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Abstract: Large-sized or deep skin wounds require skin substitutes for proper healing without scar
formation. Therefore, multi-layered skin substitutes that mimic the genuine skin anatomy of multiple
layers have attracted attention as suitable skin substitutes. In this study, a novel skin substitute was
developed by combining the multi-layer skin tissue reconstruction method with the combination of a
human-derived keratinic extract-loaded nano- and micro-fiber using electrospinning and a support
structure using 3D printing. A polycaprolactone PCL/keratin electrospun scaffold showed better
cell adhesion and proliferation than the keratin-free PCL scaffold, and keratinocytes and fibroblasts
showed better survival, adhesion, and proliferation in the PCL/keratin electrospun nanofiber scaf-
fold and microfiber scaffold, respectively. In a co-culture of keratinocytes and fibroblasts using a
multi-layered scaffold, the two cells formed the epidermis and dermal layer on the PCL/keratin
scaffold without territorial invasion. In the animal study, the PCL/keratin scaffold caused a faster
regeneration of new skin without scar formation compared to the PCL scaffold. Our study showed
that PCL/keratin scaffolds co-cultured with keratinocytes and fibroblasts promoted the regeneration
of the epidermal and dermal layers in deep skin defects. Such finding suggests a new possibility for
artificial skin production using multiple cells.

Keywords: skin substitute; human hair keratinic extract; electrospinning; 3D printing; co-culture

1. Introduction

During the skin wound-healing process, well-organized granulation tissue formation
in the dermis and re-epithelization of the epidermis are essential. The crucial factor for
granulation tissue formation is the proper infiltration of inflammatory cells and fibroblasts,
while the crucial factor for re-epithelization is the proper migration and proliferation of
keratinocytes [1,2]. Proper contraction of the wound is essential for restoring the dermal
barrier; however, uncontrolled extreme contracture caused by excessive migration of fibrob-
lasts and infiltration of disorganized collagen can lead to increased scar formation [3–5].

When the wound size is large, re-approximation of the skin, which is essential for re-
epithelialization, is more difficult [3]. The deeper the wound, the more progenitor fibroblast
stem cells, that initiate re-epithelialization from the wound margin, are destroyed [3]. Thus,
larger and deeper wounds are associated with delayed wound healing and increased scar
or wound contracture [3]. Artificial skin substitutes are suggested as a way to minimize
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these scars or wound contractures. Suitable skin substitutes should thus be fabricated
considering the skin tissue anatomy [6] and wound-healing process [7].

Recently, multi-layered skin substitutes that mimic the genuine skin anatomy of mul-
tiple layers (epidermis, dermis, and hypodermis) have received attention. The epidermis
mainly consists of keratinocytes and keratin-based extracellular matrix (ECM), while the
dermis consists of fibroblasts and ECM (e.g., collagen, fibronectin, and elastin) produced by
fibroblasts [8]. The nanofibers produced by electrospinning have many advantages for pro-
ducing scaffolds as electrospun nanofibers can mimic the nanoscale structural dimensions
of ECM, which consist of proteoglycan and fibrous proteins [9].

Polycaprolactone (PCL) is widely used as an electrospun material for tissue regen-
eration because of its superior biodegradability, biocompatibility, and proper mechanical
properties [10–12]. However, PCL is a hydrophobic material that is deficient in cell recogni-
tion sites, which decreases cell affinity and limits cell adhesion [13,14]. Therefore, natural
polymers, such as collagen, gelatin, hyaluronan, keratin, and fibrinogen, are blended into
PCL to improve cell adhesion or affinity [15–17].

