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When considering external assistive systems for people with motor

impairments, gaze has been shown to be a powerful tool as it is anticipatory to

motor actions and is promising for understanding intentions of an individual

even before the action. Up until now, the vast majority of studies investigating

the coordinated eye and hand movement in a grasping task focused on single

objects manipulation without placing them in a meaningful scene. Very little

is known about the impact of the scene context on how we manipulate

objects in an interactive task. In the present study, it was investigated how

the scene context a�ects human object manipulation in a pick-and-place

task in a realistic scenario implemented in VR. During the experiment,

participants were instructed to find the target object in a room, pick it up,

and transport it to a predefined final location. Thereafter, the impact of the

scene context on di�erent stages of the task was examined using head

and hand movement, as well as eye tracking. As the main result, the scene

context had a significant e�ect on the search and transport phases, but not

on the reach phase of the task. The present work provides insights into the

development of potential supporting intention predicting systems, revealing

the dynamics of the pick-and-place task behavior once it is realized in a

realistic context-rich scenario.
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1. Introduction

Over the last several decades, the development of external assistive systems, such as

prosthetic arms and exoskeletons, received much attention due to their strong potential

to complement and improve the lives of people with sensory-motor impairments

(Lazarou et al., 2018). One of the grand challenges for these assistive means is non-

intuitive complicated mutual communication between the device and the patient, and

thus, their inability to adapt to the individual patient’s needs (Lazarou et al., 2018;

Sensinger and Dosen, 2020). The evolution of the eye-tracking technology opened a

possibility to ensure more intuitive communication between the assistive system and the

user (Shafti et al., 2019; de Brouwer et al., 2021; Subramanian et al., 2021). Developing an

intuitive algorithm that uses eye movements to support the user in object manipulation

requires the knowledge of how our eyes and hand move when grasping an object.

Several studies investigated the dynamics of object manipulation. They described the
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coordinated eye and hand movements in a grasping task for

intact people as well as people with motor disabilities (Ballard

et al., 1992; Johansson et al., 2001; Lavoie et al., 2018; Gregori

et al., 2019; de Brouwer et al., 2021). Even so, the vast majority of

the research on eye-hand interaction in a grasping task mainly

focused on single objects manipulation without placing them in

a meaningful scene (e.g., Lavoie et al., 2018; Gregori et al., 2019).

In real life, however, we perceive the world and interact with

the surrounding objects in a context-rich environment rather

than isolated objects (Võ and Wolfe, 2013; Võ, 2021). While

the existing research provides valuable information about eye

and hand movement when performing a grasp of an object and

transporting it from one location to another, it is still unclear

whether the eye and hand movement will remain in a more

realistic scene context the same. It is, therefore, essential to

investigate human object manipulation once the object is placed

into a context-rich natural setting.

The importance of contextual information in various visual

tasks has been shown in multiple studies (e.g., Chun and Jiang,

1998; Marek and Pollmann, 2020). Furthermore, the visual

search research provides strong evidence that the scene context

affects where and how often we gaze within a given scene

(Brockmole et al., 2006; Torralba et al., 2006; Võ and Wolfe,

2013; Wolfe, 2020; Võ, 2021). As such, if we are to find a

laptop in the room, we are likely to gaze mostly at the surfaces,

particularly the working table (Pereira and Castelhano, 2019; Võ,

2021). Interestingly, this holds also when the search target is not

present in the scene, underlining the predictive nature of human

search strategy (Biederman et al., 1982; Bar, 2004, 2009; Võ et al.,

2019). Scene context also has been shown to facilitate action

recognition (Wurm and Schubotz, 2017). Moreover, it has been

shown that when searching for an object, people tend to rely on

relevant anchors in the scene, that is, larger characteristic objects

which typically are associated with the target object location

(Draschkow and Võ, 2017; Võ, 2021). Until now, most of the

studies in the field have been implemented in a non-interactive

manner, where the observer had to perform a visual search task

without manipulating the target object. In real-world scenarios,

however, we often do not just observe the environment but

perceive the world in terms of affordances, i.e., opportunities

to interact with the surrounding environment (Gibson, 2014).

This interaction is tightly bound to grasping and manipulating

objects around us. In a grasping task, it is yet unknown whether

different phases of object manipulation, such as reaching the

object or transporting it from one location to another, are

affected by the scene context.

One recent study looked into the effect of the scene context

consistency on interaction with objects, where participants

had to construct environments from a set of virtual objects

either in agreement with their semantic expectations or against

them (Draschkow and Võ, 2017). Among other results, the

authors showed an increased grasping time of the object when

it did not match the scene context. A possible explanation

for this effect is increased decision time on where to put

the object when it doesn’t fit the scene context. There are

countless possible locations in contrast to limited locations when

the object is congruent with the scene context. Furthermore,

previous studies demonstrated that reaching an object before

grasping it can be affected by various factors. As an example,

motor inhibition when approaching dangerous objects has been

shown due to the emergence of aversive affordances (Mustile

et al., 2021). These studies provide evidence that the way we

look at and grasp objects around us might differ depending

on the meaning of that object and the semantic context they

are placed.

In daily life, we often are confronted with a combination of a

visual search task and subsequent grasping of an object, such as

when we are looking for the keys before leaving the house. How

is the behavior in such a scenario affected by the scene context?

Would there be a difference when the object fits or doesn’t fit

the scene context or when there is no context at all? In the

present study, we addressed object manipulation in a pick-and-

place task when performing it in a context-rich environment

and when no meaningful context is present. In particular, the

present study is intended to investigate whether the scene

context primarily impacts only the searching, as is suggested

in the visual search literature where the object is searched

longer if it is incongruent with the scene context compared to

when it fits the scene. Alternatively, when the object does not

match the scene context, does it take people longer to reach or

transport it in addition to a more prolonged search? Moreover,

consider comparing scenarios where the target object is placed

in a semantically congruent context against the case when the

object is isolated, i.e., in a context-poor environment. Would the

presence of additional visual stimuli and possible obstacles in

the context-rich environment serve as a distractor and lead to a

more prolonged search and further interactions with the object

even when the object matches the context, or would the scene

context facilitate the search and object manipulation? To answer

these questions and advance in understanding how humans

manipulate objects in realistic scenes, it is vital to systematically

address the effect of the scene context on different phases of our

interaction with objects.

