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A biomimetic neural encoder for spiking neural
network
Shiva Subbulakshmi Radhakrishnan 1, Amritanand Sebastian 1, Aaryan Oberoi 1, Sarbashis Das 2 &

Saptarshi Das 1,3,4✉

Spiking neural networks (SNNs) promise to bridge the gap between artificial neural networks

(ANNs) and biological neural networks (BNNs) by exploiting biologically plausible neurons

that offer faster inference, lower energy expenditure, and event-driven information proces-

sing capabilities. However, implementation of SNNs in future neuromorphic hardware

requires hardware encoders analogous to the sensory neurons, which convert external/

internal stimulus into spike trains based on specific neural algorithm along with inherent

stochasticity. Unfortunately, conventional solid-state transducers are inadequate for this

purpose necessitating the development of neural encoders to serve the growing need of

neuromorphic computing. Here, we demonstrate a biomimetic device based on a dual gated

MoS2 field effect transistor (FET) capable of encoding analog signals into stochastic spike

trains following various neural encoding algorithms such as rate-based encoding, spike

timing-based encoding, and spike count-based encoding. Two important aspects of neural

encoding, namely, dynamic range and encoding precision are also captured in our demon-

stration. Furthermore, the encoding energy was found to be as frugal as ≈1–5 pJ/spike.
Finally, we show fast (≈200 timesteps) encoding of the MNIST data set using our biomimetic

device followed by more than 91% accurate inference using a trained SNN.
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B illions of neurons coupled through trillions of synapses
form the complex computational unit of the brain, that can
simultaneously process a massive amount of information

received from external/internal stimuli through various sensory
organs. These neurons use action potential or spikes as the
common language to speak with each other and to compute for
learning and decision-making. Spikes are stereotypical electrical
impulses or all-or-none (digital) point events in time, that allow
long-distance neural communication and energy-efficient neural
computation. However, external stimuli such as light, sound,
smell, temperature, etc., and internal stimuli such as blood
pressure, oxygen levels, feeling of pain and hunger, etc. that are
primarily analog continuous variables in time. It requires spe-
cialized sensory neurons, also known as afferent neurons, to
transform the specific type of analog stimulus into corresponding
spike trains following one or more neural encoding algorithms,
and subsequently relay the spike-encoded information to the
central nervous system for processing. This process is referred to
as sensory transduction. For example, in the auditory neural
pathways, mechanoelectrical transduction is mediated by the hair
cells within the ear1. Similarly, gustatory receptors in taste buds
interact with chemicals in food to produce action potentials2,3.
Phototransduction in the retina is mediated by rods and cones
and eventually converted to spikes by the ganglion cells4,5. Sen-
sory transduction also exhibits inherent stochasticity, which
allows neurons to process information with better noise tolerance
and energy efficiency6,7.

The diversity of neurobiological architectures and neural
computational algorithms found inside even the simplest of
animal brains continue to fascinate computer scientists and
electronic device engineers. Neuromorphic computing pioneered
by Carver Mead and colleagues is a branch of research that aims
to mimic the computational power of the brain on a chip8,9.
Unfortunately, the initial growth in neuromorphic computing
was rather slow owing to the contemporary dominance of von
Neuman architecture, and the success of the complementary
metal-oxide-semiconductor (CMOS) technology. However, the
recent demise in scaling and fundamental limitations of von
Neuman computing is fueling the resurgence of bio-inspired
neuromorphic hardware10–12. Artificial neural networks (ANNs)
are the most prevalent form of neuromorphic computing that
have already demonstrated breakthrough progress in many
fields13. ANNs consist of multiple layers with each layer com-
prising of collection of computational units, called artificial
neurons, which are connected through artificial synapses. While
the models of cortical hierarchies from biological neural networks
(BNNs) have been mimicked through deep learning14 in ANNs
with a massive number of computational layers, only marginal
similarities with brain-like computing can be recognized at the
implementation level. The most obvious difference is that artifi-
cial neurons receive, process, and transmit analog information in
continuous time, whereas biological neurons use action potential
or spikes. Also, stochasticity is an inherent neural phenomenon,
which is typically ignored by most ANNs. Spiking neural network
(SNN) promises to bridge this gap by adopting a new computing
paradigm based on biologically plausible neurons15,16. In fact, the
past few years have seen tremendous progress in the development
of SNNs offering unprecedented energy efficiency and faster
inference owing to event-driven computation17. However, hard-
ware realization of SNNs necessitates the development of neural
encoders since conventional sensors are incapable of converting
sensory input into spike trains.

