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Abstract: The long noncoding RNA (lncRNA) telomeric repeat-containing RNA (TERRA) has been
associated with telomeric homeostasis, telomerase recruitment, and the process of chromosome
healing; nevertheless, the impact of this association has not been investigated during the carcinogenic
process. Determining whether changes in TERRA expression are a cause or a consequence of cell
transformation is a complex task because studies are usually carried out using either cancerous
cells or tumor samples. To determine the role of this lncRNA in cellular aging and chromosome
healing, we evaluated telomeric integrity and TERRA expression during the establishment of a clone
of untransformed myeloid cells. We found that reduced expression of TERRA disturbed the telomeric
homeostasis of certain loci, but the expression of the lncRNA was affected only when the methylation
of subtelomeric bivalent chromatin domains was compromised. We conclude that the disruption in
TERRA homeostasis is a consequence of cellular transformation and that changes in its expression
profile can lead to telomeric and genomic instability.

Keywords: telomeres; TERRA; lncRNA; hTERT

1. Introduction

Telomeric instability has consistently been implicated in carcinogenesis. Several fac-
tors promote telomere integrity, including the shelterin complex, displacement/telomere
loop (D/T-loop) formation, guanine quadruplex structures (G-quads), subtelomeric hete-
rochromatin, and telomere length. These elements are associated with the regulation of
abnormal cell division; however, evidence has shown that noncoding telomeric transcripts
can also play a key role in the chromosome healing process, resulting in the protective
mechanisms that promote telomeric homeostasis and thus prevent chromosome instability.

Telomeric repeat-containing RNA (TERRA) is one such transcript. This long non-
coding RNA (lncRNA) binds telomeres via the shelterin complex [1] and assists in the
maintenance of telomeric integrity by diverse mechanisms. TERRA can directly protect
the telomeric sequence from degradation, forming DNA/RNA G-quad structures with
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single stranded DNA (ssDNA) that is displaced at the telomeres [2], and it preserves
and renews the condensed state of subtelomeric chromatin via indirect interactions with
chromatin-associated histone methyltransferases [3].

Although a definite mechanism between TERRA and telomere elongation has yet to
be determined, different research groups have reported a variety of effects associated with
TERRA expression that demonstrate a relationship between telomeric homeostasis and
the regulated expression of this lncRNA [1,4–10]. For this reason, an abnormal TERRA
expression profile is expected when telomeric stability is compromised. This phenomenon
occurs in cancer, a disease in which cells transform by acquiring certain hallmarks during
the course of the multistep process of tumorigenesis, which may lead to a malignant
phenotype [4–6].

One of the many traits observed in cancerous cells is unlimited replication poten-
tial [11]. This excess replication is due to restoration of the telomeric sequences that are lost
after each cell division, and TERRA participates in the regulation of this process. TERRA
expression correlates with telomerase reverse transcriptase activity in cells that actively tran-
scribe hTERT, the catalytic subunit of this enzyme, making TERRA-transcribing telomeres
the most frequently elongated ones [12]. In hTERT null cells, TERRA expression is associ-
ated with accelerated telomere shortening [13], which primes telomeres for recombination
in cells with alternative lengthening of telomeres (ALT).

This telomere-renewing phenotype, sustained either by telomerase expression or telom-
eric recombination, is essential for the continuation of a transformed cell lineage [11,14–18].
However, this process is only a facilitating hallmark in cell transformation [19]; the fundamen-
tal conditions that induce the loss of telomeric homeostasis remain vague. For this reason,
studying the impact that altered transcription of TERRA has on the initiation of cancer could
be important given that TERRA is critical for the telomeric integrity of both normal and
transformed cells.

To study the role of TERRA in the process of cell transformation, we investigated its
expression profile and how it changed during the process of clonal selection in untrans-
formed cells. To this end, we evaluated TERRA expression in a multiclonal cell model that
is prone to undergoing clonal selection during culture [20]. Given that altered expression
of TERRA is ultimately reflected in telomeric stability, we monitored telomere length and
subtelomeric chromatin compaction to associate any changes due to clone selection and
cellular aging with fluctuations in the transcription of TERRA.

We selected the myelogenous lineage as our study model to take advantage of the
stable telomeres that distinguish bone-marrow-derived neoplasias [21]. Since we intended
to analyze telomeric stability, we compared the results obtained from expression analysis,
telomere length measurement, and chromatin-mark enrichment between an untransformed
cell line and a leukemia-derived cell line [22].

2. Results
2.1. Karyotype Analysis

Conventional karyotyping of the SC cell line (ATCC CRL-9855) proved that a clone
was established in the early passages of the culture, with a modal number of 59, after only
7 population-doubling events (PDs). The modal number of the SC cells remained above 46
in each of the sampled passages, and the ploidy of the culture was hypotriploid in more
than 50% of the analyzed metaphases during 3 of the evaluated cell passages (Figure 1A).
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Figure 1. A hypotriploid clone of the SC cells was established, but numerical chromosomal 
instability was still present. (A) Percentage of aneuploid cells after 7, 10, 15, and 27 population-
doubling events (PDs) of the SC cell line. Over 50% of the analyzed cells were hypotriploid (3n−) in 
3 of the sampled PDs. (B) Table with the chromosomal abnormalities found after 27 PDs of the SC 
cell line. Approximately 60% of the analyzed cells displayed a loss of chromosome 5 and of a 
derivative chromosome 10, together with the appearance of an extra chromosome marker. (C) 
Karyogram of the SC cells after 7 population-doubling events. The numerical or structural 
chromosomal alterations that were found in every sampled population are marked (*). (D) 
Karyogram of the SC cells after 27 population-doubling events. The numerical or structural 
chromosomal alterations that were found in every sampled population are marked (*). Additional 
chromosomal abnormalities are marked with blue arrows. 

GTG-banding showed that the abnormal ploidy of the SC cell line was due to both 
numerical and structural abnormalities in its karyotype. Chromosomal alterations that 
were present on every doubling event are marked (*) (Figure 1C,D). Although a clone had 
already been established at the beginning of the assay, 3 new alterations were found after 
27 PDs. We found that 60% of the analyzed metaphases were missing 
dup(10)(q26q11.2)add(10)(q11.2), and 64% were missing +5 and had acquired an extra 
marker chromosome (Figure 1B,D). 

We report the karyotype of the SC cell line we worked with after 10 and 27 
population-doubling events (PDs) as follows [23]: 

7 PDs: 55~61,X,del(X)(p11.2),+der(1)t(1;?) 
(q21;?),+der(2)t(2;17)(q37;q21),+del(4)(q21),+5,del(6)(p21),del(7)(p10),+i(7)(p10),+8,dup(10
)(q26q11.2)add(10)(q11.2),der(10)t(10;X)(p13;p11.4),del(11) 
(q23),+13,+15,+21,+2mar[cp25]. 

27 PDs: 60~61,X,del(X)(p11.2),+der(1)t(1;?) 
(q21;?),+der(2)t(2;17)(q37;q21),+del(4)(q12),+del(6)(p21),+del(7)(p10),+i(7)(p10),+8,−10,der
(10)t(10;X)(p13;p11.4),del(11)(q23),+13,+15,+21,+3mar[cp25]. 

During our analysis, we found that the karyotype of the K562 cell line (ATCC CCL-
243) also exhibited numerical and structural abnormalities that were not present at the 
time of their acquisition from the American Type Culture Collection (ATCC) (Figure 2A). 
Since the cell line is reported as hypotriploid, numerical abnormalities were expected, and 
stable chromosomal abnormalities were marked (*) (Figure 2C,D). However, several other 
abnormalities were found. 

Figure 1. A hypotriploid clone of the SC cells was established, but numerical chromosomal instability
was still present. (A) Percentage of aneuploid cells after 7, 10, 15, and 27 population-doubling
events (PDs) of the SC cell line. Over 50% of the analyzed cells were hypotriploid (3n−) in 3 of
the sampled PDs. (B) Table with the chromosomal abnormalities found after 27 PDs of the SC cell
line. Approximately 60% of the analyzed cells displayed a loss of chromosome 5 and of a derivative
chromosome 10, together with the appearance of an extra chromosome marker. (C) Karyogram of the
SC cells after 7 population-doubling events. The numerical or structural chromosomal alterations
that were found in every sampled population are marked (*). (D) Karyogram of the SC cells after
27 population-doubling events. The numerical or structural chromosomal alterations that were found
in every sampled population are marked (*). Additional chromosomal abnormalities are marked
with blue arrows.