When studying interactive object manipulation, it is

important to develop the paradigm realistically. Specifically,

unconstrained head and hand movement and free eye

movement are essential for natural behavior. The rapid

development of modern technologies such as Virtual Reality

(VR) and VR eye-tracking enabled researchers to study human

interaction with the surrounding environment in more realistic

3D settings (Boettcher et al., 2018; Olk et al., 2018). Furthermore,

VR provides a possibility to simulate various real-world

scenarios in a yet controlled laboratory environment at an

efficient cost. To explore the interactive domain of object

manipulation, it is thus, convenient to develop the experimental

paradigm in VR. When studying grasping using VR, it can be,
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however, challenging to reproduce natural grasping behavior in

a virtual scene due to the mismatch of the visual response and

lack of haptic feedback (Levin et al., 2015; Furmanek et al., 2019).

In VR experiments, typically, the interaction with the virtual

environment is realized via controllers instead of a real hand

(e.g., Draschkow and Võ, 2017), where depending on the virtual

hand representation, differences in handmovement between the

real and virtual settings might emerge (Viau et al., 2004; Cai

et al., 2021). Nonetheless, recent studies demonstrated that a

virtual representation of a hand-looking object when interacting

in VR could be a reasonable approach to the imitation of a

realistic grasping as it enables the strongest sense of ownership

(Lougiakis et al., 2020; Cai et al., 2021; Lavoie and Chapman,

2021). The realism can be enhanced when showing grasping an

object by presenting a grasping hand pose holding the object

(Tian et al., 2019; Lavoie and Chapman, 2021). Combining these

findings with the advantages of VR for the experimental design

mentioned above, in the present study, we chose VR as the tool

to study object manipulation, where a virtual glove represented

the hand, and respective grasping poses were generated.

The current study investigated the effect of the scene context

on human object manipulation in an interactive task in a realistic

scenario. Using the head and hand movement, as well as eye-

tracking, the impact of the scene context on different stages of a

pick-and-place task was examined. Specifically, pick-and-place

task performance was evaluated while placing the objects of

interest into typical everyday visual scenes implemented in VR.

2. Materials and methods

2.1. Participants

Thirteen naïve participants (5 female and 8 male), with

normal or corrected to normal vision were tested. Participants

were aged between 19 and 31 years old. No formal power analysis

for the sample size calculation was performed. All procedures

conformed to Standard 8 of the American Psychological

Association’s “Ethical Principles of Psychologists and Code

of Conduct (2010)”. The study was approved by the ethics

committee of the Faculty of Medicine at the University of

Tübingen with a corresponding ethical approval identification

code 986/2020BO2. Signed informed consent was obtained from

each participant before the measurements. All data were stored

and analyzed in full compliance with the principles of the Data

Protection Act GDPR 2016/679 of the European Union.

2.2. Experimental setup

2.2.1. Hardware specifications

The visual content was displayed to the participants using

HTC Vive Pro Eye (HTC Corporation, Taoyuan, Taiwan) virtual

FIGURE 1

Schematic representation of the experimental setup. The visual

scenes were displayed using HTC Vive Pro Eye virtual reality

headset. The position and rotation of the headset and the

controller were tracked via four HTC base stations 2.0 paced in

the four corners of the working space. The interaction with the

environment was realized using the HTC controller held in the

right hand of the participant. The colored axes represent Unity

left-hand coordinate system. For details, see the main text.

reality headset running on a Windows 10 PC with NVIDIA

GeForce GTX 1070 graphics card (NVIDIA Corporation, Santa

Clara, California, USA). The field of view of the headset and the

refresh rate reported by the manufacturer are 110◦ and 90Hz,

respectively. The participant interacted with the environment

via the HTC Vive controller held in the right hand of the person.

The position and rotation of the headset and the controller were

tracked via four HTC base stations 2.0. The complete size of

the tracked area was approximately three by three meters. The

eye-tracking data were collected using the built-in eye tracker at

a frequency of 120Hz. During the experiment, the participant

was in a standing position and could freely move within the

working space. The experimental setup is schematically shown

in Figure 1.

2.2.2. Software specifications

The experimental paradigm was generated using the

Unity Game engine (Unity Technologies, 2019), Unity version

2019.4.0.f1. The eye movement data were collected using

Unity package SRanipal version 1.3.3.0. Recording of the eye

movement data at a maximum sampling rate 120Hz was

realized by using a separate thread parallel to the main

script execution. The data analysis was performed using

Python 3.6 packages NumPy (Van Der Walt et al., 2011)

version 1.19.1, SciPy (Virtanen et al., 2020) version 1.5.2
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and Pandas (McKinney, 2010) version 1.1.3. The statistical

analysis was conducted using R version 3.6.1, in particular,

package nlme (Pinheiro et al., 2022). The data visualization

was performed using Python packages Matplotlib (Hunter,

2007) version 3.3.1 and Seaborn (Waskom et al., 2017)

version 0.11.0.

2.3. Virtual environment and stimuli

2.3.1. Realistic man-made VR scenes

The virtual environment was composed of realistic man-

made indoor scenes. Specifically, three different habitual scene

contexts were selected: kitchen, bathroom, and office. These

contexts are commonly met in daily life and were previously

used in the scene guidance literature (e.g., Wurm and Schubotz,

2017; Boettcher et al., 2018; Beitner et al., 2021). Two different

variations of each scene context were designed, resulting in six

distinct context-rich scenes. The two variations of each context

were introduced to maintain the variety of the environments

and unique configuration of each trial. One requirement for the

scenes was an equal set of anchors (see Section 2.3.3). That is,

there was a computer in each office, a microwave in each kitchen,

and a sink in each bathroom. Otherwise, the room design was

arbitrary. The complete set of implemented scenes can be found

in Supplementary material.

Furthermore, six empty virtual rooms were created with no

scene context present: the rooms only contained a set of shelves

replicating the spatial configurations of each of the context-rich

environments, respectively. Doing so, the “empty” experimental

condition was implemented (for details, see Section 2.4.3). The

size of the scenes was set to two by three meters. An example of

one scene and its empty match is shown in Figure 2. All context-

rich scenes were created using a set of open-source 3D assets.

