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Salmonella enterica resistant to fluoroquinolones (FQs) and extended-

spectrum cephalosporins (ESCs) has been deemed a high-priority pathogen

by the WHO. Salmonella enterica serovar Saintpaul (S. Saintpaul) co-

resistant to ESCs and FQs and harboring corresponding resistance genes

(blaCTX−M−55 and qnrS1) have been previously reported. However, they have

not been reported in China. Moreover, the genetic context and transferability

of ESCs and FQs resistance genes in S. Saintpaul remain obscure. This

study is the first study to characterize a multidrug-resistant (MDR) S.

Saintpaul isolate (16Sal016) harboring plasmid-mediated blaCTX−M−55 and

qnrS1 genes recovered from weever fish in China. The whole genome

short- and long-read sequencing results identified the presence of 15

acquired antibiotic resistance genes encoding resistance to nine classes

of antibiotics, as well as abundant mobile genetic elements residing on a

259,529 bp IncHI2 plasmid. The blaCTX−M−55 and qnrS1 genes were located

in a 12,865 bp region, IS26-orf-orf-ISKpn19-qnrS1-IS3-Tn3-orf-blaCTX−M−55-

ISEc9-orf-IS26. Similar structures have been identified in various bacterial

species, indicating a high transferability of blaCTX−M−55 and qnrS1 genes

within this gene cluster. The plasmid was found to be transferable to

Escherichia coli (E. coli) J53 by conjugation and resulted in the acquisition of

multiple resistances by the transconjugants. Genome sequence comparisons

by core genome multilocus sequence typing (cgMLST) based on global 2,947

S. Saintpaul isolates indicated that strain 16Sal016 was epidemiologically

linked with an isolate from the United Kingdom (UK). Our findings suggest

that plasmids and IS26-mediated mobile genetic elements are carriers of

blaCTX−M−55 and qnrS1 genes in S. Saintpaul, and highlight their potential

transmission, which needs continuous investigations.
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Introduction

Salmonella is a leading cause of foodborne illness worldwide
(Chen et al., 2020). Over the past two decades, multidrug-
resistant (MDR) Salmonella strains have emerged in clinical
settings and food products. These strains, especially those
resistant to extended-spectrum cephalosporins (ESCs) and
fluoroquinolones (FQs), are concerning because they encode
resistance to critically important antibiotic classes commonly
used to treat severe salmonellosis (Lu et al., 2019; Zhang et al.,
2019).

Salmonella enterica serovar Saintpaul (S. Saintpaul) is
an important gut pathogen, which has been reported to be
associated with several outbreaks in many countries (Klontz
et al., 2010; Hayford et al., 2015). It was among the top 20
most common serovars observed in the United States (CDC,
2021), and was reported as the second most common cause of
outbreaks in Australia, 2001–2016 (Ford et al., 2018), as well
as was noted to be among the top five most common serovars
in Singapore in 2015 and 2016 (Aung et al., 2020). In China,
S. Saintpaul has been reported in pets, seafood, poultry, and
samples of human origin (Gong et al., 2014; Qi et al., 2019;
Zhan et al., 2019; Wang et al., 2020; Wei et al., 2020). MDR
resistance has been reported in S. Saintpaul isolates; however,
co-resistance to ESCs and FQs is uncommon and has not been
reported in China (Nadimpalli et al., 2019; Octavia et al., 2021).
In China, various Salmonella serovars have been reported to
acquire steadily increasing co-resistances to clinically important
antibiotics (cefotaxime and ciprofloxacin) (Zhan et al., 2019).
Consequently, it is important to pay concern to strains of S.
Saintpaul acquiring those resistances as they may greatly limit
current treatment options.

In this study, we characterized an ESCs- and FQs-resistant
S. Saintpaul isolate recovered from a weever fish in Guangzhou,
China, and analyzed the genetic context of corresponding
resistance genes, their transferability, as well as the origin, in
order to gain insight into their public health impact.

Materials and methods

Strains isolation and identification

During our routine surveillance of foodborne pathogens
on various food products, Salmonella isolate, named GSJ/2016-
Sal.-016 (hereafter 16Sal016), was recovered from a weever
fish (Lateolabrax japonicus) in the Guangdong Province,
China. The fish sample was collected from a retail market
in Guangzhou, Southern China. The isolate was first
identified by biochemical confirmation using API 20E test
identification test strips (bioMérieux, France), and then
16S ribosomal RNA (rRNA) gene sequencing using the

universal primers 27F (5′-AGAGTTTGATCCTGGCTCAG-
3′ and 1,492R (5′-GGCTACCTTGTTACGACTT-3′). The
serotype was determined by the slide agglutination test
using Salmonella antisera (SSI Diagnostica, Denmark)
according to the White–Kauffmann–Le Minor scheme
(Issenhuth-Jeanjean et al., 2014).