GTG-banding showed that the abnormal ploidy of the SC cell line was due to both
numerical and structural abnormalities in its karyotype. Chromosomal alterations that were
present on every doubling event are marked (*) (Figure 1C,D). Although a clone had already
been established at the beginning of the assay, 3 new alterations were found after 27 PDs. We
found that 60% of the analyzed metaphases were missing dup(10)(q26q11.2)add(10)(q11.2),
and 64% were missing +5 and had acquired an extra marker chromosome (Figure 1B,D).

We report the karyotype of the SC cell line we worked with after 10 and 27 population-
doubling events (PDs) as follows [23]:

7 PDs: 55~61,X,del(X)(p11.2),+der(1)t(1;?) (q21;?),+der(2)t(2;17)(q37;q21),+del(4)(q21),
+5,del(6)(p21),del(7)(p10),+i(7)(p10),+8,dup(10)(q26q11.2)add(10)(q11.2),der(10)t(10;X)
(p13;p11.4),del(11) (q23),+13,+15,+21,+2mar[cp25].

27 PDs: 60~61,X,del(X)(p11.2),+der(1)t(1;?) (q21;?),+der(2)t(2;17)(q37;q21), +del(4)(q12),
+del(6)(p21),+del(7)(p10),+i(7)(p10),+8,−10,der(10)t(10;X)(p13;p11.4),del(11) (q23),+13,+15,
+21,+3mar[cp25].

During our analysis, we found that the karyotype of the K562 cell line (ATCC CCL-243)
also exhibited numerical and structural abnormalities that were not present at the time of their
acquisition from the American Type Culture Collection (ATCC) (Figure 2A). Since the cell line
is reported as hypotriploid, numerical abnormalities were expected, and stable chromosomal
abnormalities were marked (*) (Figure 2C,D). However, several other abnormalities were
found.
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Figure 2. The hypotriploid K562 cell line displayed chromosomal instability as the culture aged. (A) 
Percentage of aneuploid cells after 8, 15, and 31 population-doubling events (PDs) in the K562 cell 
line. Over 50% of the analyzed cells were hypotriploid (3n−) in the sampled PDs. (B) Table with the 
chromosomal abnormalities found after 31 PDs of the K562 cell line. A total of 14 
numerical/structural chromosomal alterations were found; 8 of them occurred in more than 80% of 
the analyzed cells. (C) Karyogram of the K562 cells after 8 population-doubling events. The 
numerical or structural chromosomal alterations that were found in every sampled population are 
marked (*). (D) Karyogram of K562 cells after 31 population-doubling events. The numerical or 
structural chromosomal alterations that were found in every sampled population are marked (*). 
Additional chromosomal abnormalities are marked with red arrows. 

After 31 PDs, chromosomes 3 and 4 exhibited deletions, and a derivative 
chromosome 7 was found (der(7)t(7;?)(p13;?)), together with an additional chromosome 
11 (+11,del(11)(p12)) and two extra marker chromosomes [23]. Furthermore, several 
chromosomes had lost 1 or 2 of their homologous pairs in some of the analyzed 
metaphases: loss of chromosome 10 (chr10) (29.16%), loss of chr14 (91.6%), loss of two 
chr14 (8.3%), loss of chr17 (95.8%), loss of two chr17 (4.16%), loss of chr21 (12.5%), loss of 
chr22 (83.3%), and loss of two chr22 (8.3%) (Figure 2B,D). 

We report the karyotype of the K562 cell line we worked with after 8 and 31 
population-doubling events (PDs) as follows [23]: 

8 PDs: 
61~74,XX,add(6)(p23),−9,del(9)(p13),der(13)t(13;?)(q14;?),−16,add(17)(p13.3),add(18)(q23)
,−20,−21,3mar[cp25]. 

31 PDs: 
61~82,XX,del(3)(q21),del(4)(q25),add(6)(p23),der(7)t(7;?)(p13;?),−9,del(9)(p13),−10,+11,del
(11)(p12),t(13;?)(q14;?),−14,−17,−17,add(18)(q23),−21,−22,5mar[cp25]. 

2.2. Telomerase Expression 
According to the ATCC, SC was an undifferentiated, multiclonal cell line at the time 

of acquisition [20]; therefore, it was of interest for us to determine if telomerase expression 
was regained during our analysis. For this reason, we evaluated the expression of the 
catalytic subunit of telomerase, hTERT. We carried out this analysis in three cell lines: SC, 
a noncancerous myelogenous cell line; K562, a chronic myelogenous leukemia-derived 

Figure 2. The hypotriploid K562 cell line displayed chromosomal instability as the culture aged.
(A) Percentage of aneuploid cells after 8, 15, and 31 population-doubling events (PDs) in the K562
cell line. Over 50% of the analyzed cells were hypotriploid (3n−) in the sampled PDs. (B) Table
with the chromosomal abnormalities found after 31 PDs of the K562 cell line. A total of 14 numer-
ical/structural chromosomal alterations were found; 8 of them occurred in more than 80% of the
analyzed cells. (C) Karyogram of the K562 cells after 8 population-doubling events. The numerical
or structural chromosomal alterations that were found in every sampled population are marked
(*). (D) Karyogram of K562 cells after 31 population-doubling events. The numerical or structural
chromosomal alterations that were found in every sampled population are marked (*). Additional
chromosomal abnormalities are marked with red arrows.

After 31 PDs, chromosomes 3 and 4 exhibited deletions, and a derivative chro-
mosome 7 was found (der(7)t(7;?)(p13;?)), together with an additional chromosome 11
(+11,del(11)(p12)) and two extra marker chromosomes [23]. Furthermore, several chromo-
somes had lost 1 or 2 of their homologous pairs in some of the analyzed metaphases: loss
of chromosome 10 (chr10) (29.16%), loss of chr14 (91.6%), loss of two chr14 (8.3%), loss of
chr17 (95.8%), loss of two chr17 (4.16%), loss of chr21 (12.5%), loss of chr22 (83.3%), and
loss of two chr22 (8.3%) (Figure 2B,D).

We report the karyotype of the K562 cell line we worked with after 8 and 31 population-
doubling events (PDs) as follows [23]:

8 PDs: 61~74,XX,add(6)(p23),−9,del(9)(p13),der(13)t(13;?)(q14;?),−16,add(17)(p13.3),
add(18)(q23),−20,−21,3mar[cp25].

31 PDs: 61~82,XX,del(3)(q21),del(4)(q25),add(6)(p23),der(7)t(7;?)(p13;?),−9,del(9)(p13),
−10,+11,del(11)(p12),t(13;?)(q14;?),−14,−17,−17,add(18)(q23),−21,−22,5mar[cp25].

2.2. Telomerase Expression

According to the ATCC, SC was an undifferentiated, multiclonal cell line at the time
of acquisition [20]; therefore, it was of interest for us to determine if telomerase expression
was regained during our analysis. For this reason, we evaluated the expression of the
catalytic subunit of telomerase, hTERT. We carried out this analysis in three cell lines: SC,
a noncancerous myelogenous cell line; K562, a chronic myelogenous leukemia-derived
cell line; and Saos2 (ATCC HTB-85), an osteosarcoma-derived cell line used as a negative
control for the expression of the reverse transcriptase [24]. K562 cells served as our reference
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for hTERT expression [22]; therefore, the data were normalized against the earliest sampled
population of the K562 cell line.