The complete set of implemented “empty” scenes can also be

found in Supplementary material.

2.3.2. Target objects and distractors

To maximally separate the scene context effect from

such biases as the size or the shape of the object, and for

comparability, we chose to use cubes with images projected

on their faces instead of actual virtual objects. This way, it

was intended that the participants focus more on the semantic

meaning of the objects. Moreover, there is a practical advantage

to using a cubic shape for a more accurate gaze evaluation. In

particular, in Unity, the gaze point is detected on the object

once the gaze ray hits the collider around that object (see more

details in Section 2.5.3). Therefore, the collider should ideally

have the same shape as the object to avoid a mismatch between

detected and actual gaze points. Creating complexmesh colliders

for different VR objects is a tedious task and slows down the

FIGURE 2

The top view of one of the designed VR scenes; (A) context-rich

scene, here: o�ce; (B) empty scene matching the spatial

configuration of the respective context-rich scene. The size of

the rooms was set to two by three meters. Note, the scenes are

shown without the end location which was represented by a

column 92cm of height, and was always in the center of each

room. The complete set of six implemented scenes and their

respective empty equivalents can be found in

Supplementary material.

display of the visual content in the VR headset. On the other

hand, the cubic shape is one of the basic collider shapes in Unity

and can be efficiently used.

A set of target objects was generated, where each object was

represented by a cube with an image projection on its faces.

The size of the cubes was set to 0.084Unity-meters. For each

scene context, a set of seven images was used, resulting in a

total of 21 objects. All images were selected and adjusted from

different open-source pictures on the Internet. The grayscale of

the images was selected to avoid a pop-out effect due to the color-

based saliency of some images compared to others. In Figure 3A,

an example of the target object is shown. For the objects, we

chose the cubic shape instead of arbitrary shapes of actual 3D

objects to universalize the target objects across trials and make

them comparable. Specifically, the homogeneous shape ensures

no size or shape bias when estimating gaze locations on the

target object. Furthermore, for the gaze evaluation, the cubic

form allows a more accurate estimation of the gaze point on the

object in Unity due to the simplicity of the box collider around

the object.

Similarly, a set of distractors was generated for each scene

context. The distractors were designed in the samemanner as the

target objects: grayscale images projected on the facets of cubes.

The target-object-alike distractors were introduced to ensure the

relative complexity of the task and prevent the participant from

searching for the only cube existing in the scene. For each scene

context, a set of 10 open-source images was used, resulting in a

total of 10 distractors per scene. An example of a distractor is

illustrated in Figure 3B.
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FIGURE 3

An example of (A) target object and (B) distractor used in the

experiment. The objects were represented by grayscale images

projected on the cube facets. The size of the cubes was set to

0.084Unity-meters. Here, both the target object and the

distractor, belong to the same scene context: o�ce. For details,

see Section 2.3.2.

2.3.3. Anchors

For each of the context-rich scenes, a set of anchors was

selected. Although there have been recent attempts to formally

define anchors (Boettcher et al., 2018), up until now, no

validated database was developed. Therefore, in the present

study, the anchors were selected arbitrarily following an intuitive

description: an anchor is considered to be a static larger object

which is typically not easily moved with one hand (Võ, 2021).

The complete set of the anchors and their respective target

objects can be found in Supplementary material.

The predefined position for each target object was set to

a location in the proximity of its anchor, where depending on

the anchor, the object could appear either next to or on top of

it. As such, a toothbrush would appear next to the sink in the

bathroom, whereas a pan would be placed on top of the kitchen

stove in the kitchen.

2.4. Experimental procedure

2.4.1. General procedure

In each trial, the participant’s task was to find a specific

object, pick it up using the controller, and transport the object to

the final predefined location. The VR controller was represented

by a SteamVR virtual glove. Note that a grasping pose for each

object was designed and generated in advance and shown to

the participant upon grasping a virtual object. In other words,

the virtual hand did not disappear when the participant pressed

the trigger to grasp the object but instead was still visible in a

grasping pose (see Figure 4). The end location was represented

by a column 92 cm of height and was always in the center

of every room. The time of each trial was not limited, and

participants were asked to perform the task at a normal pace.

The participant was shown a gray background between each trial

where the target object for the upcoming trial was displayed.

FIGURE 4

An example of a VR scene from the participant’s perspective.

The cubic grayscale objects are the distractors and the target

object. In the lower central part of the image, a part of the end

location is shown, which was represented by a column in the

center of the room. The controller was represented by a virtual

SteamVR glove. Note, that a grasping pose for each object was

designed and generated and shown to the participant upon

grasping a virtual object. For more details, see the main text.

The participant was requested to start each trial from a specific

position in the room indicated by a round target which switched

its color from blue to green once the participant was inside the

target. To start the trial, the participant pressed a button on

the controller. Thereafter, a small pause of 1 s was introduced

where the participant was asked to gaze at a fixation target on

the gray background before the virtual room appeared. Doing

so ensured that all participants started the scene exploration

initially, gazing in the same direction. Once the virtual room

appeared, participants performed the task. After placing the

target object in the final location, the trial was finished upon a

button press, followed by the subsequent trial.

In Figure 4, an example of the scene view from the

participant’s perspective is shown.

2.4.2. Training session and main experiment

During the experimental session, participants performed the

training session followed by the main experiment. A short 3-to-

5-min break was introduced between the two sessions, during

which participants removed the VR headset and rested. At the

beginning of each session, the eye tracker calibration procedure

was performed. First, participants completed a training session.

During 32 trials, participants executed the task. During the

training session, in contrast to the main experiment, the set

of target objects was compiled by images of objects typically

found outdoors (e.g., a traffic lights, a park bench). However,

the virtual rooms were identical to those in the main experiment

(kitchens, bathrooms, offices, and empty rooms with shelves).

The goal of the training session was for the participants to

get familiar with the environments and become acquainted

with the dynamics of the trials, picking up and transporting

virtual objects and switching between the trials. After a break,

participants proceeded to the main experiment. The procedure
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was identical to the training phase, except the target objects were

context-dependent.