Escherichia coli (E. coli) ATCC 25922 was used as the
quality control strain for antimicrobial susceptibility testing
and E. coli J53 (sodium azide resistant) was used as the
recipient strain for conjugation. Strains were routinely grown
for 12–24 h at 37◦C in Luria–Bertani (LB) broth or agar
(Guangdong Huankai Microbial Science and Technology
Corporation Ltd., Guangzhou, China) supplemented with
antibiotics when appropriate.

Antibiotic susceptibility testing

The isolate was tested for susceptibility to a panel
of antimicrobial drugs by disk diffusion method (CLSI,
2017), including amikacin (30 µg), ampicillin (10 µg),
amoxicillin/clavulanic acid (20/10 µg), ampicillin-sulbactam
sodium (10/10 µg), azithromycin (15 µg), aztreonam (30 µg),
cephalosporins IV [cefepime (30 µg)], cephalosporins III
[cefotaxime (30 µg) and ceftazidime (30 µg)], cephalosporins
II [cefoxitin (30 µg) and cefuroxime (30 µg)], cephalosporins
I [cefazolin (30 µg)], chloramphenicol (30 µg), ciprofloxacin
(5 µg), doxycycline (30 µg), ertapenem (10 µg), fosfomycin
(200 µg), gentamicin (10 µg), imipenem (10 µg), meropenem
(10 µg), netilmicin (30 µg), piperacillin (100 µg), streptomycin
(10 µg), tigecycline (15 µg), tetracycline (30 µg), tobramycin
(10 µg), and trimethoprim/sulfamethoxazole (23.75/1.25 µg)
(Hangzhou Microbial Reagent Corporation Ltd., China).
Minimal inhibitory concentrations (MICs) of the isolate
to ciprofloxacin, nalidixic acid, polymyxin B/colistin, and
cefotaxime (Sigma-Aldrich, St. Louis, MO, United States) were
determined by broth microdilution method (CLSI, 2017).
Production of extended-spectrum β-lactamase (ESBL) was
confirmed by the disk diffusion clavulanate inhibition test
using ceftazidime and cefotaxime (CLSI, 2017). Results were
interpreted according to the Clinical and Laboratory Standards
Institute (CLSI) and the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) breakpoints (The European
Committee on Antimicrobial Susceptibility Testing [ECAST],
2017). The diameter of disks was presented as mean values from
replications with SEs. The reference strain E. coli ATCC 25922
served as quality control.

An MDR isolate is defined as an isolate demonstrating
resistance to three or more antibiotics belonging to
different antibiotic classes (Magiorakos et al., 2012). All
the measurements were performed in duplicates and each
experiment was repeated three times.
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Whole-genome sequencing and
annotation

Genomic DNA was extracted using a commercial DNA
extraction kit (Magen, Guangzhou, China) following the
manufacturer’s recommendations. The whole genome of the
isolate was sequenced by combining short-read and long-
read technologies. The first set of reads was obtained on
the Illumina Hiseq × 10 platform with a 150-bp paired-end
reads approach (MajorBio Corporation, Shanghai, China). The
second set of reads was obtained on a MinION Nanopore
Sequencer (Oxford Nanopore, Oxford, United Kingdom), and
a library was prepared with the 1 D ligation approach. The
genome of the isolate was assembled de novo using both the
short- and long-reads with SPAdes version 3.14.0 (Bankevich
et al., 2012) and Unicycler hybrid assembler version 0.4.8
(Wick et al., 2017), and annotated by Prokka version 1.14.6
(Seemann, 2014).

Clonal analysis was assessed by multilocus sequence
typing (MLST) version 2.0.1 The presence of acquired
antibiotic resistance genes and mutations in the quinolone
resistance-determining regions (QRDR) (gyrA, gyrB,
parC, and parE) were assessed by ResFinder 4.1 (Zankari
et al., 2012), and, subsequently, the genes were extracted
from the genome sequences and further confirmed by
BLAST nucleotide (BLASTn).2 PlasmidFinder version
2.1 and pMLST version 0.1.0 were used to identify
plasmid replicon type and sequence type (ST) (Carattoli
and Hasman, 2020). The complete plasmid sequence
was BLASTn against the nr database with default
parameters. Highly similar plasmids were selected for
comparison. The map was generated by BRIG 0.95-dev.0004
(Alikhan et al., 2011).