Here, we report a biomimetic device based on a dual gated
MoS2 field effect transistor (FET) with a stochastic sampling
terminal capable of encoding analog signals, for example illumi-
nance levels of a light emitting diode (LED), into corresponding

spike trains. We are also able to implement various neural
encoding algorithms, such as rate-based encoding, spike timing-
based encoding, and spike count-based encoding. Two key fea-
tures of neural encoding, namely, dynamic range and encoding
precision are also captured in our demonstration. Finally, we
show a fast and accurate inference of spike encoded MNIST data
set using a trained spiking neural network (SNN) with inference
accuracy of more than 91%. Remarkably, energy consumption by
our biomimetic neural encoder was found to be as frugal as ≈1–5
pJ/spike.

Results
The overall philosophy of biomimetic neuromorphic computing
is shown in Fig. 1. Figure 1a shows the schematic of a biological
neural network that involves sensory transduction of analog sti-
mulus to corresponding spike trains by specialized neurons and
subsequent processing by the central nervous system. For
example, external optical stimuli are converted into correspond-
ing graded potentials by the photoreceptor cells (rods and cones)
in the human eyes followed by neural encoding into spike trains
using the ganglion cells, and eventual processing of the encoded
visual stimulus by the visual cortex. Figure 1b shows the corre-
sponding neuromorphic hardware comprising of neuromorphic
sensors, neuromorphic encoders, and neuromorphic processors.
Figure 1c shows the schematic of our experimental demonstration
with a white light-emitting diode (LED) as the visual stimulus, a
silicon (Si) photodiode (PD) as the sensor, a dual gated MoS2-
based FET as the neuromorphic encoder, and a trained spiking
neural network (SNN) as the neuromorphic processor.

Biomimetic neural encoder and neuromorphic transducer. We
have used multilayer exfoliated MoS2 that belongs to the family of
two-dimensional (2D) layered materials18–20 as the semi-
conducting channel, 285 nm SiO2 on p++-Si as the back-gate
stack, and 120 nm of hydrogen silsesquioxane (HSQ) as the top-
gate dielectric for the fabrication of the biomimetic neural encoder
as shown schematically in Fig. 2a. The thickness of the MoS2 flake
is ≈5 nm. The optical image of the device is shown in Fig. 2b.
Source, drain, and gate metal stacks were patterned using electron-
beam lithography followed by the deposition of 40 nm of Nickel
(Ni) and 30 nm of gold (Au) using electron-beam evaporation.
More details on device fabrication can be found in the “Methods”
section and in our prior work21,22. The channel length and width
were ≈1 μm and ≈2.8 μm, respectively. Note that the use of
ultrathin body MoS2 as the semiconducting channel material is
motivated by the growing interest in 2D materials, as a successor
to Si as well as their promising use in neuromorphic and biomi-
metic devices12,22–25. Furthermore, various types of sensors such
as photodetectors26, chemical sensors27, biological sensors27,
touch sensors28, and radiation sensors29 have been demonstrated
using MoS2 based devices, which allow direct integration of sen-
sors and encoders in future neuromorphic hardware. The pre-
synaptic signal obtained from the neuromorphic sensors such as
the Si PD is applied to the back-gate terminal as analog voltage
(VPSV), whereas, encoded information in form of postsynaptic
current spikes (IPSC) is obtained at the drain terminal. The top-
gate voltage (VTG) is applied as a sequence of sampling pulses,
with a pulse duration (tp) of 10ms and amplitude determined
based on the desired encoding algorithm.

Figure 2c shows the transfer function of the neural encoder i.e.,
IPSC vs. VPSV measured at a drain bias, VDS= 1 V, for different
VTG. The n-type unipolar characteristics is common for MoS2
FETs30,31. The monotonic positive shift in the transfer function
with decreasing VTG can be explained form the principle of
charge balance, i.e., the inversion charge induced by positive VPSV
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is compensated by the negative VTG and vice versa. Figure 2d
shows the spiking threshold (VST), which we define as VPSV

required to invoke a current spike, i.e., IPSC > IST as a function of
VTG, and for different thresholding current, IST. As expected, the
spiking threshold is higher for more negative VTG and higher IST.
Note that the slope of VST vs. VTG is constant, irrespective of IST
and is proportional to the ratio of back-gate capacitance to top-
gate capacitance, i.e., CTG/CBG which was found to be ≈2.2,
consistent with the thicknesses of ≈120 nm and ≈285 nm and
dielectric constants of ≈3.2 and ≈3.9 of HSQ and SiO2,
respectively. Also, note that the presynaptic terminal (back-gate)
and encoding terminal (top-gate) can be interchanged (see
Supplementary Fig. 1 and Supplementary Note 1). Figure 2e
shows the circuit schematic for phototransduction comprising of a
Si PD and a load resistor (RL). Figure 2f shows the current (IPD) vs.
voltage (VPD) characteristics of the neuromorphic sensor, i.e. Si
PD for different intensities of the visual stimulus, i.e., LED
illuminance (PLED). Finally, Fig. 2g shows the phototransduction
characteristics of the Si PD and corresponding VPSV applied to the
neuromorphic encoder as a function of PLED obtained using RL.