Each trial was unique in terms of the combination of

a specific room type and a target object. In doing so, we

intended to prevent learning of specific spatial configurations.

The total amount of trials was then composed of seven unique

target objects for each of three scene contexts designed in

two variations and used in three experimental conditions (see

Section 2.4.3). This resulted in a total of 126 trials for each

participant. The order of trials was randomized, where all trials,

including the training session, were performed within one 1-

h appointment.

2.4.3. Experimental conditions

To evaluate the impact of the scene context on the

performance of the task, three experimental conditions were

implemented. In the “congruent” condition, the target object

matched the scene context (e.g., a toothbrush in a bathroom).

In the “incongruent” condition, the object did not fit the scene

context (e.g., a toothbrush in a kitchen). Specifically, the objects

belonging to the remaining two contexts were randomly selected

to form the incongruent condition. Finally, in the “empty”

condition, no scene context was present.

Each room had a set of specific locations where the

target object could appear. The possible locations were always

on top of surfaces. The locations were determined by the

proximity of each target object to its corresponding anchor (see

Section 2.3.3). In the incongruent condition, the set of possible

target locations was identical to that in the congruent condition,

where throughout the trials each of the seven potential locations

was occupied by one of the objects that did not belong to the

context. Finally, in the empty condition, the configurations of

the target objects, the distractors, and the virtual rooms were the

same as those in the context-rich environments. This way, the

possible spatial locations of the target objects were replicated in

each of the three conditions, enabling the comparison across the

conditions. In each trial, only one of the possible target objects

was present.

Besides the target object, each room included a set of 10

distractors, which were located in specific positions in the

context-rich and empty environments (Section 2.3.2).

2.5. Analysis

2.5.1. Eye movements data pre-processing

To evaluate the task performance, first, the eye movement

data were analyzed and fixations were detected. The eye

movement data were recorded at a frequency 120Hz. The

gaze position data was accessed using a customized written

Unity script utilizing the HTC SRanipal SDK package functions.

The eye data processing flow was adapted from our previous

TABLE 1 Main eye- and head-movement-related raw variables

recorded during the experiment.

Variable Units Meaning

Time stamp An integer number The time in ms at the moment of sample

recording.

Eye data

validity bit

mask

An integer from 0

to 31

Represents the validity of the data. A

value of 31 indicates the highest validity

of the recorded data. This parameter is

used to filter the raw data where the eye

tracker lost the pupil, including filtering

blinks.

Gaze

normalized

direction

vector

A three-coordinates

vector (x, y, z) with

each coordinate

ranging from−1 to

1

A gaze vector indicating the direction of

gaze in the headset right-hand

coordinate system.

Head rotation A rotation

quaternion (x, y, z,

w) of head

A quaternion describing the rotation of

the headset in Unity world coordinates.

work (Lukashova-Sanz and Wahl, 2021). In Table 1 the main,

recorded variables are described. All variables were recorded for

left and right eyes.

To prepare the data for further processing, first, similar to

(Imaoka et al., 2020), the raw data were filtered based on the eye

data validity bitmask value, which represents the bits containing

all validity for the current frame. After the filtering, only the data

where the eye data validity bit mask had value 31 for both eyes

Table 1, were selected. Doing so, the data where the eye tracker

partly or completely lost the pupil (including blinks) was filtered

out. Next, for subsequent fixation detection (see Section 2.5.2),

the gaze position was calculated in spherical coordinates. In

particular, the polar φ and azimuthal θ angles were computed

using Equations (1) and (2). In Unity, the z-axis corresponds to

the depth dimension.

φ = arctan
x

z
, (1)

θ = arctan2 (y,
√

x2 + z2), (2)

where (x, y, z) are coordinates of normalized gaze directional

vector in headset coordinates. Note that SRanipal returns the

gaze direction vector in the right-handed coordinate system. To

convert the coordinates inUnity world coordinate system, which

is a left-hand coordinate system, the x-coordinate wasmultiplied

by −1. To compute the gaze position in Unity world coordinate

system, the gaze position in the headset coordinate system was

multiplied by the head rotation quaternion.
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FIGURE 5

Eye movement data processing algorithm. For details, see

Section 2.5.2.

2.5.2. Fixation detection algorithm — I-VT

Fixations were identified using velocity threshold algorithm

for fixation identification (I-VT) (Salvucci and Goldberg, 2000).

The algorithm was implemented following the description

in (Kübler, 2020) and (Olsen, 2012). The gaze velocity v

was computed in ◦/s between each two consecutive samples

(Equation 3).

v =

√

(φi − φi−1)2 + (θi − θi−1)2

ti − ti−1
, (3)

where (φi, θi) and (φi−1, θi−1) are consecutive gaze positions

in degrees of visual angle in headset coordinates, and ti and

ti−1 are respective time stamps. To reduce the noise level of

the data, a running average filter was applied with the window

size of five samples, which is ∼ 40ms. An eye movement was

considered to be a fixation if the gaze velocity did not exceed

a threshold of 60 ◦/s (Leube et al., 2017). Two fixations were

merged in a single fixation if the time between them was under

75ms (Komogortsev et al., 2010), and the angular distance

was under 1◦ (Over et al., 2007; Komogortsev et al., 2010).

Too short fixations with a duration under 60ms were filtered

out (Over et al., 2007; Komogortsev et al., 2010). In Figure 5

the eye movement data processing algorithm is summarized in

a flow chart.

2.5.3. Determining gaze position on a virtual
object

To determine the gaze position on the virtual object, a hit

point of the gaze ray and the 3D object collider were recorded

for each frame. Using this approach, Unity returns a set of three

coordinates of a specific spatial point on the collider surface

which was crossed by the gaze ray. Furthermore, the name of the

hit collider was continuously recorded. Doing so, it was tracked

which object was gazed at, in which frame, and for how long.

2.5.4. Task phases: search, reach, and transport

In each trial, the data was segmented into three phases: the

search phase, the reach phase, and the transport phase.