Phylogenetic analysis of the genomic
sequences

In order to assess the relatedness of 16Sal016 with other
S. Saintpaul strains from different sources and countries, we
retrieved all the 2,947 genome sequences of S. Saintpaul that
have been released from EnteroBase databases (accessed on 8
March 2022) and performed core genome multilocus sequence
typing (cgMLST) (cgMLST scheme available on EnteroBase).3

A minimum spanning tree was created from cgMLST allelic
differences in EnteroBase using GrapeTree with the RapidNJ
algorithm (Zhou et al., 2020).

1 https://enterobase.warwick.ac.uk/species/senterica/allele_st_search

2 http://blast.ncbi.nlm.nih.gov/Blast.cgi

3 https://enterobase.warwick.ac.uk

Conjugation

The transferability of the plasmid was assessed by
performing the conjugation experiment using sodium azide-
resistant E. coil strain J53 as a recipient strain by solid
mating on a filter (Whatman, Maidstone, United Kingdom)
(Hammerum et al., 2016). Briefly, recipient and donor strains
were cultured overnight and harvested, washed with saline,
mixed together in a ratio of 1:1, and then spotted onto a
0.45-µm pore size filter (Millipore) on LB plates. They were also
spotted individually on LB plates as controls. After overnight
incubation at 37◦C, mating spots were washed, resuspended
in saline, and then serially diluted and plated on LB media
containing 150 µg/ml sodium azide and 4, 8, or 16 µg/ml
of cefotaxime to select transconjugants. Control spots were
transferred to the same selective media to make sure that no
growth was observed.

The conjugation frequency was calculated as the
ratio of transconjugants over the number of recipients.
The transfer of the plasmid was confirmed by PCR
targeting blaCTX−M−55 gene with primer CTX-M-55-F
(5′- AAGCACGTCAATGGGACGAT -3′) and CTX-M-
55-R (5′- CCTTAGGTTGAGGCTGGGTG -3′), as well
as the uidA household gene of E. coli with the primers
U-F (5′-TGGAATTTCGCCGATTTTGC-3′) and U-R
(5′-ATTGTTTGCCTCCCTGCTGC-3′) (Heijnen and
Medema, 2016). Further, the plasmid DNA was extracted
from a selected transconjugant by a commercial plasmid
extraction kit (Magen, Guangzhou, China) following the
manufacturer’s recommendations, and sequenced on the
Illumina Hiseq platform (MajorBio Corporation, Shanghai,
China).

Nucleotide sequence accession
number

The Illumina sequence data were deposited in
the Enterobase database under the barcode numbers
SAL_KB2591AA. The assembly genome sequence of S.
Saintpaul 16Sal016 was deposited in the National Center
for Biotechnology Information (NCBI) database under the
Biosample number SAMN12070262.

Results

Identification of Salmonella

The isolate 16Sal016 was confirmed as S. Saintpaul
(4,12:e,h:1,2) by biochemical confirmation, 16S rRNA gene
sequencing, and serotyping.
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Antibiotic susceptibility

Antibiotic susceptibility testing showed that the
isolate 16Sal016 was resistant to ampicillin, azithromycin,
aztreonam, cefazolin, cefuroxime, cefotaxime, ceftazidime,
chloramphenicol, doxycycline, gentamicin, nalidixic
acid, streptomycin, tetracycline, and trimethoprim-
sulfamethoxazole, ciprofloxacin (based on the EUCAST
clinical breakpoint), intermediate resistant to ampicillin-
sulbactam, and produced ESBL. The isolate exhibited MIC
values of ciprofloxacin, nalidixic acid, and cefotaxime for 1, 128,
and 128 mg/l, respectively.

General genomic features

The complete genome sequence of S. Saintpaul (16Sal016)
contained a circular 4,785,442 bp chromosome with G + C
content of 52.2%, and a 259,529 bp IncHI2 plasmid, denoted as
pSal016. There were 4,736 predicted coding regions (CDs) in the
whole-genome sequence. MLST analysis showed that 16Sal016
belonged to ST27.

A total of 15 acquired resistance genes were identified
in 16Sal016 by ResFinder, which encodes resistance to nine
different antimicrobial classes, including aminoglycoside,
beta-lactam, FQs, macrolide-lincosamide-streptogramin
B, phenicol, rifamycin, sulfonamide, tetracycline, and
trimethoprim (Table 1). All the antimicrobial resistance
genes were located on the plasmid.