Hardware acceleration of various neural encoding algorithms.
Next, we implement various neural encoding algorithms, found in
sensory neurobiology, using our biomimetic encoder for trans-
lating analog VPSV values obtained for different LED illumina-
tions shown in Fig. 3a into corresponding spike trains. The most
popular encoding principle is rate-based encoding, originally
demonstrated by Adrian and Zotterman32 using an electro-
physiological experiment in sensory nerve fibers of frog muscles.
In rate encoding, it is postulated that the information about the
stimulus is contained in the firing rate of the neuron, and not in
individual spikes. This is more so because the sequence of spikes
generated by the neurons in response to a given stimulus varies
from trial to trial and over time owing to the inherent stochas-
ticity in sensory transduction, whereas the mean firing rate, i.e.,
inverse of interspike interval remains practically constant.
Numerous studies in sensory and motor systems of various spe-
cies have validated the spike rate encoding hypothesis. Based on
these observations, rate encoding is widely used for SNNs. For
rate-based encoding using our biomimetic encoder, the magni-
tude of VTG pulses are randomly sampled from a Gaussian

Fig. 1 Biomimetic neuromorphic computing. a Schematic of biological neural network (BNN). Specialized neurons convert analog external/internal stimuli
into corresponding spike trains by a process called sensory transduction and subsequent relay the information to the central nervous system for further
processing. Various encoding algorithms are found in sensory neurobiology such as spike rate-based, spike count-based, and spike timing-based encoding.
b Schematic of bio-inspired artificial neural network comprising of neuromorphic sensors, neuromorphic encoders, and neuromorphic processors.
c Schematic of our spiking neuromorphic system consisting of a white light emitting diode (LED) as the visual stimulus, a silicon (Si) photodiode (PD) as
the sensor, a dual gated MoS2 based field effect transistors (FETs) with a stochastic terminal as the neuromorphic encoder, and a trained spiking neural
network (SNN) as the neuromorphic processor.
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distribution with mean, μTG=−2.5 V, and standard deviation
σTG= 0.8 V as shown in Fig. 3b and the responses corresponding
to each VPSV value with IST= 500 pA is displayed in Fig. 3c (see
“Methods” section for discussion on current-sampling method).
During each trial, VTG pulses were sampled for N number of
times (=32) and a total of 16 trials were conducted resulting in
512 sampling points for each VPSV. See Supplementary Fig. 2 for
the complete circuit used to obtain neural encoding for different
illumination levels. Also, see Supplementary Movie 1 for real-time
encoding of different LED intensities into stochastic spike trains.
Figure 3d shows the encoding transfer function, i.e., mean firing
rate (inverse of the mean interspike interval) as a function of VPSV

(see Supplementary Fig. 3 for distribution of interspike interval).
Clearly, the firing rate increases monotonically with increasing
stimulus intensity, indicating that our biomimetic encoder is
capable of rate-based encoding. Finally, Fig. 3e shows the
encoding energy per spike (Een) for rate-based encoding, com-
puted based on Eq. (1). The monotonic increase in Een with
increasing VPSV is consistent with increasing firing rate, i.e., more
spiking in the postsynaptic neuron.

Een ¼
1
N

∑
N

i¼1

1
2
CTGVTG;i

2 þ VPSC;iVDStp

� �
; ð1Þ

Typical energy consumption is around 1–5 pJ/spike. Note that
the second term in Eq. (1) dominates in our demonstration since
the first term contributes ≈100 fJ. Therefore, one obvious way to

reduce the power consumption is through VDS scaling. Note that
the neural encoder exploits subthreshold device characteristics
and does not impose any requirement on the current device.
Hence it is possible to operate the neural encoder with ultra-low
VDS. Another alternative to reduce the power dissipation is to
increase the sampling rate i.e., reduce tp. However, beyond a
certain point, the first term will start to dominate, which can be
scaled by scaling the oxide thickness to achieve encoding at scaled
VTG values. Note that oxide thickness scaling increases CTG, but
the square term involving VTG will determine the energy scaling.

