahan, B. L. Pritchard, G. A. Payne et al., 2009 Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of *Penicillium paxilli* to elucidate their function. Appl. Environ. Microbiol. 75: 7469–7481. https://doi. org/10.1128/AEM.02146-08

Nierman, W. C., J. Yu, N. D. Fedorova-Abrams, L. Losada, T. E. Cleveland et al., 2015 Genome sequence of Aspergillus flavus NRRL 3357, a strain that causes aflatoxin contamination of food and feed. Genome Announc. 3: e00168-15. https://doi.org/10.1128/genomeA.00168-15

Park, J., J. Park, S. Jang, S. Kim, S. Kong et al., 2008 FTFD: An informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics 24: 1024–1025. https://doi.org/10.1093/bioinformatics/ btn058

Lo Presti, L., G. Lanver, S. Schweizer, L. Tanaka, L. Liang *et al.*, 2015 Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 66: 513–545. https://doi.org/10.1146/annurev-arplant-043014-114623

Priebe, S., C. Kreisel, F. Horn, R. Guthke, and J. Linde, 2014 FungiFun2: A comprehensive online resource for systematic analysis of gene lists from fungal species. Bioinformatics 31: 445–446. https://doi.org/10.1093/bioinformatics/btu627

Purschwitz, J., S. Müller, C. Kastner, M. Schöser, H. Haas *et al.*, 2008 Functional and physical interaction of blue- and red-light sensors in *Aspergillus nidulans*. Curr. Biol. 18: 255–259. https://doi.org/10.1016/j. cub.2008.01.061

R Core Team, 2017 R: A Language and Environment for Statistical Computing. https://www.R-project.org/

Ramirez-Prado, J. H., G. G. Moore, B. W. Horn, and I. Carbone, 2008 Characterization and population analysis of the mating-type genes in *Aspergillus flavus* and *Aspergillus parasiticus*. Fungal Genet. Biol. 45: 1292–1299. https://doi.org/10.1016/j.fgb.2008.06.007

Reeves, E. P., K. Reiber, C. Neville, O. Scheibner, K. Kavanagh et al., 2006 A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus. FEBS J. 273: 3038–3053. https://doi. org/10.1111/j.1742-4658.2006.05315.x Ritchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law et al., 2015 Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43: e47. https://doi.org/10.1093/nar/ gkv007

Robens, J., and K. Cardwell, 2003 The costs of mycotoxin management to the USA: management of aflatoxins in the United States.
J. Toxicol. Toxin Rev. 22: 139–152. https://doi.org/10.1081/ TXR-120024089

Robinson, M. D., D. J. Mccarthy, and G. K. Smyth, 2009 EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. https://doi.org/10.1093/bioinformatics/btp616

Ruger-Herreros, C., J. Rodríguez-Romero, R. Fernández-Barranco, M. Olmedo, R. Fischer *et al.*, 2011 Regulation of conidiation by light in *Aspergillus nidulans*. Genetics 188: 809–822. https://doi.org/10.1534/ genetics.111.130096

Satterlee, T., J. W. Cary, and A. M. Calvo, 2016 RmtA, a putative arginine methyltransferase, regulates secondary metabolism and development in *Aspergillus flavus*. PLoS One 11: e0155575. https://doi.org/10.1371/journal.pone.0155575

Sheppard, D. C., T. Doedt, L. Y. Chiang, H. S. Kim, D. Chen et al., 2005 The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol. Biol. Cell 16: 5866–5879. https://doi.org/10.1091/mbc.e05-07-0617

Soukup, A. A., M. Farnoodian, E. Berthier, and N. P. Keller, 2012 NosA, a transcription factor important in *Aspergillus fumigatus* stress and developmental response, rescues the germination defect of a laeA deletion. Fungal Genet. Biol. 49: 857–865. https://doi.org/10.1016/j. fgb.2012.09.005

Torrent, C., C. Gil-Durán, J. F. Rojas-Aedo, E. Medina, I. Vaca et al., 2017 Role of sfk1 gene in the filamentous fungus Penicillium roqueforti. Front. Microbiol. 8: 2424. https://doi.org/10.3389/ fmicb.2017.02424

Tsitsigiannis, D. I., T. M. Kowieski, R. Zarnowski, and N. P. Keller, 2004 Endogenous lipogenic regulators of spore balance in Aspergillus nidulans. Eukaryot. Cell 3: 1398–1411. https://doi.org/10.1128/ EC.3.6.1398-1411.2004

Vienken, K., and R. Fischer, 2006 The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in *Aspergillus nidulans*. Mol. Microbiol. 61: 544–554. https://doi.org/10.1111/j.1365-2958.2006.05257.x

Wang, T., X. He, X. Liu, Y. Liu, W. Zhang, Q. Huang et al., 2017 Weighted gene co-expression network analysis identifies FKBP11 as a key regulator in acute aortic dissection through a NF-kB dependent pathway. Frontiers in Physiology. 8:1010. doi: https://doi.org/10.3389/fphys.2017.01010

Warner, M. H., K. L. Roinick, and K. M. Arndt, 2007 Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol. Cell. Biol. 27: 6103–6115. https://doi.org/10.1128/MCB.00772-07

Wickham, H., 2009 2009 ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York.

Wicklow, D. T., 1988, pp. 173–201 in "Metabolites in the coevolution of fungal chemical defence systems," in Coevolution of Fungi with Plants and Animals, edited by Pirozynski, K. A., and D. Hawksworth. Academic Press, New York, NY.

Wu, F., Y. Liu, and D. Bhatnagar, 2008 Cost-Effectiveness Of Aflatoxin Control Methods: Economic Incentives. Toxin Rev. 27: 203–225. https://doi.org/10.1080/15569540802393690

Wu, M., M. E. Mead, S. Kim, A. Rokas, and J. Yu, 2017 WetA bridges cellular and chemical development in *Aspergillus flavus*. PLoS One 12. https://doi.org/10.1371/journal.pone.0179571

Wu, M.-Y., M. E. Mead, M.-K. Lee, E. M. Ostrem Loss, S. C. Kim *et al.*, 2018 Systematic dissection of the evolutionarily conserved WetA developmental regulator across a genus of filamentous fungi. mBio 9: e01130–18.

- Yard, E. E., J. H. Daniel, L. S. Lewis, M. E. Rybak, E. M. Paliakov et al., 2013 Human aflatoxin exposure in Kenya, 2007: A cross-sectional study. Food Additives & Contaminants: Part A 30: 1322–1331. https://doi.org/10.1080/19440049.2013.789558
- Yu, J., P. Chang, K. C. Ehrlich, J. W. Cary, D. Bhatnagar et al., 2004 Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70: 1253–1262. https://doi.org/10.1128/AEM.70.3.1253-1262.2004
- Zhao, X., J.E. Spraker, J.W. Bok, T. Velk, Z.M. He, and N.P. Keller. 2017 A cellular fusion cascade regulated by LaeA is required for sclerotial

development in Aspergillus flavus. Front Microbiol. Oct 5:1925. eCollection 2017. https://doi.org/10.3389/fmicb.2017.01925

Zhuang, Z., J. Lohmar, T. Satterlee, J. W. Cary, and A. M. Calvo, 2016 The master transcription factor *mtfA* governs aflatoxin production, morphological development and pathogenicity in the fungus Aspergillus flavus. Toxins (Basel) 8: 29. https://doi.org/ 10.3390/toxins8010029

Communicating editor: A. Rokas