Comparative analysis of plasmid
pSal006

The pSal016 is a 259,529 bp plasmid, with 112 predicted
coding regions (CDs) and an average GC content of 46.7%.
Replicon typing of the plasmid by PlasmidFinder and pMLST
showed that pSal016 was an IncHI2 plasmid and belongs to
ST2. The plasmid includes the core region (traEBVC, traWUN,
and traGHFIDJ), which served as the plasmid backbone and

is involved in plasmid replication, horizontal transfer, stability,
and maintenance functions (Figure 1; Call et al., 2010).
Various antimicrobial resistance genes were identified on the
plasmid, including aph(6)-Id, aadA22, aac(3)-IId, and aph(3′)-
Ia for aminoglycoside, mph(A) for azithromycin, blaLAP−2,
blaTEM−1B, and blaCTX−M−55 encoding beta-lactam resistance,
qnrS1 for FQs resistance, lnu(F) for lincosamide, floR for
phenicol, arr-2 for rifampicin, sul3 for sulfonamide, tet(A) for
tetracycline, and dfrA14 for trimethoprim (Table 1). In addition,
copies of transposases and recombinase/integrase family protein
were observed on this plasmid (Figure 1).

BLAST nucleotide comparison of the entire plasmid
sequence to microbial sequences in GenBank identified six
highly similar plasmids with 99–100% sequence coverage
and more than 99.9% nucleotide identity and several similar
plasmids sharing similar backbones (Figure 1 and Table 2).
These plasmids are all the IncHI2 types and belong to ST2,
except pCFSA1096 and pCFSAN086837, which belong to ST3.
Importantly, the highly similar plasmids were from different
hosts than S. Saintpaul in different places and years, and most
of them were from China (Table 2).

Genetic context of extended-spectrum
cephalosporins and fluoroquinolones
resistance genes

The blaCTX−M−55 and qnrS1 genes were located on a
12,865 bp IS26-mediated composite transposon unit IS26-orf -
orf -ISKpn19-qnrS1-IS3-Tn3-orf -blaCTX−M−55-ISEc9-orf -IS26.
The identical genetic structure was also found on plasmid
pEC71-IncHI2 (GenBank accession number CP085623.1)
from E. coli isolated from a human urine sample in China.
Similar structures lacking one of the flanked IS26 were
identified in many other plasmids from different bacterial
species, including E. coli, Escherichia albertii, Enterobacter
hormaechei, Salmonella spp., S. Agona, S. enterica, S.
Newport, and S. Saintpaul. The core structure qnrS1-orf -
IS3-Tn3-blaCTX−M−55 was also observed in many different
bacterial species, which can be mediated by IS26 or ISKpn19

TABLE 1 The antibiotic resistance profile and drug resistance genes of S. Saintpaul 16Sal016, the selected transformant (16Sal016T), and the
recipient (E. coli J53).

MICa (mg/L) Antibiotic resistance genes on plasmid

Isolate CTX CIP NAL

16Sal016 128 1 128 blaLAP−2 , blaTEM−1B , blaCTX−M−55 , qnrS1, mph(A), lnu(F), tet(A), aph(6)-Id,
aadA22, aac(3)-IId, aph(3′)-Ia, sul3, floR, arr-2, dfrA14

16Sal016T 128 1 128 blaLAP−2 , blaTEM−1B , blaCTX−M−55 , qnrS1, mph(A), lnu(F), tet(A), aph(6)-Id,
aadA22, aac(3)-IId, aph(3′)-Ia, sul3, floR, arr-2, dfrA14

E. coli J53 <0.5 0.015 0.25

aCTX, cefotaxime; CIP, ciprofloxacin; NAL, nalidixic acid.
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FIGURE 1

Sequence comparison of plasmid pSal016 identified in S. Saintpaul 16Sal016 with similar plasmids in BRIG. GC content and GC skew of pSal016
are depicted in the inner rings. The genes located on pSal016 are annotated at the outside black ring. The blaCTX−M−55 and qnrS1 genes are
marked red.

TABLE 2 Characteristics of plasmids highly similar to pSal016.