Another encoding principle found in sensory neurobiology is
spike count-based encoding. For example, rats show remarkable
texture discriminations using their facial whiskers. It is found that
the trigeminal ganglion cells that innerte the sensory receptor
from each whisker use spike count to distinguish the stimuli33.
Similar spike count encoding is observed for frequency
discrimination of vibrotactile stimuli in the primary somatosen-
sory cortex of trained monkeys34. Figure 3f shows the VTG pulse
profile used to achieve spike count-based encoding using our
biomimetic encoder. In this case, the magnitude of VTG pulses
increases with added zero mean Gaussian noise of standard
deviation σTG= 0.2 V. Each trial consists of 32 pulses, and 16
trials were recorded for each VPSV. The corresponding responses
of the neural encoder are displayed in Fig. 3g. Figure 3h shows the
encoding transfer function i.e., the mean spike count as a function
of VPSV (see Supplementary Fig. 4 for total spike counts for all 16
trials for different σTG). Clearly, the mean spike count increases
monotonically with increasing stimulus intensity, indicating that

Fig. 2 Biomimetic neural encoder and neuromorphic transducer. a Schematic and b optical image of our biomimetic neural encoder. We have used
multilayer exfoliated MoS2 as the semiconducting channel, 285 nm SiO2 on p++-Si as the back-gate stack, and 120 nm of hydrogen silsesquioxane (HSQ) as
the top-gate dielectric for the fabrication of the encoder. The channel length and width are ≈1 μm and ≈2.8 μm, respectively. Presynaptic signal obtained
from the neuromorphic sensors is applied to the back-gate terminal as analog voltage (VPSV), whereas encoded information in form of postsynaptic current
spikes (IPSC) is obtained at the drain terminal. The top-gate voltage (VTG) is applied as a sequence of sampling pulses, with a pulse duration of tp = 10ms
and amplitude determined based on the desired encoding algorithm. c Transfer function of the neural encoder i.e., IPSC vs. VPSV measured at a drain bias,
VDS = 1 V, for different VTG. d Spiking threshold (VST), which we define as VPSV required to invoke a current spike, i.e., IPSC > IST as a function of VTG, for
different thresholding current, IST. As expected, the spiking threshold is higher for more negative VTG and higher IST. e An example of neuromorphic
transducer comprising of Si PD and a parallel load resistor (RL). The Si PD transduces light from the LED into photocurrent, which is converted to VPSV by RL.
f Current (IPD) vs. voltage (VPD) characteristics of the Si PD for different LED illuminance (PLED). g Phototransduction characteristics of the Si PD and
corresponding presynaptic voltage (VPSV) applied to the neuromorphic encoder as a function of PLED.
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our biomimetic encoder is capable of spike count-based encoding.
Note that, the implementation of spike count-based encoding
does not necessarily require stochasticity, i.e., similar results could
be obtained using σTG = 0 V. However, in the context of SNN,
stochasticity can aid as hardware realization of integrate and fire
(IF) neuron can be challenging. A more realistic neuron is leaky

integrate and fire (LIF) neuron, where random spiking can
compensate for the loss in information due to capacitive
discharging between spikes. Figure 3i shows Een for spike
count-based encoding, which shows a monotonic increase with
VPSV since the spike count increases accordingly. The energy
expenditure was found to be ≈1–3.5 pJ/spike.
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Whereas, rate-based encoding and spike count-based encoding
are the most broadly accepted view of neural computation, these
approaches ignore the information possibly contained in the
exact timing of the spikes. In fact, recent studies suggest that a
straightforward firing rate or spike count-based encoding may be
too simplistic to describe brain activity in its entirety. For
example, neurophysiological experiments show that visual
neurons in rhesus monkeys can recognize faces within
≈80–160 ms35. Anatomically, it involves more than ten synaptic
stages between the photoreceptors of the retina and visually
responsive neurons in the temporal cortex implying that each
layer has, on average, only 10 ms of processing time. Since the
firing rates of cortical neurons are in the range 0–100 spikes
per second, a neuron in any given layer can only generate one
spike before neurons in the next layer have to respond. This puts
severe constraints on the way information is encoded in visual
pathways. Firing-rate or spike count-based encoding seems
inappropriate and evidence suggests that analog information is
encoded by the relative arrival times of spikes36–39. Such an
encoding scheme also referred to as the spike timing-based
encoding, not only allows very rapid information processing but
also offers tremendous energy benefits for future SNNs. Figure 3j
shows the VTG pulse profile used for achieving spike timing-based
encoding using our biomimetic encoder. In this case, the
magnitude of VTG pulses decreases over time with added zero-
mean Gaussian noise of standard deviation σTG = 0.2 V. Each
trial consists of 32 pulses for each VPSV. The corresponding
responses of the neural encoder are displayed in Fig. 3k. A sense
amplifier is used to sense the arrival of the first spike triggering
the deactivation of the VTG pulse sampling for the rest of the trial.
Figure 3l shows the encoding transfer function i.e., mean spike-
timing as a function of VPSV (see Supplementary Fig. 5 for
distribution of spike timing over multiple trials). Clearly, high-
intensity stimuli invoke early spiking and vice versa indicating
that our biomimetic encoder is capable of spike timing-based
encoding as well. Note that, the implementation of spike timing-
based encoding does not require stochasticity, i.e., similar results
could be obtained by using σTG = 0 V. However, the flexibility of
noise adjustment makes our neural encoder more bio-realistic.
Figure 3m shows Een for spike timing-based encoding. Unlike
rate-based and count-based encoding, timing-based encoding
shows a monotonic decrease with increasing VPSV. This is owing
to the fact the spiking occurs earlier for higher VPSV deactivating
the encoder and minimizing the energy consumption per spike.
The fact that the encoding energy can be significantly lower for
timing-based encoding compared to rate-based or count-based
encoding is appealing for ultra-low-power neuromorphic com-
puting using SNN (See Supplementary Note 2 showing the
comparison of our neural encoder with other types of spike
encoders).