The search phase is the period of time between the beginning

of the trial and the first fixation on the target object. The first

fixation on the object was defined as the first fixation during

which the object collider was hit by the gaze ray. The reach phase

was defined as the period of time between the first fixation on the

target object and the moment of picking up the object, which is

determined by the virtual hand attachment to the target object.

Finally, the transport phase is the period of time starting from

picking up the object until releasing it from the virtual hand

when placing the object to the final location.

In Figure 6, an example of velocities for one participant

in a single trial is shown. Different curves represent velocities

of the head, the hand, the target object, and the end target

location. The colored areas correspond to the search, reach, and

transport phases.

2.5.5. Behavioral metrics

As mentioned in Section 2.2.2, the statistical analysis was

conducted using R version 3.6.1, in particular, package nlme

(Pinheiro et al., 2022). As described in Section 2.4.2, a diverse

range of the target objects was used for the experiment, where

each trial was unique in terms of the combination of the

target object and the corresponding scene. The models did not

consider the specific objects or the scenes as an additional factor

due to very limited amount of trials for each particular object

and scene. The temporal data was normalized using log function,

whereas the proportional data was not normalized. All models

were fitted using REML (reducedmaximum likelihood) method.

Each dependent variable was fitted with a separate model. No

multiple comparison correction was performed. More details on

specific linear mixed models for each variable can be found in

Supplementary material.

Task duration

To evaluate the impact of the scene context on task

performance, first, the task duration was evaluated. The effect

of the scene context was estimated by fitting a linear mixed

model to the data, where task duration is a dependent variable,

condition is a fixed effect, and participant is a random factor.

Search, reach, and transport duration

Next, the duration of different task phases: search, reach,

and transport, was examined and compared across different

experimental conditions. The impact of the scene context was
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FIGURE 6

An example of velocities as a function of the trial duration for one participant in one trial: di�erent curves represent the head, the hand, the

target object, and the end target, respectively. The colored sectors correspond to the search (blue), reach (yellow), and transport (green) phases.

In this example, the task was completed in approximately 7 s.

estimated by fitting linear mixed models to the data, fitting a

separate model for each of the metrics, where search duration,

reach duration, and transport duration are dependent variables,

condition is a fixed effect, and participant is a random factor.

For the search phase, it is important to mention, that the

search time is naturally expected to depend on the initial gaze-

object distance at the beginning of the trial. In such, if the target

object was originally behind the participant upon the trial start,

it is likely to take longer to find it, compared to when the object

was initially in front of the participant. Therefore, for the search

duration, the initial gaze-object distance was set as an additional

fixed factor.

Scene coverage

Another parameter that is expected to be affected by the

scene context is scene coverage – a common metric indicating

the proportion of an area covered during the trial. To compute

the scene coverage in each trial, first, a 2D histogram of gaze

points was plotted for the scene where the whole span of 360 ◦va

and 180 ◦va in horizontal and vertical directions, respectively,

was considered. The size of the histogram bins was set to 2 ◦va

which approximately corresponds to the eye tracker accuracy.

The histogram was then transformed into a binary image, with

black pixels representing the area in which some gaze points

fell. Finally, the scene coverage was computed as the proportion

of the black pixels to the total amount of pixels of the scene.

Similarly to the task and search duration, the impact of scene

context was estimated by fitting the linear mixed models to the

data, where scene coverage is the dependent variable, condition is

a fixed effect, and participant is a random factor.

Proportion of gaze on target object and anchor

The proportion of gaze on target object was defined as the

proportion of the number of frames gazing on the target object

out of the total amount of recorded frames of the trial. In

line with other metrics, this parameter indicated whether the

scene context facilitated the task performance, which would be

implicitly demonstrated by a larger proportion of gaze on the

target object.

The proportion of gaze on the anchor was computed

similarly as the proportion of the number of frames gazing

on the anchor relative to the total number of frames in

the trial. Note, that this metric was computed only for the

context-rich conditions as in the empty condition no context

and, therefore, no anchors were present. Furthermore, in the

congruent condition, the anchor was relevant to the target

object, whereas in the incongruent condition, even though in the

same spatial configuration, semantically it was irrelevant. This

metric enabled an implicit evaluation of the context facilitation,

namely, a larger proportion of gaze on the anchor would

demonstrate the importance of the relevant anchor for the

task performance.

For both metrics, the impact of the scene context was

evaluated by fitting the linear mixed models to the data, where

a separate model was fitted to each metric. In the model, the

proportion of gaze on object and anchor are dependent variables,

condition is a fixed effect, and participant is a random factor.

Note, that due to the realistic nature of the scenes, the anchors

varied in size as well as in their relative position to the target

object (see Section 4.4).
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FIGURE 7

Mean task duration across all trials for all measured participants.

Each bar corresponds to a separate experimental condition. The

error bars indicate confidence intervals of 95% computed using

bootstrapping (see main text). The individual points correspond

to the mean value for each individual subject. The di�erence

between the congruent and incongruent conditions was

significant with p < 0.001. The di�erence between the

congruent and empty conditions was not significant.

Anchor-object transition

Finally, the anchor-object transition was evaluated. The

anchor-object transition is the time between the first fixation on

the anchor and the first fixation on the target object. A positive

value corresponds to when the anchor was fixated before the

target object, whereas negative values show that the target object

was fixated before the anchor. A shorter anchor-object transition

would indicate the importance of the anchor. Note, that this

metric was computed only for the context-rich conditions, as

in the empty condition, no anchor was present. A linear mixed

model was fitted to the data with anchor-object transition as

dependent variable, condition as fixed effect, and participant as

random factor.

3. Results

In this section, we report the mean values of each variable

of interest together with their standard deviation. Using the

nlme package (Pinheiro et al., 2022), the model output summary

returns the fixed effects estimates, their approximate standard

errors, the denominator degrees of freedom, the ratios between

the estimates and their standard errors, and the associated p-

values from a t-distribution. In the present work, the significance

of the scene context effect on various dependent variables was

evaluated based on the computed p-values returned in the

output of the respective models. The output of each model can

be found in the Supplementary material.

During a few trials, the connection between Unity and the

headset was lost. After the data curing, for each participant, a

total of maximum four trials was excluded from further analysis.