Plasmid
name

Replication
type

pMLST Length
(bp)

Host Source Country (region) Year Coverage
(%)

Identity
(%)

Accession
No.

pSal016 IncHI2 2 259,529 S. Saintpaul Fish China (Guangzhou) 2016 – – SAMN12070262

pG17-1 IncHI2 2 264,084 E. hormaechei Duck China (Henan) 2021 100% 99.98% CP079936.1

pESA136_1 IncHI2 2 266,043 E. albertii Poultry China (Shanxi) 2018 100% 99.99% CP070297.2

pOYZ4 IncHI2 2 257,945 Salmonella sp. Duck China (Guangzhou) – 100% 99.96% MN539018.1

pSG17-135-HI2 IncHI2 2 263,947 S. Agona Australian silver
gull chick

Australia 2017 100% 99.98% CP048776.1

unnamed1 IncHI2 2 263,947 Salmonella sp. Chicken China (Jiangxi) 2021 100% 99.98% CP084217.1

pEC71-IncHI2 IncHI2 2 269,592 E. coli Human urine China (Guangzhou) 2020 99% 99.98% CP085623.1

pCFSA1096 IncHI2 3 297,348 S. enterica Food China (Hubei) 2015 97% 100% CP033347.2

pCFSAN086837 IncHI2 3 255,725 S. Newport Chicken Viet Nam 2017 94% 99.96% CP039438.1

pS25-IncHI2 IncHI2 2 237,710 S. Saintpaul Human stool China (Guangzhou) 2014 93% 100% CP085697.1

pPJM1 IncHI2 2 263,947 Salmonella sp. Chicken China (Guangzhou) 2017 90% 99.98% MN539017.1

(Figure 2). In addition, for comparison, we assembled three
S. Saintpaul isolates (F36, F3, and F47) reported containing
blaCTX−M−55 and qnrS1 genes (Nadimpalli et al., 2019;
Figure 2).

Horizontal transfer of the plasmid

Polymerase chain reaction and sequencing results confirmed
the successful transfer of the plasmid pSal016 from S.
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FIGURE 2

Genetic environment of blaCTX−M−55 and qnrS1 genes from S. Saintpaul isolate 16Sal016 and different bacterial species. The arrows indicate
open reading frames. Light gray shading denotes homology regions. Strains from China are in blue font.

Saintpaul 16Sal016 to a plasmid-free recipient E. coli J53.
Antimicrobial susceptibility testing revealed the acquisition of
the plasmid by E. coli caused at least 256-fold increase for
cefotaxime, 512-fold increase for nalidixic acid, and about 66-
fold increase for ciprofloxacin (Table 1). The conjugation rate
was 5.4× 10−6

± 0.6 transconjugant per recipient cell.

Phylogenetic analysis

Isolates of S. Saintpaul were reported to be putatively
polyphyletic and characterized by multilineages (Yin et al.,
2020). In this study, we found seven major clusters among the
2,947 S. Saintpaul isolates from different countries (Figure 3A).
These isolates belong to 47 classical MLST types, with the most
frequent being ST50 (43.4%), ST27 (29.6%), and ST95 (11.3%)
(Supplementary Figure 1).

Core genome multilocus sequence typing and phylogenetic
analysis showed that the isolate 16Sal016 harbored a unique

cgST profile (Figure 3B and Supplementary Table 1), and
displayed the closest relationship to an isolate (Barcode:
SAL_JB0504AA) from the United Kingdom in 2018
(Figure 3B). The cgMLST results differentiated the isolate
16Sal016 from the closest related isolate up to the HC5 level (a
maximum of 5 cgMLST allelic variations). Isolates belonging
to the same HC5 cluster (up to 5 allelic variations between
strains) were considered highly probably epidemiologically
linked (Bonifait et al., 2021). Therefore, it is inferred that isolate
16Sal016 was highly epidemiologically linked with the isolate
from the United Kingdom.

Discussion

Extended-spectrum β-lactamase-producing and
FQs-resistant strains of Salmonella have been reported
throughout the world, constituting a great public health
concern (Castellanos et al., 2018; Nadimpalli et al., 2019;
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FIGURE 3

Phylogenetic analysis of 2,947 S. Saintpaul isolates from different sources and countries. (A) A minimum-spanning tree based on cgMLST
analysis. The position of S. Saintpaul isolate 16Sal016 is indicated by red arrow and highlighted circle. Each circle represents a cgMLST group
and the size of the circle is proportional to the number of isolates in that group. (B) Detailed information of strains in the branch contained
16Sal016. The isolate 16Sal016 is marked blue.

Zhang et al., 2019; Chattaway et al., 2021; Herdman et al., 2021).
Contaminated animal-derived food products are an important
route of transmission of Salmonella from animals to humans
(Zhu et al., 2017; Zhang et al., 2018; Wang et al., 2020). In
this study, we characterized a Chinese foodborne MDR S.
Saintpaul isolate, which was found to be resistant to a number
of antibiotics, and we further analyzed the genetic context of
the corresponding resistance genes, their transferability, and
tracked its source by global phylogenetic analysis.