We found that the SC cell line displayed a 1.62-fold increase in the expression of
hTERT after 15 PDs. After 29 PDs, hTERT expression was still elevated. In the K562 cell
line, we found that the catalytic subunit expression was not consistent. After 14 PDs,
hTERT expression dropped 0.93-fold, to almost undetectable levels, and 4 PDs later, hTERT
expression returned to its original levels. Finally, after 29 PDs of the K562 cells, hTERT
expression dropped 0.96-fold again. In contrast to the myeloid cell lines, hTERT expression
remained below our reference levels in the ALT-dependent Saos2 cell line (Figure 3A).
Since telomere maintenance is essential for unlimited replication, we did not expect hTERT
expression to drop significantly in a leukemic cell line; nevertheless, this expression pattern
could be a result of a successful malignant transformation, something that the recently
established SC clone had yet to undergo.
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0.0006 (***), = 0.0234 (*). (B) Northern blot analysis of TERRA abundance in the SC and K562 cell 
lines at different passages. There did not appear to be an increase in the global amount of TERRA 
in any of the sampled passages. However, there was an increase in the size of the lncRNA when 
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2.3. Global TERRA Levels 
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transcription at a global level. We chose to analyze the populations where the expression 
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Because we were working with a lncRNA bearing a repetitive sequence, we expected 
a smear of hybridized RNA. Our results showed hybridized telomeric RNA ranging from 
1.5 kb to >10 kb. However, the bulk of TERRA was between 2.5 and 3.5 kb. In the SC cells, 
the bulk of the lncRNA was twice as long on the 15 PD samples (4 kb) than on the 10 PD 

Figure 3. The expression of hTERT was recovered, and TERRA length increased in the SC cells.
(A) Expression of hTERT in SC, K562, and Saos2 cells at different passages. hTERT showed increased
and stable expression in SC cells. Fluctuating expression of hTERT was found in K562 cells. In Saos2
cells, hTERT expression remained significantly lower than that in myelogenous cell lines. Data were
analyzed using ANOVA and Tukey’s multiple comparisons test. Adjusted p value < 0.0001 (****),
=0.0006 (***), =0.0234 (*). (B) Northern blot analysis of TERRA abundance in the SC and K562 cell lines at
different passages. There did not appear to be an increase in the global amount of TERRA in any of the
sampled passages. However, there was an increase in the size of the lncRNA when hTERT expression
was elevated in the SC cells (15 PDs) and in the K562 cells (18 PDs).

2.3. Global TERRA Levels

We performed a Northern blot analysis using total RNA from both SC and K562 cells to
determine if the changes in telomerase expression affected telomeric noncoding transcription
at a global level. We chose to analyze the populations where the expression of hTERT had
increased significantly.

Because we were working with a lncRNA bearing a repetitive sequence, we expected
a smear of hybridized RNA. Our results showed hybridized telomeric RNA ranging from
1.5 kb to >10 kb. However, the bulk of TERRA was between 2.5 and 3.5 kb. In the SC cells,
the bulk of the lncRNA was twice as long on the 15 PD samples (4 kb) than on the 10 PD
samples (2 kb), and the maximum length of the blotted RNA was >10 kb after 15 PDs, a
considerable increase compared to the 2.5 kb maximum length found after 10 PDs. Similar
results were observed on the RNA spreads of K562 cells. The bulk of TERRA was longer
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on the 18 PD samples (3 kb) than on the RNA obtained after only 14 PDs (2.5 kb). The
maximum length of the lncRNA also increased up to 6 kb in the samples from 18 PDs.

We found the shortest TERRA molecules after 10 PDs on the SC cells, with a maximum
length of approximately 3 kb. In K562 cells, we found the shortest TERRA molecules after
14 PD events, with a maximum length of 4 kb. In both cell lines, the maximum length
of this lncRNA increased to >10 kb after 5 PDs for SC, and up to 10 kb after 4 PDs for
K562 (Figure 3B). Given that the length of TERRA increased when hTERT expression was
elevated, it is safe to assume that the length of the telomeric track directly affects the size
of the TERRAs transcribed from them. However, the transcription rate of this lncRNA
must be regulated in a locus-specific way; otherwise, every length species of TERRA would
accumulate proportionately.

2.4. Locus-Specific Expression of TERRA

Since we wanted to determine if the re-expression of hTERT could affect the expression
of the telomeric lncRNA, we chose to evaluate a definite population of this lncRNA. Specif-
ically, we examined the expression of TERRA 5p and TERRA 10q since these molecules are
encoded in chromosomes where additional abnormalities were found after 27 PDs of the
SC cell line.

Before the quantitative analysis of TERRA expression, we verified the coding potential
of the selected loci. We used the coding potential calculator of the Center for Bioinformatics
at Peking University in Beijing [25] to estimate the coding probability of the sequences
we amplified [26,27]. In this analysis, we included published sequences from previously
reported TERRA-expressing loci together with our sequences of interest.

The in silico analysis confirmed that the queried sequences had no open reading frame
(ORF) integrity and that every sequence had a very low coding probability: 2.64 × 10−3

for TERRA 5p, 1.52 × 10−6 for TERRA 10q, 4.77 × 10−7 for TERRA 11q, 1.03 × 10−2 for
TERRA 15q, and 0.114 for TERRA Xp (Figure S1).

Real-time PCR results showed that, in the SC cells, TERRA 5p had stable expression
during the assay, i.e., it was not affected by cellular aging, whereas the expression of TERRA
10q increased >2-fold after 29 PDs (Figure 4A,B). In K562 cells, the expression of TERRA
5p was stable on early passages, but after 29 PDs, its expression dropped significantly
(Figure 4C). This abrupt decrease in expression was also found when we analyzed TERRA
10q after 29 PDs; however, TERRA 10q expression displayed a 4-fold increase after 14 PDs,
a change that was not observed on TERRA 5p (Figure 4D). These results confirmed how
TERRA expression varies depending not only on the age of the analyzed population, but
also on the chromosome from where it was transcribed.

2.5. Global Telomeric Length

To study the relationship between TERRA expression and telomere integrity, we
screened for fluctuations in telomere length during our analysis. Since we aimed to
assess the cis effect of TERRA, we performed quantitative fluorescent in situ hybridization
(Q-FISH) on metaphase spreads that were then arranged into karyograms for the specific
identification of the telomeric signals from the short (p) and long (q) arms of each analyzed
chromosome. We also analyzed the mean telomeric fluorescence intensity from every
metaphase by comparing the sampled populations of each cell line to identify the global
changes in telomere length from each cell line.

Using the latter approach, we found evident differences between the telomeres of
the non-neoplastic SC cells and those of the leukemia-derived K562 cells (Figure 5). First,
the mean telomere length of the chromosomes from the earliest sampled populations was
shorter on the SC cells (0.66 arbitrary units, AU) than the length on the chromosomes of
the K562 cells (1.21 AU). The second difference was the loss of telomeric sequences after
18 PDs, when the mean fluorescence intensity was significantly decreased on K562 cells
(0.855 AU). After 31 PDs, the intensity of the telomeric signal recovered its initial levels
(1.5 AU). However, the mean fluorescence intensity of the SC cell telomeres increased
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steadily in each analyzed population. Finally, we found that, even though the telomere
length had heterogeneous values in each of the analyzed cell populations, the difference
was broader on K562 telomeres, whereas telomeres on the SC chromosomes had more
discrete fluctuations in their length.
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It appears that the re-expression of hTERT does not guarantee the efficient extension
of every telomere. The effect of telomerase was clearly different between cell lines, but the
presence of TERRA did not seem to affect this because, while TERRA’s global levels were
high, the telomeres on the SC cells were extended (15 PDs), whereas the telomeres of the
K562 cells shortened abruptly (18 PDs).

2.6. Chromosome-Specific Telomere Length Analysis

To address length heterogeneity in detail, we analyzed the telomeres of each chromo-
some arm individually using DAPI-based karyotyping. We found a significantly disparate
telomere length across the chromosomes of the three sampled K562 populations (Figure 6B).
In stark contrast, telomere length in SC chromosomes was only significantly different on the
earliest sampled population of these cells (7 PDs). In later SC populations, the fluctuations
in telomeric length were no longer significant (Figure 6A).
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Figure 5. Global telomere length increased steadily in SC cells. (A) Dispersion of telomere length
in different passages of the SC cell line. There was a discrete but steady lengthening of telomeric
sequences during the assay. (B) Dispersion of telomere length in the K562 cell line at different passages.
There was a significant reduction in telomere length after 18 PDs, but telomere length was recovered
after 31 PDs. The dotted line in (A,B) represents the reference value used for the quantitative
analysis of fluorescence intensity and the fluorescence from chromosome 18′s centromere. The
fluorescence intensity of the telomeric probe was normalized against the centromeric fluorescence and
expressed in arbitrary units (AU). Values > 1 represent an increase in hybridized telomeric sequences,
i.e., lengthened telomeres. Values < 1 represent a loss of telemetric sequences, i.e., shortened telomeres.
Data were analyzed using Kruskal–Wallis and Dunn’s multiple comparisons test. **** p < 0.0001.

Detailed chromosome-specific analysis of the SC cells revealed that, after 7 PDs, 85.41%
of the chromosome arms had short telomeres since their mean fluorescence intensity was
below the reference value of the centromeric probe (1.0 AU). Furthermore, the median
of the observed telomeric fluorescence was <1.0 AU on 95.83% of the chromosomes, and
52.17% of them were <0.5 AU. After 7 PDs, consistently short telomeres were found on
3q, 5p, 5q, 12p, 14p, 15p, and 22p of the SC cells. However, after 15 PDs, the intensity of
telomeric fluorescence increased by 0.183 AU in every chromosome arm. After 27 PDs, only
31.25% of the telomeres in the SC cells had a mean fluorescence intensity <1.0 AU: 3p, 9q,
11q, 14p, 14q, 15p, 16p, 17p, 22p, and 22q. This finding indicates that telomeric sequences
were recovered on 54.16% of the telomeres of the SC cells, with an increase of 0.251 AU to
their mean length (Figure 6A).