Meanwhile, keratin separated from hair and wool fibers has cell adhesion sequences,
such as Arg-Gly-Asp (RGD) and leucine–aspartic acid–valine (LDV), which mainly exist in
ECM proteins, such as fibronectin [18,19]. These peptide sequences promote cell attachment
and proliferation [20]. Keratin is known to induce the proliferation of various cells and
to increase cell adhesion. Keratin promotes adhesion and proliferation of fibroblasts
more than type I collagen [20]. Moreover, alginate/keratin hydrogels have been found to
induce more fibroblast growth and migration than alginate hydrogels [21]. During skin
wound healing, keratins, which are made by keratinocytes, are one of the first waves of
alarm. Keratins provide a structure for cell anchoring and regulate the proliferation or
differentiation of keratinocytes [22]. Thus, keratin supplementation or scaffolds containing
keratin have received great interest as a new biomaterial for skin regeneration [23,24].
Natural polymers, such as collagen, gelatin, hyaluronan, and fibrinogen, have limitations
for large-scale production due to limited protein sources and the high cost of protein
extraction [25]. Human hair waste has the potential to solve these problems as a keratin
source, and several studies have shown that human hair keratin could be used as a scaffold
for tissue regeneration [26–28].

In this study, we fabricated a PCL/keratin electrospun scaffold and cultured two cell
layers of keratinocytes and fibroblasts on the electrospun scaffold to mimic the epidermis
and dermis layer of the skin. Keratin was extracted from the human hair waste. To mod-
ulate the proper layers of keratinocytes and fibroblasts, we used two sizes of fibers for
the scaffold: nanofibers for keratinocyte growth and microfibers for the growth of fibrob-
lasts. Between the two layers, we added a 3D-printed support structure with PCL for easy
handling of the cell-cultured scaffold and proper application on the wound site without
unwanted folding or tearing. Using an animal deep skin defect model, we evaluated the
effect of keratinocyte/fibroblast-cultured PCL/keratin electrospun scaffolds on skin regen-
eration and compared the effect of skin regeneration with keratinocyte/fibroblast-cultured
PCL electrospun scaffolds.

2. Materials and Methods
2.1. Materials

Human hair was collected from local barber shops. PCL (Mn 45,000), urea (CH4N2O),
sodium dodecyl sulfate (SDS), and 2-mercaptoethanol were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Sodium hydroxide and formic acid were purchased from Samchun
Chemicals (Seoul, Korea).



Polymers 2021, 13, 2584 3 of 16

2.2. Extraction of Human Hair Keratin

Keratin was extracted from human hair according to a previously reported method
[18,29,30]. Human hair was obtained from natural, undyed male hair in a barber shop,
regardless of age. All the study were approved by the Animal Subjects Committee of
Gachon University (Approval number: LCDI-2019-0105). Random hair samples were first
washed with soap, followed by 70% ethanol to remove surface oils, rinsed extensively with
water, dried, and then cut into short pieces. The defatted human hair (10 g) was mixed
with distilled water (300 mL), urea (90 g), SDS (9.6 g), and 2-mercaptoethanol (9.6 g) in
a 500 mL round-bottom flask. The mixed solution was adjusted to pH 9 with 1 mol/L
sodium hydroxide and stirred for 48 h at 70 ◦C. The resulting mixture was centrifuged for
10 min at 8000 rpm, and the supernatant was filtered. The obtained solution was dialyzed
against deionized water containing 0.1% 2-mercaptoethanol. The dialysate was replaced
every 12 h, and dialysis was stopped after 84 h.

The resulting mixture was filtered using medical gauze to remove insoluble hairs.
Keratin extracts were then centrifuged at 6000 rpm for 15 min. The resulting supernatant
was dialyzed against distilled water for 72 h at room temperature using a cellulose tube
(MWCO: 12,000–14,000 Da; SPL Life Science, Pocheon, Korea) by changing the outer
solution every day. The dialysate was centrifuged again at 14,000 rpm for 25 min to remove
the aggregated structures. Finally, the dialysate was poured into a flat-bottom flask, frozen
at −86 ◦C, and lyophilized for 48 h to obtain keratin in powder form.

2.3. Preparation of Polymer Solution

PCL solutions of 20% (w/v) were prepared by dissolving PCL powder in formic acid
with magnetic stirring for 2 h at room temperature. To prepare a 40% (w/v) PCL/keratin
blend solution, keratinic extract powder (1.0 g) was dissolved in 5 mL of formic acid under
continuous magnetic stirring at 40 ◦C for approximately 2 h, after which 1 g of PCL powder
was dissolved in the solution.