Finally, Fig. 3n–q, respectively, shows the original Cameraman
image and the corresponding spike rate, spike count, and spike
timing-based encoding. The pixel values ranging from 0 to 255
were mapped linearly to the VPSV range of 0–5 V (see the
“Methods” section for details on image encoding). Clearly,
the Cameraman image is accurately encoded, irrespective of the
encoding algorithm. Note that the contrast of the image in Fig. 3q
is reversed compared to the original image, which is expected for
spike-time based encoding since the higher pixel values should
spike earlier than the lower pixel values. Supplementary movie
files 2 show the time evolution of encoded images over time for
rate-based, count-based, and timing-based encoding. Supplemen-
tary Fig. 6 shows the time evolution of the correlation coefficient
(CC) between the original image and the encoded image. The CC
reaches ≈1 at the end of encoding for all three encoding
algorithms.

Dynamic range and encoding precision for rate-based encod-
ing. Now, we focus on two key aspects of neural encoding,
namely, dynamic range and encoding precision. A high dynamic
range (HDR) allows neurons to respond to more extreme stimuli.
For example, photoreceptors in human eyes can identify objects
in starlight as well as in bright sunlight despite of illumination
levels differing by ≈9 orders of magnitude, i.e., over a dynamic
range of 90 dB40. Similarly, the dynamic range of human hearing
is roughly 140 dB41. However, HDR does not necessarily guar-
antee high precision (HP). For example, a whisper cannot be
heard in loud surroundings. Similarly, eyes take time to adapt to
different illumination levels. In fact, most sensory neurons adjust
their spike encoding based on the environment42–44. Figure 4a–f
shows how our biomimetic encoder achieves similar functionality
by adjusting σTG and μTG of the Gaussian distribution used for
sampling VTG as well as and the thresholding current, IST for the
spike rate-based encoding algorithm presented earlier. For
numerical simulations, we have used the virtual source (VS)
model described elsewhere22,23. Clearly, HDR can be achieved by
using higher values of σTG, whereas smaller values of σTG allow
HP (Fig. 4a, b). This is because the encoding transfer function
follows the cumulative probability distribution of a random
Gaussian variable since for a given VPSV stimulus, there will
always be a postsynaptic spike if the magnitude of the VTG pulse
is more positive than the one corresponding to the spiking
threshold, VST, as shown in Fig. 2c. For a higher value of σTG, the
cumulative probability distribution follows a linear trend allowing
a larger VPSV range to be encoded, whereas a lower value of σTG
results in a non-linear cumulative probability distribution that
restricts the encoding range but improves the encoding precision.
However, both feats cannot be achieved at the same time by
adjusting σTG. However, by adjusting μTG it is possible to achieve
HP for different ranges of stimulus intensity similar to the