The same analysis showed that, in the earliest sampled population (6 PDs) of K562
cells, only 27.08% of the chromosome arms had short telomeres: 4q, 9p, 10p, 12q, 14q, 22p,
Xp, Mp, and Mq. Interestingly, most of the telomeres shortened after 18 PDs, with 79.16% of
chromosome arms displaying a mean fluorescence <1.0 AU, and the median of the observed
telomeric fluorescence was below the reference value on every chromosome arm. After
31 PDs, the fluorescence intensity values were again >1.0 AU in all the chromosome arms,
which indicated that hTERT re-expression induced the recovery of telomeric sequences by
0.64 AU, almost doubling the amount lost after 18 PDs. By the end of the assay, telomeric
sequences had recovered on almost 80% of the telomeres of the K562 cells (Figure 6B).

It is unclear whether the different rates in telomere extension could be related to the
profile of hTERT expression, but it should be noted that an accelerated telomere elongation
took place once the K562 cells regained hTERT expression, whereas in the SC cells, where
hTERT was stably expressed, elongation was constant but more discrete.
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Figure 6. Chromosome-specific telomere length in SC and K562 cells (A) In the chromosome arms of
the SC cells, we observed steady telomere lengthening. The initial telomere length was significantly
heterogeneous at 7 PDs; several chromosome arms displayed critically short telomeres. In later
passages, telomere length was recovered, and the dispersion of length values was no longer significant.
Data were analyzed using Kruskal–Wallis and Dunn’s multiple comparisons tests. The p value for
telomere length at 7 PDs was 0.043 (*). (B) In the chromosome arms of the K562 cells, we observed
abrupt telomere shortening, followed by heterogeneous lengthening. The initial telomere length was
significantly longer than that in the SC cells, but after 18 PDs, the telomere length decreased considerably.
Telomeres 2q, 21p, and 22p were significantly shorter after 18 PDs in every analyzed cell. Adjusted
p values for telomeres 2q, 21p, and 22p after 18 PDs < 0.005 (**) and <0.0001 (****). After 31 PDs,
telomere length recovered, but the dispersion of length values remained statistically significant. Data
were analyzed using Kruskal-Wallis and Dunn’s multiple comparisons tests. (A,B) The fluorescence
intensity of the telomeric probe was normalized against a centromeric probe and expressed in arbitrary
units (AU). The mean value is shown in every box (•). The p value for telomere length at 6 PDs was
0.0002 (***), and after 18 and 31 PDs, it was <0.0001 (****).

2.7. Locus 5p and 10q-Specific Telomeric Length

Since our original intent was to study the relationship between TERRA expression
and telomere length, we specifically analyzed the telomeres on chromosome arms 5p and
10q from each cell population.

On chromosome 5 of the SC cells, the mean telomere length of both arms displayed a
significant increase after 27 PDs. Telomeres on 5p and 5q increased 3.0- and 2.615-fold in
length, respectively, when compared to their initial length (Figure 7A). Although the mean
telomere length increased in both sampled populations of the SC cell line, the difference was
only significantly larger after 27 PDs. In contrast, on chromosome 10, the mean telomere
length did not show significant changes across the sampled PDs (Figure 7B).
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Figure 7. Individual chromosome arms displayed different lengthening patterns. Telomere length
was evaluated on chromosomes 5 and 10. (A,C) In both cell lines, the telomeres from chromosome 5
were significantly extended after 27 PDs in SC cells and after 31 PDs in K562 cells. (B) No discernible
lengthening occurred in chromosome 10 of the SC cells. (D) A lengthening pattern was evident
in chromosome 10 of the K562 cells, but the change was only significant at locus 10p. (A–D) The
fluorescence intensity of the telomeric probe was normalized against a centromeric probe and expressed
in arbitrary units (AU). Data were analyzed with a Kruskal–Wallis test and Dunn’s multiple comparisons
test. Adjusted p value < 0.05 (*), <0.005 (**).

We found similar results in K562 cells. On chromosome 5, the mean telomere length of
both arms displayed a statistically significant increase. Telomeres on 5p increased 1.319-
and 1.137-fold after 18 and 31 PDs, respectively, compared to their initial length. Telomeres
on 5q increased 1.022- and 0.854-fold after 18 and 31 PDs, respectively (Figure 7C). On
chromosome 10, there was only a significant change in the mean telomere length of 10p,
increasing 0.988-fold after 31 PDs (Figure 7D).

As previously noted, while identifying changes in telomere length, we observed
heterogeneous values in each of the analyzed cell populations. Upon closer analysis, we
found that global telomere length values had a broader range on the chromosomes of
the K562 cell line compared with those of the SC cells (Figure 6). Across the analyzed
populations of the SC cell line, we found more homogeneous telomere length values in both
5p and 10q than on the telomeres of the K562 cells. After 31 PDs of the K562 cells, the range
of telomeric length on 5p and 5q increased 4.07 AU and 2.74 AU, respectively (Figure 7C).
Moreover, the dispersion of telomeric length values in the SC cells only increased 1.81 AU
on 5p and 2.79 AU on 5q (Figure 7A). This difference was also found on chromosome 10;
after 31 PDs of the K562 cells, the range of telomeric lengths increased 3.16 AU on 10p and
1.25 AU on 10q (Figure 7D), whereas, in the SC cells after 27 PDs, the range only increased
by 0.33 AU in the same chromosome arms (Figure 7B).

2.8. Subtelomeric Chromatin Analysis

The fluctuations we found in telomeric length can be due to the presence of telomerase;
however, the telomere-binding proteins of the shelterin complex can hinder the activity of
this enzyme at stable telomeres [28], thus explaining why shorter arms are preferentially
elongated over others. Moreover, heterochromatin at any given subtelomeric locus can
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repress TERRA transcription [1], so there is a possible indirect link between telomere
length, the state of the local chromatin and TERRA transcription in telomerase-expressing
cells. Therefore, we decided to evaluate the enrichment of certain chromatin marks and
associated proteins on the same loci where TERRA was quantified to link the aging-related
changes in TERRA expression with the state of the subtelomeric chromatin.

2.8.1. SC Cell Line—Heterochromatin

• Both loci 5p and 10q accumulated heterochromatin-associated histone marks as the
cell population aged. In 5p, H3K9me3 increased 4.4-fold from its initial value after
15 PDs. The H3K27me3 mark increased 9.73-fold after 15 PDs and 7.29-fold after
25 PDs (Figure 8A,C). H4K20me3 was undetectable after 25 PDs (Figure 9A).

• In the 10q locus, H3K9me3 increased 3.32-fold only after 25 PDs. H3K27me3 displayed
a slight but steady enrichment of 1.25-fold after 15 PDs, and 3.26-fold after 25 PDs
(Figure 8B,D). H4K20me3 showed a 5-fold increase after 25 PDs (Figure 9B).

2.8.2. K562 Cell Line—Heterochromatin

• When we analyzed the same chromatin marks in locus 5p of the K562 cell popula-
tions, we identified a similar phenomenon to that in the SC cells. Both H3K9me3
and H3K27me3 displayed a 1.8- and 1.49-fold enrichment, respectively, after 24 PDs
(Figure 8E,G). H4K20me3 showed a 1.12-fold increase after 14 PDs, but after 24 PDs,
the levels of this mark returned to their initial value (Figure 9E).