2.4. Electrospinning Process

Electrospinning was performed using a horizontal electrospinning setup (NanoNC,
Seoul, Korea). The syringe tip was positioned approximately 10 cm above the flat metallic
platform. A voltage of 15–20 kV was used to charge the solution. The solution was dis-
pensed from a single nozzle spinneret of 25 gauzes (NanoNC, Seoul, Korea) at a constant
feed rate of 0.2 mL/h at 22 ◦C and humidity of 12.5% ± 2.5%. Fiber morphologies in
scaffolds were observed using an optical microscope (Optical microscope, OPTIKA, Pon-
teranica, Italy), then fiber diameters and pore sizes were measured by an image software
(ImageView Ver.3.7, Touptek Photonics, Hangzhou, China). The average values of fiber
diameter and pore size were calculated by measuring five locations on the image and
averaging them.

2.5. 3D Printing Process

A 3D model of the scaffold was constructed using Pro/Engineer 5.0 (PTC, Boston, MA,
USA), and then exported as an STL file. The STL files were transferred to a 3D Bio-printer
(Geo Technology, Incheon, Korea), and the printing process was carried out. The optimized
printing parameters were as follows: nozzle diameter, 250 µm; printing temperature, 90 ◦C;
speed, 300 mm/s; layer thickness, 200 µm.
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2.6. Detection of Loaded Keratin in the Electrospun Fibrous Membrane

After fabrication of the multi-layer scaffold, an experiment was conducted to confirm
the presence of keratin. The attenuated total reflection (ATF) mode of FT-IR (Nicolet iS5,
Thermo, Waltham, MA, USA) was used to analyze and confirm the content of keratin in
the scaffold. The spectrum of each sample was scanned 16 times at a resolution of 4 cm−1.
Thereafter, the data were obtained.

2.7. Analysis of In Vitro Keratin Stability

The stability of the contained keratin was evaluated by a weight change of the electro-
spun scaffold in phosphate buffered saline (PBS; Gibco, Waltham, MA, USA) for 1, 3, 5, 7,
14, and 30 days at a temperature of 37 ◦C, and then drying and weighing the scaffolds of
each day. The stability value was shown as the scaffold weight percentage (%) using the
following equation:

Scaffold weight (%) =
W2

W1
× 100 (1)

where, W1 and W2 are the weights before (day 0) and after (each day) the precipitation of
the scaffold, respectively. All experiments were conducted using three samples.

2.8. Cell Culture

Normal human dermal fibroblasts (HDFs) and human immortalized keratinocytes
(HaCaT) were purchased from PromoCell (Heidelberg, Germany). HDFs were cultured in
fibroblast growth medium (Gibco, Waltham, MA, USA) with 1% antibiotics, while HaCaT
cells were cultured in Dulbecco’s Modified Eagle Medium (Gibco, Waltham, MA, USA)
supplemented with 10% FBS (Gibco, Waltham, MA, USA) and 1% antibiotics at 37 ◦C in a
5% CO2 atmosphere.

2.9. Cell Viability

To evaluate the cytotoxicity of the developed scaffold, cell culture was performed.
Before cell culture, a 5 mm diameter punch was used to create a scaffold in a disk shape.
Each punched scaffold was transferred to 96-well plates (Corning, NY, USA) and HaCaTs
or NHDFs were seeded at a density of 1.5 × 104 cells/scaffold. After culturing for 1, 3, 5,
and 7 days, a live/dead viability kit (Life Technologies, Carlsbad, CA, USA) was used to
evaluate cell attachment and viability on electrospun ECM. Electrospun ECM disks were
washed with ethanol and distilled water and incubated with 2 mM ethidium homodier-1
(EthD-1) (20 µL) and 5 mM calcein-AM (5 µL) in PBS for 20 min. Disks were viewed using
a confocal microscope (Zeiss LSM 710, Oberkochen, Germany).