Fig. 3 Hardware realization of neural encoding algorithms. a Analog VPSV values obtained for different LED illuminations. b Spike rate-based encoding
using VTG pulses that are randomly sampled from a Gaussian distribution with mean, μTG = −2.5 V, and standard deviation σTG = 0.8 V. c Corresponding
IPSC for each VPSV in a. During each trial, VTG pulses were sampled for N = 32 number of times and a total of 16 trials were conducted resulting in
512 sampling points for each VPSV. See Supplementary Movie 1 for real-time encoding of different LED intensities into stochastic spike trains. d Mean firing
rate (frequency) as a function of VPSV. e Encoding energy (Een) for rate-based encoding. f Spike count-based encoding. Here, the magnitude of VTG pulses
increase with added zero mean Gaussian noise of standard deviation σTG = 0.2 V. Each trial consists of 32 pulses and 16 trials are recorded for each VPSV.
g Corresponding responses of the neural encoder. h Mean spike count as a function of VPSV. i Een for spike count-based encoding. j Spike timing-based
encoding. Here, the magnitude of VTG pulses decrease over time with added zero mean Gaussian noise of standard deviation σTG = 0.2 V. Each trial
consists of 32 pulses for each VPSV. k Corresponding responses of the neural encoder. A sense amplifier is used to sense the arrival of the first spike
triggering the deactivation of the VTG pulse sampling for the rest of the trial. l Mean spike-timing as a function of VPSV. m Een for spike timing-based
encoding. Error bars in d, e, h, i, l, m represent the variation (standard deviation) across trials. n Original, o spike-rate encoded, p spike-count encoded, and
q spike-timing encoded Cameraman image. The pixel values ranging from 0 to 255 were mapped linearly to the VPSV range of 0 to 5 V. Supplementary
movie files 2 show the time evolution of encoding of the Cameraman images for rate-based, count-based, and timing-based encoding.
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sensory neurons (Fig. 4c, d). The spiking rate can also be tuned by
adjusting the IST (Fig. 4e, f). Lower values of IST allow more
spiking events for any given VPSV, whereas, higher values of IST
restrict spiking even for higher VPSV. Figure 4g and h show the
original and scaled Cameraman images, and Fig. 4i–l, respec-
tively, show the corresponding spike rate-based linear and non-
linear encoding using our biomimetic encoder. The original
Cameraman image necessitates linear encoding since the pixel
values have a large dynamic range, whereas, the scaled Camera-
man image is better encoded using high precision non-linear
encoding.

MNIST digit classification using our neural encoder device.
Finally, we exploit our biomimetic encoder for encoding MNIST
data set on digit-classification into spike trains and infer using a
trained SNN. For training the SNN we have used an approach
described by Sengupta et al.45. This approach overcomes the
lower accuracy of unsupervised learning rules such as the spike-
time dependent plasticity (STDP) used for training SNNs46–50.
The lower accuracy is due to the lack of efficient algorithms to
make use of the spiking neurons. To bridge this gap, ANN-SNN

conversion schemes are used, where an ANN is trained using
the traditional back-propagation algorithm, followed by the
conversion of the ANN to SNN45,51,52. This approach yields
higher inference accuracy owing to near-lossless ANN-SNN
conversion45. Here, we train a fully connected two-layered arti-
ficial neural network with 100 neurons in the hidden layer and 10
neurons in the output layer for digit-classification using the
MNIST dataset as shown in architecture in Fig. 5a. MNIST
dataset with a size of 28 × 28 pixels is flattened to obtain 784
pixels, which is fed to the input layer. The ten output neurons
correspond to digits from 0 to 9. During training, for every input
image, the network is trained through gradient descent to ensure
that the output matches the expected label. Here, the ANN is
trained with a learning rate of 0.0001 to ensure high convergence
accuracy. Further, the following restrictions are incorporated
while training the ANN to allow smooth ANN-SNN transition:
rectified linear unit (ReLU) is used as the activation function due
to its functional equivalence to IF spiking neuron used in SNN,
bias terms are eliminated to ensure a smaller parameter space
which enables easier ANN-SNN conversion, and no regulariza-
tion is used. Sixty thousand images from the MNIST data set were
used to train the ANN to achieve a training accuracy of 91.5%

Fig. 4 Dynamic range and encoding precision for rate-based encoding. a Experimental and b virtual source (VS) model-based simulation of firing rate as a
function of VPSV, for different σTG. of the Gaussian distribution used for sampling VTG. A high dynamic range (HDR) can be achieved by using higher
values of σTG, whereas smalle. r values of σTG. allow high precision (HP). However, both feats cannot be achieved at the same time by adjusting σTG.
c Experimental and d VS model-based simulation of firing rate as a function of, VPSV, for different mean (μTG) of the Gaussian distribution used for sampling
VTG. By adjusting μTG it possible to achieve HP for different ranges of stimulus intensity like the sensory neurons. e Experimental and f VS model-based
simulation also show that the firing rate can be tuned by adjusting IST. Lower values of IST allow more spiking events for any given VPSV, whereas, higher
values of IST restrict. s spiking even for higher VPSV. g Original and h scaled Cameraman images. Corresponding spike rate-based i, j linear and k, l non-
linear encoding using our biomimetic encoder. The original Cameraman image necessitates linear encoding since the pixel values have large dynamic
range, whereas, the scaled Cameraman image is better encoded using high precision non-linear encoding.
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over 100 epochs. Following this, a testing accuracy of 92.7% was
achieved using the remaining 10,000 images.