• At locus 10q, neither H3K9me3 nor H3K27me3 showed differences. H3K9me3 in-
creased 0.79-fold after 14 PDs and then returned to its initial level after 24 PDs. The
levels of H3K27me3 diminished 0.61-fold after 14 PDs and 0.83-fold after 24 PDs
(Figure 8F,H). H4K20me3 displayed a 0.79-fold enrichment after 14 PDs, but the lev-
els of this mark also decreased up to 0.76-fold below its initial levels after 24 PDs
(Figure 9F).
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the axes of the graphs. (A–D) As the culture aged, both marks accumulated in loci 5p and 10q of the 
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Figure 8. Heterochromatin-associated histone marks accumulated on both analyzed loci in the
SC cell line. Chromatin immunoprecipitation was carried out to determine the abundance of the
heterochromatin-associated histone marks, H3K9me3 and H3K27me3. Note the different scales on the
axes of the graphs. (A–D) As the culture aged, both marks accumulated in loci 5p and 10q of the SC
cells. (E,G) In K562 cells, locus 5p also accumulated both heterochromatin-associated marks. (F) The
levels of H3K9me3 only increased temporarily at locus 10q after 18 PDs in K562 cells. (H) The levels of
H3K27me3 decreased at locus 10q as K562 cells aged. Notably, in both cell lines, the levels of H3K9me3
were always considerably higher than those of H3K27me3. Data were analyzed using ANOVA and
Tukey’s multiple comparisons test. Adjusted p value < 0.0001 (****), <0.001 (***), <0.01 (**), <0.05 (*).
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2.8.3. SC Cell Line—Euchromatin

• In SC cells, euchromatin-associated marks accumulated in the 5p locus after 25 PDs, dis-
playing a 2.228-fold increase in Pol II and a 4.98-fold increase in CTCF (Figure 10A,C).
H3K4me3 also increased 1.316-fold after 25 PDs (Figure 9C).

• At locus 10q, there was a 1.67-fold increase in Pol II and a 5.21-fold increase in CTCF
after 25 PDs (Figure 10B,D). The H3K4me3 mark increased 6.05-fold after 25 PDs
(Figure 9D).

2.8.4. K562 Cell Line—Euchromatin

• In the 5p locus of K562 cells, the levels of Pol II decreased 0.59-fold after 24 PDs. CTCF
was enriched 1.5-fold after 14 PDs, but its levels returned to their initial value after
24 PDs (Figure 10E,G). H3K4me3 also increased 1.5-fold after 14 PDs, but after 24 PDs,
the levels of this mark returned to their original value (Figure 9G).

• At locus 10q, the levels of Pol II decreased 0.3-fold after 14 PDs and 0.675-fold after
24 PDs. However, the levels of CTCF increased 6.48-fold after 14 PDs but then returned
to their initial values after 24 PDs (Figure 10F,H). Finally, H3K4me3 diminished steadily
0.36-fold after 14 PDs and 0.53-fold after 24 PDs (Figure 9H).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 25 
 

 

levels of H3K27me3 decreased at locus 10q as K562 cells aged. Notably, in both cell lines, the levels 
of H3K9me3 were always considerably higher than those of H3K27me3. Data were analyzed using 
ANOVA and Tukey’s multiple comparisons test. Adjusted p value < 0.0001 (****), < 0.001 (***), < 0.01 
(**), < 0.05 (*). 

Figure 9. Antagonizing histone marks occurring in the same locus favored TERRA transcription. 
Chromatin immunoprecipitation was carried out to analyze the abundance of the histone marks, 
H4K20me3 and H3K4me3. Note the different scales on the axes of the graphs. (A) H4K20me3, a 
mark normally enriched in telomeric constitutive heterochromatin, had very low levels in locus 5p 
of the SC cells; after 25 PDs, this mark was nearly undetectable. (B) At locus 10q, the levels of 
H4K20me3 increased after 15 PDs and then became significantly enriched after 25 PDs. (E,F) The 
levels of H4K20me3 behaved similarly in both loci of the K562 cells; the mark accumulated after 18 
PDs but then diminished after 24 PDs. The enrichment of H4K20me3 was considerably higher on 
K562 10q than on 5p. (C,D) H3K4me3, a mark associated with active gene promoters, accumulated 
in both loci of the SC cells after 25 PDs. The enrichment of H3K4me3 was higher on SC 10q than on 
5p. (G) H3K4me3 also increased significantly after 18 PDs of the K562 cells, but the levels of the 
mark returned to their original value after 24 PDs. (H) The levels of H3K4me3 decreased gradually 
as the K562 cells aged. Data were analyzed using ANOVA and Tukey’s multiple comparisons test. 
Adjusted p value < 0.0001 (****), = 0.0008 (***), < 0.01 (**). 

2.8.2. K562 Cell Line—Heterochromatin 

• When we analyzed the same chromatin marks in locus 5p of the K562 cell 
populations, we identified a similar phenomenon to that in the SC cells. Both 
H3K9me3 and H3K27me3 displayed a 1.8- and 1.49-fold enrichment, respectively, 
after 24 PDs (Figure 8E,G). H4K20me3 showed a 1.12-fold increase after 14 PDs, but 
after 24 PDs, the levels of this mark returned to their initial value (Figure 9E). 

• At locus 10q, neither H3K9me3 nor H3K27me3 showed differences. H3K9me3 
increased 0.79-fold after 14 PDs and then returned to its initial level after 24 PDs. The 
levels of H3K27me3 diminished 0.61-fold after 14 PDs and 0.83-fold after 24 PDs 
(Figure 8F,H). H4K20me3 displayed a 0.79-fold enrichment after 14 PDs, but the 

Figure 9. Antagonizing histone marks occurring in the same locus favored TERRA transcription.
Chromatin immunoprecipitation was carried out to analyze the abundance of the histone marks,
H4K20me3 and H3K4me3. Note the different scales on the axes of the graphs. (A) H4K20me3, a
mark normally enriched in telomeric constitutive heterochromatin, had very low levels in locus
5p of the SC cells; after 25 PDs, this mark was nearly undetectable. (B) At locus 10q, the levels of
H4K20me3 increased after 15 PDs and then became significantly enriched after 25 PDs. (E,F) The
levels of H4K20me3 behaved similarly in both loci of the K562 cells; the mark accumulated after
18 PDs but then diminished after 24 PDs. The enrichment of H4K20me3 was considerably higher on
K562 10q than on 5p. (C,D) H3K4me3, a mark associated with active gene promoters, accumulated
in both loci of the SC cells after 25 PDs. The enrichment of H3K4me3 was higher on SC 10q than
on 5p. (G) H3K4me3 also increased significantly after 18 PDs of the K562 cells, but the levels of the
mark returned to their original value after 24 PDs. (H) The levels of H3K4me3 decreased gradually
as the K562 cells aged. Data were analyzed using ANOVA and Tukey’s multiple comparisons test.
Adjusted p value < 0.0001 (****), =0.0008 (***), <0.01 (**).
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Figure 10. Euchromatin-associated proteins accumulated on both analyzed loci in the SC cell line.
Chromatin immunoprecipitation was carried out to analyze the abundance of the euchromatin-associated
proteins’ RNA Polymerase 2 (Pol 2) and the CCCTC binding factor (CTCF). Note the different scales on
the axes of the graphs. (A–D) As the culture aged, both proteins accumulated in loci 5p and 10q of the SC
cells. (E,F) The levels of Pol 2 diminished at loci 5p and 10q as the K562 cells aged. The reduced levels of
Pol 2 that were found after 24 PDs in K562 cells were close to the levels accumulated on the same loci of
the SC cells after 25 PDs. (G,H) The levels of CTCF increased on both loci after 18 PDs of the K562 cells,
but after 24 PDs, they returned to their original values. Data were analyzed using ANOVA and Tukey’s
multiple comparisons test. Adjusted p value < 0.0001 (****), = 0.0008 (***), < 0.01 (**), < 0.05 (*).

3. Discussion

To determine the role of TERRA in cellular aging and chromosome healing, we evalu-
ated chromosomal stability, telomere integrity, subtelomeric chromatin mark enrichment,
and TERRA expression during the establishment of a clone of untransformed myeloid
cells. Although we could not follow the process in which the hypotriploid SC clone was
established, the cytogenetic analysis confirmed that we were working with a monoclonal
cell line since the beginning of our assay [29]. This strategy in turn allowed us to assess
the process of chromosome healing on a single clone as the culture aged. Since we were
working with a cell line that underwent early spontaneous clonal selection [20], telomerase
expression was expected [30–32], and we did find basal expression of this enzyme in SCs.
However, there was an increase in hTERT expression after 15 PDs, and its levels remained
higher than those we found in the reference leukemic cell line K562 [22]. Unlike in myeloid
cells, in the ALT-dependent cell line Saos2, hTERT expression remained significantly lower
since it does not depend on telomerase for the maintenance of its telomeres [33].

hTERT expression is crucial for leukemia progression [21,34–37], so it was of interest
for us to find an increase in the transcription of reverse transcriptase in the SC samples.
When reactivation of telomerase transcription occurs, most of the 5p region is either am-
plified or involved in chromosomal rearrangements that facilitate the transcription of
hTERT [34,38–40]. However, Barthel et al. reported that 53% of the reactivation cases are
due to the methylation of the promoter sequence of the hTERT gene, i.e., an epigenetic
mechanism, which, in this particular case, promotes its transcription [22,41–43]. Since
cytogenetic analysis of SC cells showed that the chromosome 5p region had not been com-
promised even after structural and numerical abnormalities had occurred, the reactivation
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of hTERT transcription in SC cells must be regulated by mechanisms unrelated to genetic
alterations [44].