2.10. Cell Proliferation

To evaluate cell proliferation in the developed scaffold, cell culture was performed. Be-
fore cell culture, a 5 mm diameter punch was used to create a scaffold in a disk shape. Each
punched scaffold was transferred to 96-well plates (Corning, NY, USA) and keratinocytes
or fibroblasts were seeded at a density of 1.5× 104 cells/scaffold. At 1, 3, 5, and 7 days after
culturing in 100 mL of growth medium with 10 µL of Cell Counting Kit 8 (CCK8, Dojindo,
Kumamoto, Japan) for 2 h, the cell proliferation rate was determined by measuring the
absorbance at an optical density of 450 nm using a microplate reader (VERSAmax, San
Jose, CA, USA).
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2.11. Immunocytochemistry (ICC)

To evaluate the culturing performance and layer-arrangement of NHDFs and HaCaTs,
after progressing co-culture of the two cells on the scaffold, immunofluorescence staining
using anti-fibronectin (FN, Abcam, Cambridge, UK), a marker specific for fibroblasts, and
anti-cytokeratin-14 (CK14, Abcam, Cambridge, UK), a marker for identifying keratinocytes,
was performed. After fixation of the cultured scaffolds with 4% paraformaldehyde (PFA,
Biosesang, Seongnam, Korea), blocking was achieved by incubating the cells for 60 min
in 1% normal goat serum (Vector laboratories, Burlingame, CA, USA) in PBS/0.3% Triton
X-100 (Sigma, St. Louis, MO, USA). The cells were incubated overnight at 4 ◦C with
primary antibodies (Abcam, Cambridge, UK) against fibronectin or cytokeratin-14 at a
dilution of 1:200. The cells were then labeled with secondary antibodies of donkey anti-
mouse IgG H&L (anti-mouse, Abcam, Cambridge, UK) or donkey anti-rabbit IgG H&L
(anti-rabbit, Abcam, Cambridge, UK) at a dilution of 1:500 for 1 h at 37 ◦C. After washing
with Tris-buffered saline, twice, the scaffolds were counterstained with 4′,6-diamidino-
2-phenylindole (DAPI, Sigma, St. Louis, MO, USA) and images were acquired using a
confocal microscope (LSM-710, Zeiss, Oberkochen, Germany).

2.12. In Vivo Wound Healing Study

To evaluate the skin regeneration ability of the developed scaffold, the change in the
wound area over time was observed after implanting the scaffold into the nude mouse.
Six-week-old male immuno-deficient nude mice (n = 12) (BALB/c, OrientBio, Seongnam,
Korea) were randomly assigned to two groups (PCL and PCL/keratin groups). After
co-culturing keratinocytes and fibroblasts for 4 days before implantation, initial wounds
were created by a skin punch with 5 mm diameter at the backside of the mouse, and then
co-cultured scaffolds were implanted. After sacrificing the mice at days 7 and 14, wound
tissues were fixed in 4% PFA, and then sectioned into a 4 µm thick paraffin block and
stained. Snapshot images were acquired at days 0, 3, 7, and 14 from the implanted area. To
calculate the wound area, ImageJ (ver. 1.43u, National Institute of Health, Bethesda, MD,
USA) was used. The study protocol was approved by the Animal Subjects Committee of
Gachon University (Approval number: LCDI-2019-0105).

2.13. Hematoxylin and Eosin (H&E) Staining

After deparaffinization, slices were placed in hematoxylin (Sigma, St. Louis, MO,
USA) for 5 min, washed with DI water, and dipped into 1% acid alcohol (HCl + 70% EtOH)
for 10 s. After washing with DI water, the slices were dipped in eosin (Sigma, St. Louis, MO,
USA) for 3 min, washed with DI water, and dipped into ammonia for 10 s. Subsequently,
they were washed with DI water and dehydrated using 70%, 80%, 90%, and 100% ethanol
(Sigma, St. Louis, MO, USA) and xylene (Sigma, St. Louis, MO, USA).