Most of the variables are visualized as bar plots with an

overlay of individual subject values. The error bars correspond

to the 95% confidence intervals. The default Seaborn (Waskom

et al., 2017) setting was used to compute the confidence

intervals, namely, through bootstrapping by sampling 1000

samples uniformly with replacement from the original data.

3.1. Task duration

In Figure 7, the mean task duration estimated across all

participants is shown. The mean values of the task duration

were 7433 ± 2820, 8395 ± 3822, and 7487 ± 2767ms for the

congruent, incongruent, and empty conditions, respectively.

From linear mixed model analysis, over the course of all trials,

a significant effect of condition was found with p < 0.001.

The difference between the congruent and empty conditions was

not significant.

3.2. Search, reach, and transport duration

In Figure 8A, the mean search phase duration across all

participants is shown. The mean values of the search duration

were 4232 ± 2266, 5073 ± 3040, and 4499 ± 2377ms for the

congruent, incongruent, and empty conditions, respectively.

From linear mixed model analysis, over the course of all trials,

a significant effect of condition was found with p < 0.001.

Figure 8B demonstrates the search duration as a function of

the initial gaze-object distance. As expected, there was found a

significant effect of the initial distance, with p < 0.001 which is

indicated by a positive slope of the linear fit for all the conditions.

The difference between the congruent and empty conditions was

not significant.

Figures 9A,B show the reach and transport duration across

all trials for all measured participants. For the reach phase,

no significant effect of the context condition was found. For

the transport phase, the duration in the empty condition was

significantly shorter than in the congruent condition with p <

0.01. The mean values for the reach phase duration were 1992±

1367, 2140 ± 1744, and 1895 ± 1046ms for the congruent,

incongruent, and empty conditions, respectively. The mean

values for the transport phase duration were 1753± 657, 1666±

1057, and 1578 ± 475ms for the congruent, incongruent, and

empty conditions, respectively.

3.3. Scene coverage

In Figure 10, the mean scene coverage across all trials for all

participants is shown. The mean values of the scene coverage

were 0.022 ± 0.010, 0.026 ± 0.014, and 0.023 ± 0.012 for

the congruent, incongruent, and empty conditions, respectively.
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FIGURE 8

(A) Mean search duration across all trials for all measured participants. Each bar corresponds to a separate experimental condition. The error

bars indicate confidence intervals of 95% computed using bootstrapping (see main text). The individual points correspond to the mean value for

each individual participant. The di�erence between the congruent and incongruent conditions was significant with p < 0.001. The di�erence

between the congruent and empty conditions was not significant. (B) Mean search duration as a function of the initial gaze-object distance,

defined as the distance between the looked at point and the target fixation at the beginning of the trial. The straight lines are linear fits to the

data. The e�ect of the initial gaze-object distance was significant with p < 0.001.

From linear mixed model analysis, over the course of all trials,

a significant effect of condition was found with p < 0.001.

The difference between the congruent and empty conditions was

not significant.

3.4. Proportion of gaze on target object
and anchor

In Figure 11, the proportion of gazing on the target

object and the relevant anchor averaged over all participants

is shown. Note, that Figure 11B demonstrates data only for

the two context-rich conditions as in the empty condition

no context and, thus, no anchor was present. The mean

values of the proportion of gazing on the target object

were 0.31±0.11, 0.29±0.11, and 0.30±0.10 for the congruent,

incongruent, and empty conditions, respectively. The mean

values of the proportion of gazing on the relevant anchor were

0.10±0.07, and 0.09±0.06 for the congruent, and incongruent

conditions, respectively.

From linear mixed model analysis, over the course of all

trials, a significant effect of condition for the proportion of

gazing on the target object with a significant difference between
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FIGURE 9

Mean duration of the (A) reach phase, and (B) transport phase

across all trials for all measured participants. Each bar

corresponds to a separate experimental condition. The error

bars indicate confidence intervals of 95% computed using

bootstrapping (see main text). The individual points correspond

to the mean value for each individual participant. For the reach

phase, the e�ect of condition was not significant. For the

transport phase, the di�erence between the congruent and

empty conditions was significant with p < 0.01, whereas no

significant di�erence was found between the congruent and

incongruent conditions.

the congruent and incongruent conditions with p < 0.01

was found. The difference between the congruent and empty

conditions was not significant. Moreover, a significant effect of

the context condition was found for the proportion of gazing on

the relevant anchor with p < 0.05.

3.5. Anchor-object transition

Figure 12 shows the anchor-object transition represented by

boxen (letter-value) plots. For a large data set, this advanced

boxplot type offers an advantage for visualizing the data

distribution as it prevents a visual overload by the outliers. For

more details on the boxen plots see Seaborn documentation

(Waskom et al., 2017). The mean values across all participants

with the respective confidence intervals, as well as the individual

FIGURE 10

Mean scene coverage across all trials for all measured

participants. The variable is computed as a proportion, thus,

ranges between 0 and 1. Each bar corresponds to a separate

experimental condition. The error bars indicate confidence

intervals of 95% computed using bootstrapping (see main text).

The individual points correspond to the mean value for each

individual participant. The di�erence between the congruent

and incongruent conditions was significant with p < 0.001. The

di�erence between the congruent and empty conditions was

not significant.

average values for each participant are shown in the inset plot in

Figure 12.

Note, that the positive values indicate that the object was

gazed at after the anchor, whereas the negative values correspond

to the case when the object was gazed at before the anchor.

Furthermore, the data is shown only for the context-rich

conditions, as in the empty condition no anchor was present.

From linear mixed model analysis, over the course of all trials,

a significant difference between the congruent and incongruent

conditions was found with p < 0.05.

4. Discussion

Only a few studies looked into the scene context impact on

human behavior in an interactive task until now. The present

study investigated how the scene context affects human object

manipulation in a pick-and-place task in a realistic scenario.

This study examined whether object manipulation in an isolated

setting differs once the object of interest is brought into a scene

context. Using a psychophysics approach implemented in a

VR environment, we evaluated behavior during three phases:

the search, the reaching and picking of the object, and then

transporting it to a predefined final location. Specifically, the

performance was evaluated in three different conditions: when

the object matched the scene context, when it did not fit the

context, and when no context was present.