To support this idea, we examined hTERT expression in K562 cells because, in spite
of the stable trisomic ploidy of chromosome 5 in both SC and K562 cells, we found a
fluctuation in the expression of hTERT as the K562 cells aged. It appears that leukemic cells
can reactivate hTERT expression in response to critical telomeric length and then silence its
expression once telomeric homeostasis has been regained. This dynamic change in gene
expression is more likely regulated by epigenetic factors, making histone post-translational
modifications a better candidate to account for the expression changes caused by cellular
aging [36,44]. The fluctuation in hTERT transcription could be responsible for the additional
chromosomal alterations described above and for the indefinite dividing potential of the
K562 cells, something that the recently established SC clone did not achieve. Moreover, it
seems that the steady, elevated expression of hTERT induced cellular senescence in the SC
cells, which did not divide past 29 PDs.

In hTERT-expressing cells, telomeric length is maintained within a set point by pre-
venting telomerase from binding to longer telomeres and favoring its association with
shortened sequences. This process is mediated by shelterin, the protein complex that
binds and protects chromosome ends [28]. In our results, however, we found that, after
critical telomeric length was addressed in K562 cells, the expression of hTERT was also
downregulated. This result suggests a different regulatory mechanism that would induce
another cycle of genomic instability and cell death but would also prevent senescence and
establish cell immortality [36]. Without hTERT, the proliferation of K562 cells promoted
telomere crisis, which drove the generation of further chromosomal rearrangements until
hTERT was overexpressed again and the shortest telomeres were extended.

It appears that whenever hTERT expression increased, TERRA became longer. Inter-
estingly, the maximum length of TERRA was >4 kb longer on the samples from the SC cells
than on the leukemic K562 cells. Although we thought that the increased length of TERRA
was an effect of the recovered telomerase activity, the results from the Saos2 cells showed
that it is actually the length of the telomeric tract that influenced this association [45,46].
TERRA was longer and more abundant in ALT-dependent Saos2 cells (Figure S2) because
of the increased association of RNA polymerase II at subtelomeric TERRA promoters,
hypomethylation of their CpG islands, and reduced levels of the H3K9me3 mark [47]. Fur-
thermore, in ALT-dependent cells, TERRA transcription promotes telomere recombination
and thus telomeric elongation [48], which accounts for the higher abundance and length of
the lncRNA that we found in Saos2 cells.

Despite the evident variations in the size of TERRA molecules in SC and K562 cells,
the global abundance of TERRA was not affected by the re-expression of the reverse
transcriptase. In the same way, neither the decreased telomeric transcription found in
K562 cells nor the increased expression observed in either cell line had an impact on the
overall levels of TERRA transcripts and was not detectable in the Northern blot.

We expected TERRA to have a more stable expression on the immortalized K562 cell
line because it had already undergone accelerated telomere shortening and the consequent
healing process that occurs during cell transformation [30,49–52]. However, it appears
that the telomeres from the newly established SC clone were more stable. The analysis of
telomere length showed that population doubling induced a statistically significant increase
in the length of most telomeres from both myelogenous cell lines. Although elongation
was not considerable, these results agree with what has been reported in hematological
neoplasms, which can restore telomere function and maintain indefinite proliferation by
expressing telomerase without elongating their telomeres in a substantial way [21,53].

In the presence of hTERT, population doubling induced a steady increase in the overall
telomeric length of the SC cells. However, telomere length was significantly heterogeneous
in every analyzed population of K562 cells, and even after a substantial loss of telomeric
sequences, the heterogeneity in telomere length remained significant among the chromosome
arms of K562 cells. After the noticeable attrition in the telomere length that occurred during
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PD 18 of the K562 cells, hTERT expression was recovered. These results indicate the series
of events prompted by telomere shortening, in which re-expression of hTERT is a response
induced when some telomeric sequences have reached a critical length [54]. The length
differences found across the telomeres of every chromosome arm show that, although hTERT
is present, telomere shortening results in a different response in each cell line.

Chromosome-specific analysis showed that, on the SC cells, most telomeres were
adversely short at the beginning of our study, in stark contrast to the long telomeres of
the K562 cells. The length disparities found across all telomeres in the SC cells were
only significant at the earliest sampled population, which suggests that a steady telomere
lengthening process occurred in the chromosome arms of the SC cells. In comparison, the
telomeres of the K562 cell line did not have uniform growth; even after recovering from
significant attrition, the length differences remained considerable across all telomeres in the
K562 cells. However, it is worth mentioning that telomere recovery occurred at a higher
rate in the leukemic-derived cells once hTERT expression was regained. The results show
that critically short sequences were extended at a constant rate, gradually homogenizing
the overall telomere length. However, in the event of abrupt telomere loss, accelerated
recovery of telomeric sequences is induced to counteract sudden shortening.

Although the telomeres of both cell lines displayed changes in chromosomes 5 and
10, the lengthening trend was more evident in chromosome 5, whereas the increase in
telomeric length of chromosome 10 was only detectable in the K562 cells. The significant
elongation of chromosome 5 and not of chromosome 10 in the SC cells could be due to
their initial length. The telomeres on chromosome 5 were among the shortest we found
at the beginning of the assay; the initial telomeric length on chromosome 10 was similar
to the mean length across all telomeres. In this way, the stable length of the telomeres on
chromosome 10 can account for the lack of elongation since they have not yet undergone
crucial attrition, and telomere extension occurs once a chromosome arm has reached a
critical length [53]. In the case of K562 cells, telomeric length recovery was evident on both
chromosomes 5 and 10. The elongation in chromosome 10 was only significant on the short
arm (10p); however, the overall telomere length heterogeneity of this cell line could mask
the significance of the changes observed on the long arm (10q).

In contrast to the SC cells, where the difference between the initial length of chro-
mosomes 5 and 10 can explain the favored elongation of either of them, in the K562 cells,
the average telomeric length in the earliest analyzed population was similar between
chromosomes 5 and 10. In this case, the preferential elongation of chromosome 5 could
not be critical length-induced, so we believe additional telomere homeostasis-maintaining
mechanisms, other than telomerase, must be involved. Even if the analyzed telomeres
were not significantly elongated, our results show that no further telomere shortening
occurred when hTERT was present. In the case of the SC cells, where hTERT expression
remained elevated as the cells aged, there was also a reduced occurrence of chromosomal
abnormalities associated with telomere crisis, such as chromosome end-to-end fusion,
nonreciprocal translocations, aneuploidy, and copy number change [36,55]. In contrast, we
found 14 different chromosome abnormalities by the end of the assay in K562 cells, where
hTERT expression had fluctuated significantly.

We compared the telomeric elongation reported by Q-FISH with the expression of
TERRA at each locus to evaluate the cis effect that TERRA transcription could have on
the telomeric length of a particular locus. Neither the unvarying lncRNA nor the overex-
pression of this lncRNA had a discernible impact on the average telomeric length at the
evaluated loci. However, significant telomeric elongation was observed at the same locus
where TERRA expression decreased to almost undetectable levels (Figures 4C,D and 7C,D).
We believe that there is an inversely proportional relationship between TERRA expression
and the length of the telomere from which it is transcribed. This relation can be explained
by the telomere position effect over long distances (TPE-OLD), where telomeres promote
the spreading of heterochromatin in the subtelomeric region [56,57], and thus, telomere
length affects the expression of TERRA instead of the reciprocal relationship.
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Upon evaluation of heterochromatin-associated marks, we found distinct enrichment
patterns depending on the analyzed subtelomeric locus. Both the constitutive heterochro-
matin mark H3K9me3 [58,59] and the facultative heterochromatin mark H3K27me3 [60]
displayed a similar enrichment on locus 5p as the analyzed cell lines aged. Despite these
increases, TERRA 5p transcription was only impaired in K562 cells, indicating that TERRA
transcriptional regulation depends on a combination of factors that outweigh the abun-
dance of either constitutive or facultative heterochromatin marks at its transcription start
sites. A different enrichment pattern between cell lines was evident in 10q. As the SC cell
line aged, there was an accumulation of both heterochromatin-associated marks on locus
10q. However, in the K562 cells, there was no increase in either mark at the same locus.