2.14. Masson’s Trichrome Staining

After deparaffinization, the sample slices were dipped into Bouin’s solution (Sigma, St.
Louis, MO, USA) and incubated for 1 h at 56 ◦C. Thereafter, they were washed thoroughly
with de-ionized water for 10 min and dipped into scarlet solution (Sigma, St. Louis, MO,
USA), phosphomolybdic–phosphotungstic acid (phosphomolybdic acid, Sigma, St. Louis,
MO, USA; phosphotungstic acid, Sigma), and aniline blue solution (M5528-25G, Sigma, St.
Louis, MO, USA) for 10 min each. The slices were also washed with DI water and dipped
into acetic acid (Sigma, St. Louis, MO, USA) for 3 min and hematoxylin for 10 min. Finally,
these slices were washed again with deionized water and dehydrated.

2.15. Statistical Analysis

All experiments were performed in triplicate, and the representative or average data
are presented, unless otherwise stated. The data were analyzed using Prism (ver. 7;
GraphPad sofware, San Diego, CA, USA) software. The data within a given group or
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between groups were compared using one-way analysis of variance (ANOVA). Significant
differences were defined as * p < 0.05 and ** p < 0.01.

3. Results
3.1. Characterization of the Electrospun Fibrous Membrane

In this study, keratin extracted from human hair was electrospun to fabricate micro-
fibrous and nanofibrous mats that mimic the epidermis and dermis of human skin. The fiber
diameters of the PCL and PCL/keratin fibers and the electrospinning process parameters
are listed in Table 1. Figure 1 shows images of the electrospun PCL and PCL/keratin fibers
captured with an optical microscope.

Table 1. Fiber diameters and pore sizes of 20% (w/v) PCL and 40% (w/v) PCL/keratin with respect to the electrospinning
process parameters.

Fiber Diameter
(µm)

Pore Size
(µm)

Electrospinning Condition

Concentration
(w/v%)

Voltage
(kV)

Flow Rate
(mL/h)

Distance
(mm)

PCL-Micro 1.5 ± 0.1 6.2 ± 2 20 7

0.2 100
PCL-Nano 0.7 ± 0.1 4.5 ± 1 20 20

PCL/keratin-Micro 1.7 ± 0.2 6.4 ± 1 40 7
PCL/keratin-Nano 0.7 ± 0.1 4.8 ± 1 40 21

Temperature: 22.6 ± 0.1 ◦C, Humidity: 12.5 ± 3%.
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with 0.7 µm fibers (20 kV). (E,F) PCL/keratin scaffold with 1.5 µm fibers (7 kV). (G,H) PCL/keratin scaffold with 0.7 µm
fibers (21 kV).

The fiber diameter of the microfibers made with PCL was 1.5 ± 0.1 µm and the pore
size was 6.2± 2 µm. The fiber diameter of nanofibers made with PCL was 0.7± 0.1 µm and
the pore size was 4.5 ± 1 µm. The fiber diameter of microfibers made with PCL/keratin
was 1.7 ± 0.2 µm and the pore size was 6.4 ± 1 µm. The fiber diameter of nanofibers made
with PCL/keratin was 0.7 ± 0.1 µm and the pore size was 4.8 ± 1 µm. Furthermore, the
fabricated electrospun fibers had a regular linear shape with no anomalous conformations,
such as ribbon-like structures or bead shapes.

3.2. Stability Measurement of a Keratin-Loaded Electrospun Fibrous Membrane

The goal of this study was to determine whether keratin-containing electrospun
membranes assist in skin tissue regeneration. It was necessary to confirm the presence of
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keratin in the membrane produced through electrospinning using a PCL/keratin solution.
Thus, the presence of keratin was measured using FT-IR spectrum analysis of the fabricated
specimen. As shown in Figure 2A, from the FT-IR spectrum, amide I (1600–1700 cm−1),
amide II (1480–1580 cm−1), and amide III (1220–1300 cm−1) peaks, depicting the presence
of keratin, could be observed. Especially, as shown in Figure 2B, which is a zoom graph
section of FT-IR, amide I peak (red line) was observed near 1650 cm−1. This was a peak not
found in PCL (black line), indicating that the extracted material was keratin.
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The main promoter of polymer degradation in the body is the aqueous environment
of the tissue. Thus, we evaluated the degradation of the PCL/keratin scaffold in PBS
solution at 37 ◦C for up to 30 days. As shown in Figure 2C, the PBS solution showed a low
decomposition rate. When immersed in PBS for a week, the FT-IR spectrum showed that
the membrane still had keratin (Figure S1). In the first week, 4% of the total weight of the
PCL/keratin scaffold was lost, and the weight loss of the scaffold was less than 8% at the
end of the experiment (day 30).