Overall, the experimental paradigm captured well an

interactive task in a realistic 3D environment. The possibility
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FIGURE 11

The proportion of gazing on the (A) target object and (B)

relevant anchor across all trials, averaged over all measured

participants. Each bar corresponds to a separate experimental

condition. The error bars indicate confidence intervals of 95%

computed using bootstrapping (see main text). The individual

points correspond to the mean value for each individual

participant. The di�erence in (A) between the congruent and

incongruent conditions was significant with p < 0.01, whereas

no significant di�erence was found between the congruent and

empty conditions. Note, that in (B) the proportion of gazing on

the relevant anchor is shown only for the context-rich

conditions as in the empty condition no anchor was present.

There was a significant di�erence for the proportion of gazing

on the relevant anchor with p < 0.05.

of freely moving head and gaze, as well as unconfined

hand movement, brought the controlled experimental setting

closer to a real-life scenario compared to traditional screen-

based paradigms.

4.1. Task duration, search duration, scene
coverage

The significant increase of almost a second, which was

found for the task duration in the incongruent condition

compared to the congruent condition, shows general facilitation

FIGURE 12

Mean anchor-object transition across all trials for all measured

participants represented by boxen plots. The black diamond

markers correspond to the outliers. For more details on the

boxen plot structure see main text. The inset in the upper right

location demonstrates the mean values with the respective 95%

confidence intervals computed using bootstrapping (see main

text). The gray individual points in the inset plot correspond to

the mean value for each individual subject. The axes labels of

the inset plot are identical to those of the main plot. There was a

significant di�erence between the congruent and incongruent

conditions with p < 0.05.

of the task performance by the scene context, which is also

apparent from previous studies (Biederman et al., 1982; Võ and

Wolfe, 2013). In particular, the performance improvement in

the present study was caused mainly by the search duration

difference, indicated by a significantly longer search time for

the incongruent condition. These results are in line with the

previous research on the impact of the scene context on visual

search (Boettcher et al., 2018; Võ, 2021). Likewise, the eye

movement data examination showed a corresponding increase

in the proportion of the scene covered by the gaze for the

incongruent condition, indicating that when the object did not

match the scene context, participants had to gaze around more

compared to when the object semantically matched the scene.

One explanation of this behavior has been previously proposed

in the literature (Biederman et al., 1982; Bar, 2004, 2009). In

particular, it was suggested that context (also referred to as the

scene grammar) facilitation of individual object recognition in a

scene originates in the generation of specific predictions by the

observer, which can be later used to find the object. Such, when

the object recognition cannot be rapidly resolved based solely on

the physical features of the target object, contextual information

can contribute more to the efficient recognition of that object

than its physical attributes (Bar, 2004, 2009).

Notably, no significant differences were found for the task

duration, the search duration, or the scene coverage when

comparing the congruent and empty conditions. These results

indicate that although there is substantially more visual content

in a context-rich environment, it does not seem to distract the
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user from the task performance. And instead, it enables an

efficient search process. Nonetheless, when the target object is

placed in the same scenes and the same spatial configurations

but does not match the context, the performance decreases,

underlining the role of the scene context. In line with previous

research, these findings suggest that in the context-poor “empty”

environment, the participants based their search primarily on

the physical attributes of the target. When the same target was

placed in the incongruent scene context, that is, the contextual

information was non-informative, a substantially larger number

of visual stimuli served as a distractor for the searcher and

led to longer search times. In contrast, when the contextual

information was relevant, it compensated for a large number of

visual stimuli. It is suggested, that the context maintained the

search time comparable to that in the “empty” scenario.

It is worth mentioning that the present interpretation of the

results is based on the assumption that the search in the empty

condition is relatively complex. During the study development,

as mentioned in Section 2.3.2, the number of distractors for all

scenes was selected rather large to ensure a considerable search

time even for the empty condition, here, at least 4 s on average.

However, no detailed analysis of the search complexity in the

empty condition at a given number of distractors was performed.

To strengthen the present results and their interpretation,

in future studies, it is recommended to deliberately analyze

the search complexity in the empty condition, for example,

through systematic modulation of the number of distractors and

evaluation of the respective search times.

4.2. Reach and transport duration

Until now, few studies attempted to describe the effect of

the scene context in an interactive task rather than a search

display. In one recent study, participants were asked to construct

environments from a set of various available virtual objects,

either according to the contextual scene expectations of the

observer or against them (Draschkow and Võ, 2017). Among

other findings, the authors demonstrated that participants held

objects for a longer time in the context-incongruent condition.

In the present study, we similarly evaluated whether the scene

context affected the transport duration of the target object. In

contrast to (Draschkow and Võ, 2017), in the present study, the

final location was predefined and kept constant throughout all

trials. Therefore, participants did not need additional time to

decide where to put the object. Nonetheless, it took participants

less time to transport the object to its final location in the

empty condition. Further analysis did not reveal any differences

in the number of gaze points on the target object during the

transport phase across the conditions. We, therefore, speculate

that since the final location was predefined and the target object

was not looked at more in any of the conditions during its

transport, no additional processing was necessary. However, in

context-rich environments, participants had to overcome more

obstacles when transporting the target object compared to empty

rooms with shelves, thus, leading to a slightly longer transport

duration. Beyond the scope of the current work, further studies

should address whether the uncertainty of the final location

would introduce a variation in transport duration in different

scene context conditions, as well as systematically explore the

impact of the obstacles.

Considering the reach phase duration, previous studies have

demonstrated motor inhibition when approaching dangerous

objects due to the emergence of aversive affordances (Mustile

et al., 2021). Furthermore, from visual search research, it

is known that violations of one’s scene grammar lead to

longer and more fixations on the critical objects, which is

typically attributed to more extended processing of those objects

(Henderson et al., 1999; Cornelissen and Võ, 2017; Draschkow

and Võ, 2017). In the present study, no significant differences in

the reach duration were revealed across the conditions, meaning

no effect of the scene context was found on the reach duration.