We included H4K20me3 in the analysis, a histone mark enriched at telomeric con-
stitutive heterochromatin and reported to be involved both in the regulation of telomere
elongation and the suppression of recombination [61]. Unlike the previous marks, the
levels of H4K20me3 did not increase as the cells aged. In K562 cells, both evaluated loci
displayed only a temporary increase in this telomeric heterochromatin mark. In the SC
cells, the levels of H4K20me3 became nearly undetectable on the 5p locus by the end of
the study; on the 10q locus of these cells, however, the levels of H4K20me3 had a 5-fold
increase after 25 PDs.

Even though H3K9me3, H3K27me3, and H4K20me3 are all heterochromatin-associated
histone marks and heterochromatinization is positively correlated with telomere length [56],
H4K20me3 accumulated at the locus where no telomere elongation was observed: SC
10q (Figures 7B and 10B). This inverse relationship between H4K20me3 enrichment and
telomeric length has been reported when the expression of Suv4-20h1/h2 was abrogated,
resulting in longer telomeres and more sister chromatid exchanges [62]. In this way, what
favored telomere extension at the evaluated loci was the loss of histone methylation in sub-
telomeric heterochromatin and not just the transcription of TERRA or lack thereof. Notably,
as the cultures aged, H3K27me3 accumulated in the evaluated loci of the SC cells. Since
H3K27me3 is associated with facultative chromatin [60], its subtelomeric enrichment could
be an indication that chromatin is poised for transcription. However, TERRA transcription
increased in only one of the H3K27me3-enriched SC loci: 10q. For this reason, we believe
that the transcription of this lncRNA is not regulated by the silencing complex responsible
for the methylation of H3K27: PRC2 [63].

Since euchromatin allows access to the transcriptional machinery, in our analysis, we eval-
uated the enrichment of H3K4me3, a histone mark associated with active gene promoters [64],
the abundance of the CCCTC-binding factor (CTCF), an insulator that prevents heterochro-
matin spreading and gene silencing [65–67], and the presence of serine 5-phosphorylated RNA
polymerase 2, the enzyme responsible for TERRA transcription [68,69]. We found a distinct
difference between the SC cells and the K562 cells upon analyzing euchromatin marks. In the
latter, transcription-associated marks displayed either an unsustained increase or a steady
reduction in their levels. Moreover, in the SC cells, euchromatin marks became enriched at
both loci once 25 PDs had passed.

Although the most evident change in SC cells was the enrichment of H3K4me3 and the
insulator CTCF, both analyzed loci displayed an accumulation of serine 5-phosphorylated
RNA polymerase 2. Regardless of the poised chromatin state of the subtelomeric chromatin,
TERRA transcription only increased on the SC 10q locus. The different expression rates
between SC 5p and 10q could arise from the 6-fold enrichment of H3K4me3 on 10q, but
the loss of H4K20me3 on the 5p locus is also a central part of this phenomenon. Bivalent
chromatin domains enriched with both H3K4me3 and H4K20me3 are not only located
near the transcriptional start sites (TSSs) of active genes but also display more efficient
transcription since the domains marked with both of these histone modifications report
less stalling of RNA polymerase 2 [70].

We believe that TERRA 10q transcription increased in SC cells as a result of a higher
abundance of both H4K20me2 and H3K4me3, rather than just as a response to the presence
of RNA polymerase. The concurrent presence of both histone marks also favored the
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transcription of TERRA 10q after 14 PDs of the K562 cells. Nevertheless, a reduction of
polymerase II in both K562 loci was enough to impair TERRA transcription in later PDs.

Apart from the direct effect that the chromatin can have on the expression of TERRA,
the epigenetic changes that were evidenced in our results could further impact telomere
homeostasis at a structural level. It is well known how the spatial localization of the chro-
matin can impact genome stability and gene regulation [71]; in the same way, chromatin
folding and chromatin domain integrity can impact the epigenome by maintaining the
topological homeostasis of a cell [72]. Cancer, however, is characterized by altered gene ex-
pression, genome instability and epigenetic deregulation; these interconnected changes are
associated with a robust alteration of the three-dimensional (3D) chromosomal organization
that takes place during the initiation and progression stages of carcinogenesis [72–74].

The telomeres are no exception to spatial regulation. They behave as dynamic struc-
tures that stabilize chromosome positions within the nucleus, thus regulating transcrip-
tional processes [73]. Telomeres have been described at the nuclear periphery [75], in
association with the nuclear matrix [76], and throughout the entire nucleus [77], but it is
clear that their usual 3D organization is altered when cancer develops [78–81].

This leads us to consider that the differences in telomere length we report can also be
due to structural alteration ensued by changes in subtelomeric chromatin methylation. An
abnormally stable association between telomeres and the nuclear lamina, brought about
by an increase in repressive histone modifications such as H3K9me2/3, H3K27me3, and
H4K20me2/3 [82] can lead to stalled replication forks, their collapse, and eventually to
telomere shortening. Though quite possible, in order to determine the contribution of these
topological features in the recovery of telomeric homeostasis, further studies are required
to evaluate the association between the analyzed loci and the nuclear lamina.

4. Materials and Methods
4.1. Cell Culture

The osteosarcoma-derived cell line Saos2 and the myelogenous cell lines K562 and
SC were all acquired from the American Type Culture Collection (ATCC HTB-85; ATCC
CCL-243; ATCC CRL-9855, Manassas, VA, USA). K562 and SC cells were cultured in Iscove’s
modified Dulbecco’s medium (IMDM) (ATCC 30-2005, Manassas, VA, USA) containing 10%
fetal bovine serum (FBS) (ATCC 30-2020, Manassas, VA, USA). Additionally, the IMDM for
the SC cells was supplemented with 0.05 mM 2-mercaptoethanol (Gibco 31350010, Waltham,
MA, USA), 0.1 mM hypoxanthine, and 0.016 mM thymidine (hypoxanthine—thymidine
(H.T.) 500× concentrate (ATCC 71-X, Manassas, VA, USA). Saos2 cells were cultured in
McCoy’s 5a Medium (ATCC 30-2007, Manassas, VA, USA) containing 10% fetal bovine
serum (FBS) (ATCC 30-2020, Manassas, VA, USA). All the cells were maintained at 37 ◦C
in 5% CO2. Cells were subcultured whenever the culture reached 80% confluence. Cell
populations were sampled every 3–4 passages.

4.2. Metaphase Preparation

The cells were incubated for 15 min at 37 ◦C in their corresponding growth medium
supplemented with Colcemid (Gibco 15212012, Waltham, MA, USA) to a final concentration
of 100 ng/mL. The suspended K562 and SC cells were washed with PBS and resuspended in
a 0.55% potassium chloride hypotonic solution. The adherent Saos2 cells were rinsed with
PBS and then added to a 0.8% sodium citrate hypotonic solution. The cells were incubated
for 30 min at 37 ◦C and then prefixed by supplementing the medium with 1 mL of a fixative
solution that contained 3 parts methanol and 1 part acetic acid for the suspended cells,
and 5 parts methanol and 2 parts acetic acid for the adherent cells. The cells were then
centrifuged and resuspended in their corresponding fixative solutions for 5 min at room
temperature. Slides were prepared with the cell suspension.
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4.3. Conventional Karyotype Analysis

Metaphase spreads were stained with Giemsa (Merck Millipore 1.09204.0500, Burling-
ton, MA, USA) for chromosome counting. In the SC cell line, we counted 44, 43, 29, and
81 metaphases to determine the line’s ploidy after 7, 10, 15, and 27 PDs, respectively. For the
K562 cell line ploidy analysis, we counted 25, 106, and 43 metaphases after 8, 18, and 31 PDs,
respectively. Slides were also processed for GTG banding of both cell lines. Twenty-five
metaphases were analyzed by conventional karyotyping for both the SC and K562 cell lines.
The PDs analyzed were 7 and 27 on SC cells and 8 and 31 on K562 cells.

4.4. Northern Blot

Twenty micrograms of total RNA from each condition was used for Northern blot
analysis using a NorthernMax® Kit (Applied Biosystems AM1940, Waltham, MA, USA)
according to the manufacturer’s instructions. RNA samples were size-fractionated by elec-
trophoresis in a denaturing 1.4% agarose/is% formaldehyde gel. RNA was transferred to a
Hybond-N+ nylon membrane (Amersham Hybond, RPN3050B, GE Healthcare, Chicago,
IL, USA) and hybridized with dCTP[P32]-labeled DNA probes specific to the telomeric
sequence.