As discussed, SNNs use binary spikes in time which are
representative of the action potential in BNNs. This requires the
conversion of the analog image pixel intensities to digital spike
trains. To accomplish the analog to spike conversion using our
biomimetic encoder, first, the pixel intensity values ranging from 0
to 255 are mapped onto VPSV range of 0–5 V. Next, we record IPSC,
for VPSV values corresponding to each pixel over a time window,
TW, by applying stochastic VTG pulses. Each IPSC value subsequently
undergoes a thresholding function with IST to generate binary X in
time. We adopt rate-based encoding by applying VTG pulses with
the pulse magnitude determined using a random Gaussian
distribution, as described earlier. Figure 5b shows examples of
spike encoded digit using μTG=−5.5 V, and σTG= 1 for the
Gaussian distribution for the VTG pulses, and IST= 200 pA. The
resultant X is fed into the SNN, as shown in the input layer of
Fig. 5a. For ANN-SNN conversion, ReLU activation functions are
replaced by IF neuron as shown in Fig. 5c following Eq. (2).

Vmeanðt þ 1Þ ¼ VmeanðtÞ þ∑w � XðtÞ: ð2Þ

Here, the IF neuron is represented as the function of timesteps
(t). Vmean(t) is the membrane potential, and w denotes the
weights obtained from the trained ANN. In the IF neuron when
the membrane potential crosses a certain threshold (Vth), the
neuron spikes, propagating spike to the next layer, and it resets
back to its resting potential which is set as zero. To optimize the
IF neuron threshold, threshold-balancing is used to set the
threshold as the maximum neuron activation for the correspond-
ing layer obtained by the dot product of the weights and spike-
train at an instance t45. The SNN is used to classify the set of
10,000 test images. Figure 5d shows the inference error versus the
number of timesteps. Increasing the number of timesteps is
important to allow sufficient firing, to effectively encode the pixel

intensities. But remarkably, even with 200 timesteps, we achieve a
low error of 9.5%. This is further improved as the timesteps are
increased with the minimum error of 8.6% at 300 timesteps.
Hence a maximum accuracy of 91.4% is achieved when the SNN
is simulated with our biomimetic neural encoder. Additionally,
similar test accuracies are obtained from both ANN and SNN,
indicating a successful ANN-SNN transformation with a minimal
loss of 1.3%.

Finally, we explore the dependence of inference accuracy on
the dynamic range and the firing rate, parameters that can be
adjusted in our biomimetic spike encoder by adjusting σTG and
IST, respectively. As shown in Fig. 5e, minimum error of ≈8.6% is
achieved at σTG of 0.8 and 1, with higher errors for lower and
higher σTG. As described earlier in Fig. 4a, b, for lower σTG, the
dynamic range is low to capture the variation in pixel intensities,
whereas for very high σTG, there is insufficient difference between
t firing rates corresponding to different pixel intensities resulting
in a large error. A similar non-monotonic trend is seen in
inference error with respect to IST in Fig. 5f, with the minimum
error of 8.6% obtained at 200 pA. For higher IST, the spiking is
minimal resulting in an inadequate representation of image
pixels, while for lower IST, any pixel intensity results in excessive
firing as seen in Fig. 4e, f. Nevertheless, by optimizing these
parameters it is possible to ensure efficient encoding of the
MNIST images, and thereby achieve a maximum accuracy
of 91.4%.

Discussion
In conclusion, we have developed a neural encoder based on a
dual gated MoS2 FET with a stochastic sampling terminal capable
of encoding analog signals into spike trains. We also implemented
three encoding algorithms, namely, spike rate-based encoding,
spike count-based encoding, and spike timing-based encoding
found in sensory neurobiology. As a prototype demonstration, we