It is suggested that if the exact target object is known before

the trial start, it is still harder to find it in a semantically

not matching context. However, once it is located, no extra

processing is necessary. Therefore, no significant elongation of

the reach phase emerged in the incongruent condition. Further

studies are required to evaluate the impact of the scene context

on the reach phase when the target object is unfamiliar to the

observer before the task.

4.3. Target object and anchor

A small but significant difference in the gaze proportion on

the target object correlated with the notion of task facilitation

by the scene context. As expected, participants spent less time

and effort to find the object in the congruent condition, resulting

in proportionally more gazing at the object. More interesting,

however, was the significant difference in gazing on the relevant

anchor across the conditions. In particular, the anchor was

gazed on more often when it could potentially be helpful to

perform the task, meaning, in the congruent condition. The

role of the anchors became more apparent from the recent

studies (Boettcher et al., 2018; Võ, 2021). In natural contexts,

people seem to be able to exploit the knowledge about the scene

configurations when looking for an object (Võ and Wolfe, 2013;

Draschkow and Võ, 2017). Furthermore, people tend to rely on a

rather global context than local information, and, thus, the larger

scene-typical objects—anchors—appear to have more influence

on the search facilitation. The present study results confirm this

notion, where the anchor in the incongruent condition appeared

to be less supportive of the task performance in contrast to the

congruent condition.

Considering the previously suggested scene processing (Võ,

2021) where the small objects are located after larger global
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objects, we generally expected the anchors to be fixated before

the target objects in most of the trials. In contrast, the

distribution of the anchor-object transition did not confirm

our expectations. From literature, it is known that the search

strategy can be composed of several processes, including feature

guidance as well as scene guidance (Võ and Wolfe, 2013). In

the current study, it is speculated that participants utilized

scene guidance to facilitate the search process throughout the

trials, which is reflected in better task performance. However,

the unique appearance of the target objects and distractors

in a given scene defined a set of specific features which

could enforce the feature guidance (grayscale same-size cubes).

Therefore, the anchors were not always fixated before the target

object. Nonetheless, the anchor-object distribution appeared to

be significantly narrower in the congruent condition, which

underlines the role of the anchors even if it was fixated after the

target object was already located. Further studies are necessary

to investigate the dynamics of the mutual object and anchor

fixations. Moreover, in the future studies it would be interesting

to further address the dynamic nature of fixating the target

object and the anchor throughout the search.

4.4. Limitations

Although the present work captured the effect of the scene

context on the performance in an interactive pick-and-place

task, it is important to comment on its limitations. First,

even though there are recent attempts to formally define what

anchors are (Draschkow and Võ, 2017), to the best of our

knowledge, there is no existing database. Therefore, the anchors

used in this study were selected intuitively based on a common

understanding of the typical scenes. This, in turn, could inflate

the individual differences in perceiving the intended anchors

as such and reduce the effect of the scene context on the task

performance. Furthermore, due to the natural scene contexts,

it was not possible to design the anchors of uniform size as

well as set the target object to the same position relative to the

anchors. Thus, although the target objects were always in the

proximity of the anchors, in some configurations, they were

next to the anchors, whereas, in others, they were directly on

top of them. This could, for example, influence the anchor-

object transition. Another challenge for the paradigm design was

variability in the similarities between the target objects and the

distractors. As such, a toothbrush is more likely to be at first

confused with a fork than with a soap dispenser due to the shape

similarity, which would possibly increase the total search time

of the target object. It is not a straightforward task to avoid

this limitation due to the realistic nature of the objects and

the scenes. Nonetheless, it could be advantageous to do a more

systematic generation of the target objects and distractors sets

in the future. Furthermore, in the present study, the effect of

specific objects and scenes was not tested due to a very limited

number of trials per object and scene. In future studies, it would

be interesting to address how specific objects and scenes impact

the behavior in a pick-and-place task. Finally, in the present

study, grasping was implemented using the VR controller.While

VR offers an excellent opportunity to simulate realistic scenarios

in a lab environment and accurately track hand motion, a more

natural solution would be to implement the grasping using

only the participant’s hand without a controller. This, however,

significantly increases the complexity of the setup when it

comes to reliable controller-free object manipulation. When

manipulating objects in VR, some recent studies demonstrated a

strong sense of ownership when the virtual hand is represented

by a hand-like object which we also used in the present study.

Nonetheless, the direct transformability of the current study

results in a real-world grasping scenario should be a focus of

future studies. For example, it would be interesting to compare

the dynamics of a pick-and-place task in the real scenario and its

replica in a virtual environment.

5. Conclusion

To conclude, this work evaluated the impact of the scene

context on the performance of an interactive task, precisely, the

pick-and-place task where the object had to be found, picked,

and transported to a predefined location. In line with visual

search literature, we found a disadvantage in search time when

the object does not belong to the scene context compared to the

context-congruent condition. When comparing the congruent

and no-context conditions, the search performance was similar.

This finding supports the notion that when the object fits the

scene, the other objects and the context-rich environment itself

seem to not introduce an additional distraction for the searcher

and keep the search efficient.

The reach phase duration was not affected by the scene

context. A small difference was found in the transport phase

duration between the empty condition and both context-rich

conditions. However, as discussed in Section 4.2, the elongation

seems to be originating from the need to overcome some

obstacles in the context-rich environments and not due to

additional processing. Although this suggestion requires further

systematic testing, at least in the present configuration where the

final location for the object was known, the semantic congruency

of the object and the scene context does not seem to affect the

interactive phases of the pick-and-place task. This strengthens

the validity of transferring eye and hand movement knowledge

in a grasping task performed in an isolated setting to a realistic

scenario within a context-rich environment.

The present study contributes to a better understanding

of the dynamics of the pick-and-place task once the target

object is placed in a realistic context-rich scene. Keeping the

possible applications in mind, the findings of this work provide

insights into the potential development of supporting intention
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predicting systems. In particular, the information about the

object’s semantic congruency with the scene context could

potentially be used as an additional input parameter to train

and calibrate future assistive algorithms for the support system.

On a broader scope, the findings of the present study can

be relevant for designing intention prediction-based assistive

systems helping, e.g., visually impaired with intelligent tunable

lenses, or to control prosthetics like robotic arms, wheelchairs,

or exoskeletons.
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