4.5. Primer Design

The subtelomeric loci chosen to analyze TERRA transcription and chromatin mark
enrichment have already been described as TERRA-transcribing loci [3,7]. The primers for
loci 5p, 11q, and Xp were designed to amplify subtelomeric regions with DNase-sensitive
sites, reported enhancer sequences, predicted transcription start sites (TSS), and enriched
with chromatin marks such as H3K4me3, H3K4me1, and Pol II. We used the University of
California Santa Cruz’s Genome Browser to carry out this analysis [83,84]. Loci 15q and
10q were analyzed using the primers reported in [7].

4.6. Analysis of hTERT and TERRA Expression

Total RNA was isolated from each cell line at different passages using the Direct-zol
RNA Miniprep kit (Zymo Research, R2050, Irvine, CA, USA). Two micrograms of RNA was
used for cDNA synthesis using the High-Capacity cDNA Reverse Transcription kit (Thermo
Fisher, 4368814, Waltham, MA, USA). qPCR was carried out on a StepOne Real-Time PCR
system using the Maxima SYBR Green/ROX qPCR Master Mix (Thermo Fisher, K0221).
The primers used for TERRA quantification were previously reported by Deng et al. [3,7] as
TERRA-expressing loci; the 5p set of primers was designed to amplify a locus of potential
expression of this lncRNA. The fold change in TERRA expression was calculated using
delta delta Ct, taking the earliest population-doubling event as our reference. All values for
hTERT expression analysis were normalized against GAPDH. Values for TERRA analysis
were normalized against U6 using primers reported by Galiveti et al. [85].

4.7. Q-FISH for Telomere Length Analysis

Q-FISH was performed on metaphases from at least three population-doubling events
of the K562 and SC cell lines. A pan-telomeric FITC-labeled probe was used for telomere
length quantification (DAKO, K532511, Glostrup, Denmark). A Cy5-labeled chromosome
18 centromeric probe (MetaSystems, D-0818-050-FI, Altlussheim, Germany) was used as a
fluorescence intensity reference for telomere length analysis. The probes were hybridized
sequentially, preparing the slides first for the telomeric probe and then for the centromeric
reference. The slides were permeabilized by incubating in a 0.005% pepsin, 0.01 M HCl
solution for 1 min at 37 ◦C, and then washed twice in TBS before denaturing using a Hybrite
Slide Stainer (Abbott Molecular, Des Plaines, IL, USA) for 5 min at 80 ◦C for the telomeric
probe and 5 min at 75 ◦C for the centromeric probe. The manufacturer’s protocol was
subsequently followed (Dako, K532511, Glostrup, Denmark).
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4.8. Image Processing

Metaphases were captured using an Axio Imager Z2 microscope (Carl Zeiss, GmbH,
Jena, Germany) coupled with a Metafer module for automatic metaphase search and cap-
ture (MetaSystems Hard und Software, GmbH, Altlussheim, Germany). High-quality
hybridized metaphases were scanned with a Plan-APOCHROMAT 63x/1.4 Oil objective
and three optical filters for the detection of DAPI, FITC, and Cy5 (Carl Zeiss, GmbH). The
resulting images were then processed with Ikaros software for conventional karyotype anal-
ysis and with Isis software for DAPI-based karyotyping and telomere length quantification
(MetaSystems Hard und Software, GmbH, Altlussheim, Germany).

The telomere length of individual chromosome arms was calculated based on the
fluorescence intensity of the hybridized probes on the telomeric repeat. We used the
fluorescence of chromosome 18′s centromere (Chr18) as a reference value, normalizing
the telomeric fluorescence intensity of each chromosome arm against the hybridized cen-
tromere of each analyzed metaphase. The fluorescence intensity of the telomeric probe was
normalized against the centromeric fluorescence and expressed in arbitrary units (AU). In
this way, fluorescence intensity values of >1.0 correspond to an increase in the amount of
hybridized telomeric probes and were interpreted as lengthened telomeres. A fluorescence
intensity of <1.0 corresponds to a decrease in the amount of hybridized telomeric probes
and was interpreted as a partial loss of telomeric sequences, i.e., shortened telomeres.

4.9. Chromatin Immunoprecipitation

Chromatin was isolated and immunoprecipitated using the Shearing ChIP Kit (Di-
agenode, C01020012, Denville, NJ, USA) and the OneDay ChIP kit (Diagenode, C01010080,
Denville, NJ, USA), respectively, according to the manufacturer’s protocol. To immuno-
precipitate H3K4me3 (Abcam, ab8580, Waltham, MA, USA), H3K9me3 (Abcam, ab8898,
Waltham, MA, USA), H3K27me3 (Millipore, 07449, Darmstadt, Germany), H4K20me3
(Abcam, ab9053, Waltham, MA, USA), CTCF (Millipore, 07729, Darmstadt, Germany), and
RNA Pol-II (Abcam, ab5408), we used 4 µg of each antibody and incubated them overnight.
Immunoprecipitated DNA was analyzed by qPCR with the StepOne Real-time PCR system
(Thermo Fisher Scientific, 4376600, Waltham, MA, USA) using specific primers for each
locus. Total chromatin input from every sample was used as a reference for the comparative
curves of the analyzed marks. Data were normalized against IgG.

5. Conclusions

Our study showed how a cellular clone regained telomeric homeostasis by recovering
telomerase expression after undergoing structural and numerical abnormalities. Increased
telomerase transcription was found to hinder further chromosome abnormalities in the
established clone of the SC cell line. In K562 cells, in which telomerase expression was not
stable, further chromosomal abnormalities occurred.

Despite the apparently regained homeostasis, telomeres in SC displayed constant
lengthening; however, SC cells stopped dividing even in the presence of telomerase. There-
fore, hTERT re-expression and telomeric recovery were not enough to transform human
myelogenous cells; further alterations, such as HRAS, TP53, and RB1 mutations [86–88],
must occur as the cells age so as to induce cell transformation and to attain the hallmark
unlimited replication potential of cancerous cells.

There is a correlation between the recovery of telomerase expression and a considerable
increase in the length of TERRA. It should be noted that this is directly related to telomere
length, so TERRA length can increase in the absence of hTERT.

We found that an abrupt reduction in TERRA expression preceded an accelerated elon-
gation of the telomeres from either locus of the K562 cells; therefore, the homeostasis of the
analyzed telomeres did have an in cis relation with the lncRNA transcribed from its adjacent
subtelomeric region. However, the interplay between telomeric transcription and telomere
stability appeared to depend more on histone methylation at the associated subtelomeric
region than a direct effect from TERRA transcription. This finding was evidenced by the effect
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of the loss of H4K20me3, which impaired TERRA transcription in euchromatin mark-enriched
loci that were otherwise poised for transcription.

This result leads us to believe that, in the process of chromosome healing that follows
telomere crisis and genomic instability, the recovery of heterochromatin at subtelomeres
favors the stabilization of telomeres, not just the presence of telomerase. By first accumu-
lating H4K20me3/H3K4me3 and promoting TERRA transcription, critically short telom-
eres recruit telomerase. Once telomere elongation has begun, the heterochromatin marks
H3K27me3/H3K9me3 accumulate in the adjacent subtelomeric region and limit TERRA
expression. This process stabilizes telomere length within a set point between replication-
induced shortening and telomerase-mediated lengthening.

In this way, reduced expression of TERRA can contribute to telomeric instability and
prompt the development of chromosomal abnormalities as cells divide in the absence of
stable telomeres. Thus, a disruption in TERRA homeostasis is not a cause but a consequence
of cellular transformation, and changes in its expression profile can lead to telomeric and
genomic instability that can either initiate premature cellular senescence or enable the
selection of a cellular clone with unlimited replication potential (Figure 11).
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Figure 11. Proposed model for TERRA involvement in telomere recovery. In spite of hTERT reactiva-
tion, the expansion of a cell clone leads to critical telomere length due to an accelerated cell division. If
hTERT is overexpressed, telomere healing ensues, and homeostasis is recovered. If hTERT expression
does not resolve telomere loss, then genomic instability takes place. If the conditions are met, both
scenarios can further develop. Upper panel. In cells with stable telomere length, proliferation can still
be halted. Accumulation of DNA damage under physiological levels of oxidative stress can lead to
the TP53/RB1-mediated cell cycle arrest and the induction of cellular senescence [18,89]. Lower panel.
In cells with critical telomere length, further mutations can accumulate due to genomic instability.
Mutations in genes such as HRAS, TP53, and RB1, together with the re-expression of hTERT, can
prompt a cell towards malignant transformation [86–88].
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