Fig. 5 Encoding of MNIST data for digit classification using SNN. a A fully connected two-layered trained ANN with 100 neurons in the hidden layer and
10 neurons in the output layer for MNIST digit-classification is transformed into SNN. b Examples of spike encoded digits. First, the pixel intensity values
ranging from 0 to 255 are mapped on to VPSV values in the range of 0–5 V. Next, we recorded IPSC for each VPSV by applying stochastic VTG pulses with IST
= 200 pA to generate binary spike trains (X) in time. We adopt rate-based encoding by applying VTG pulses with the pulse magnitude determined using a
random Gaussian distribution with μTG = −5.5 V, and σTG = 1 V. c Characteristics of IF neuron which is substituted for ReLU for ANN-SNN conversion. In
the IF neuron when the membrane potential crosses a certain threshold (VTH), the neuron spikes, propagating spike to the next layer, and it resets back to
its resting potential which is set as zero. d Inference error versus the number of timesteps for classifying a set of 10,000 test images. Increasing the
number of timesteps is important to allow sufficient firing, to effectively encode the pixel intensities. But even with 200 timesteps, we achieve a low error of
9.5%. Dependence of inference accuracy on e σTG, and f IST. The minimum error of ≈8.6% is achieved at σTG = 0.8 V. For lower σTG, the dynamic range is
insufficient to capture the variation in pixel intensities, whereas, for very high σTG, there is insufficient difference between the firing rates corresponding to
different pixel intensities resulting in larger errors. Similarly, the minimum error of 8.6% is obtained for IST = 200 pA. For higher IST, the spiking is minimal
resulting in an inadequate representation of image pixels, whereas, for lower IST, any pixel intensity results in excessive firing.
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show the direct conversion of analog light intensities to corre-
sponding rate-based spike trains analogous to phototransduction
mechanisms in visual pathways. We also show frugal encoding
energy expenditure in the range of few pico Joules per spike. Our
biomimetic encoder also allows flexibility in terms of adjusting
the encoding range and encoding precision, two key features
found in biological sensory transduction to enable seamless
adaption to different environmental conditions. Finally, we
encoded the MNIST data set for digit classification using our
spike encoder and achieved an inference accuracy of 91.4% by
using a trained SNN. In brief, our demonstration of the biomi-
metic neural encoder is a leap forward towards achieving energy-
efficient and bio-realistic neuromorphic hardware.

Methods
Device fabrication. The dual-gated devices were fabricated using micro-
mechanically exfoliated MoS2 flakes on 285 nm thermally grown SiO2 substrates
with highly doped-Si as the back-gate electrode. The source/drain contacts were
defined using electron-beam lithography (Vistec EBPG5200). Ni (40 nm) followed
by Au (30 nm) were deposited using electron-beam evaporation for the contacts.
For fabricating the top-gate, hydrogen silsesquioxane (HSQ) was used as the
dielectric. It was deposited by spin coating 6% HSQ in methyl isobutyl ketone
(MIBK) (Dow Corning XR-1541-006) at 4000 rpm for 45 s and baked at 80 °C for
4 min. The HSQ was patterned using an e-beam dose of 2000 µC/cm2 and was
developed at room temperature using 25% tetramethylammonium hydroxide
(TMAH) for 30 s following a 90 s rinse in deionized water (DI). Next, it was cured
in the air at 180 °C and then 250 °C for 2 min and 3 min, respectively. The top-gate
electrode was patterned using electron-beam lithography followed by the deposi-
tion of Ni/Au using electron-beam evaporation as the contact.

Device measurements. Electrical characterization was performed at room tem-
perature in high vacuum (≈10–6 Torr) on a Lake Shore CRX-VF probe station and
using a Keysight B1500A parameter analyzer. We observed none to minimal
hysteresis in the device characteristics for both top-gate and back-gate sweeps
indicating high quality of MoS2/SiO2 and MoS2/HSQ interfaces (See Supplemen-
tary Fig. 7). For current sampling, when a sampling delay is set, (for example, T=
10 ms) the tool determines a time width (W) for integration based on the current
value i.e., lower current values need larger W and vice versa. If W < T the tool
measures the current at any point within the delay period. Else if W > T, irre-
spective of the time delay, the tool measures the current every time width (W) it
sets for the current value range. The 10 ms delay we chose is large enough for the
current value ranges we are operating to integrate. So, the tool will measure at any
point within the 10 ms delay.

Image encoding. Note that the gray scale pixel values in an 8-bit cameraman
image range from 0–255, which are mapped to VPSV range of 0–5 V. This would
require a VPSV precision of 5/255 = 0.0196 ≈ 0.02 V. However, our experimental
VPSV step size was 0.5 V. Therefore, we quantized the cameraman image into 11
distinct levels and correlate those levels to VPSV= 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0, 4.5, and 5.0 V. Note that for spike-rate based encoding, our maximum fre-
quency is 100 Hz and the average standard deviation for the encoded frequencies
i.e., the encoding error bar is ≈10 Hz, allowing distinct encoding of 11 levels. One
way to improve the mapping precision for spike-rate based encoding is to increase
the maximum encoding frequency to 1000 Hz through faster sampling if the
encoding error bar remains unaltered. Similarly, for spike-count based encoding,
the maximum count is 16 and the average standard deviation for the encoded
count or the encoding error bar is ≈1.5, again allowing the distinct encoding of
11 levels. Finally, for spike-timing based encoding, the maximum number of time-
steps is 30 and the average standard deviation for the encoded time-step or the
encoding error bar is ≈4, allowing the distinct encoding of eight levels. The
mapping precision for spike-count and spike-timing based encoding can be
increased by increasing the total number of sampling points.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The codes used for plotting the data are available from the corresponding authors on
reasonable request.
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