Multidrug-resistant S. Saintpaul has been widely reported in
many countries (Haq et al., 2017; Ding et al., 2018; Nadimpalli
et al., 2019). However, concurrent resistance to ESCs and FQs
has only been reported in a S. Saintpaul isolate from foals
in Pakistan (Haq et al., 2017) and three S. Saintpaul isolates
from fish in Cambodia (Nadimpalli et al., 2019). In this study,

the isolated S. Saintpaul strain was found to be co-resistant
to ESCs and FQs, as well as multiple antimicrobials, including
the most prevalent ACSSuT MDR profile (defined as resistance
to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and
tetracycline in S. typhimurium) (Mølbak et al., 1999). To the
best of our knowledge, this is the first time a foodborne
S. Saintpaul isolates in China co-resistant to ESCs and FQs
has been reported.

The ESCs and FQs resistance in 16Sal016, encoded by
blaCTX−M−55 and qnrS1 genes, respectively, were located on an
IncHI2 plasmid. Several IncHI2 plasmids carried blaCTX−M−55

gene were found to be closely related to pSal016 and most
of them belong to pMLST type 2, suggesting that they are
highly similar. It is worth noticing that these plasmids were
from different bacterial species and most of them were from
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China, indicating that the circulating of IncHI2-type plasmid
contributes to the increasing prevalence of blaCTX−M−55 and
qnrS1 genes in China. Importantly, a similar plasmid pS25-
IncHI2 was observed to reside in a clinical S. Saintpaul
isolate collected in the same region, but different year in
China. However, phylogenetic analysis of global S. Saintpaul
isolates based on cgMLST did not reveal any epidemiological
links between them, indicating a likely transmission of this
plasmid among different S. Saintpaul isolates. As evaluated
in the present study, pSal016 was transferable to E. coli; the
conjugation ability of pSal016 may likely contribute to the
acquisition of MDR among other bacterial species, which need
continuous investigations.

Salmonella resistance to ESCs is reported to be associated
with cross-resistance to FQs (Lu et al., 2019; Zhang et al.,
2019). In our previous study, we identified an IS26-mediated
composite transposon IS26-qnrS1-IS3-Tn3-orf -blaCTX−M−55-
ISEcp1-IS26 that might contribute to the development of
co-resistance to ESCs and FQs (Li et al., 2021). In the present
study, we found a novel IS26-mediated composite transposon
IS26-orf -orf -ISKpn19-qnrS1-IS3-Tn3-orf -blaCTX−M−55-
ISEc9-orf -IS26, as a carrier for blaCTX−M−55 and qnrS1 genes
in S. Saintpaul. An identical structure was also found in
E. coli, suggesting that it is transferable. Similar structures were
widely distributed among different bacterial species. Among
them, a uniform unit (qnrS1-IS3-Tn3- orf -blaCTX−M−55) was
observed as a core structure, which can be mediated by IS26
and ISKpn19 to transfer.

The global phylogenetic analysis showed that the strain
16Sal016 isolated in 2016 was highly epidemiologically linked
with an isolate from the United Kingdom in 2018, suggesting
that they might come from the same source. The identification
of IS26-mediated composite transposon and transferable IncHI2
plasmid carrying blaCTX−M−55 and qnrS1 genes in Chinese S.
Saintpaul represent potential clinical and food safety issues and
need to be monitored, since they may transmit to humans
through the food chain and may lead to reduced susceptibility
of Salmonella to frontline drugs of choice for treating severe
Salmonella infections, such as ESCs and FQs.

Conclusion

To summarize, this study reports for the first time
a foodborne strain of S. Saintpaul in China co-resistant
to ESCs and FQs and carried blaCTX−M−55 and qnrS1
genes. The blaCTX−M−55 and qnrS1 genes were located in
a novel IS26-mediated composite transposon IS26-orf -orf -
ISKpn19-qnrS1-IS3-Tn3-orf -blaCTX−M−55-ISEc9-orf -IS26 on a
transferable IncHI2 plasmid. The transfer of the plasmid and
the IS26-mediated composite transposon may contribute to
the dissemination of blaCTX−M−55 and qnrS1 genes among
different bacterial species and accelerate the development of

isolates co-resistant to ESCs and FQs, and this warrants
continuous investigations.
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