3.3. Cyto-Compatibility of the Scaffolds
3.3.1. Effect of Fiber Diameter on Cell Viability

The cytotoxic profile of the electrospun scaffold was analyzed via a live/dead assay
over 1, 3, 5, and 7 days. As shown in Figure 3A,B, the live/dead assay of NHDF and HaCaT
cells at 1, 3, 5, and 7 days revealed no toxic effect on the present materials. In addition, as
shown in Figure 4C,D, approximately 90% of NHDF and HaCaT cells lived during the total
culture time (7 days) without any toxic effects.
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3.3.2. Effect of Fiber Diameter on Cell Proliferation

As keratin fibers might not be cytotoxic to the cells tested herein, cell adhesion and
spreading might be an important contributing factor to scaffolds for tissue engineering.
The effect of PCL and PCL/keratin on cell attachment and proliferation was evaluated
using the CCK-8 assay. We also analyzed the effect of micro- and nano-environments of
the fibrous scaffold on NHDF and HaCaT adhesion and proliferation.

Figure 4 shows the in vitro proliferation of NHDF and HaCaT cells cultured on PCL
and PCL/keratin scaffolds for 1, 3, 5, and 7 days, as evaluated by a CCK-8 assay. The cells
cultured on the electrospun fibrous scaffolds gradually proliferated for up to 7 days. On
day 1, no significant differences were observed in the cell proliferation rates. However,
after 7 days of culture, there was a noticeable difference in the morphology of the scaffolds,
which each cell favored. NHDFs showed higher proliferation rates in microfibers and
HaCaTs showed higher proliferation rates in nanofibers.
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Figure 4. Comparison of the cell proliferation results. (A) NHDFs on microfibers, (B) NHDFs with
nanofibers, (C) HaCaTs on microfibers, and (D) HaCaTs on nanofibers (* p < 0.05, ** p < 0.01).

3.4. Fabrication of the Multi-Layer Hybrid Scaffolds

To culture NHDF and HaCaT cells, we fabricated 3 three-layered scaffolds: the upper
layer consisted of 100 µm thick nanofibers for the culture of HaCaT cells, the middle layer
was a 3D-printed support layer, and the lower layer consisted of 300 µm thick microfibers
for the culture of NHDF cells (Figure 5).
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Figure 5. Fabrication results of the multi-layer scaffolds. (A) Optical image of the 3D-printed support
layer, (B) optical image of the electrospun and 3D-printed scaffold, and (C) optical image of the
three-layer electrospinning 3D-printed hybrid scaffold.

3.5. Co-Culture of the Multi-Layer Scaffolds

A co-culture of NHDF and HaCaT cells was performed on the three-layered scaffold.
Three days after NHDF seeding on the micro-fibrous layer, HaCaT cells were seeded on the
nanofibrous layer by flipping over the scaffold (Figure 6). Four days after NHDF seeding,
the NHDF layer created a layer that was stained with cytokeratin-14. On the other side of
the NHDF layer, the HaCaT layer was stained with fibronectin. Keratinocytes (HaCaTs),
which were stained by cytokeratin-14, formed thicker layers in the nanofibrous layer of the
PCL/keratin multi-layer scaffold compared with the PCL multi-layer scaffold. Fibroblasts
(NHDFs) formed a thick layer in the micro-fibrous layer of the PCL/keratin multi-layer
scaffold; however, fibroblasts in the microfiber layer of the PCL multi-layer scaffold barely
formed a layer. Two layers consisting of keratinocytes and fibroblasts in the PCL/keratin
multi-layer scaffold were well-separated, and the fibroblasts did not infiltrate into the
upper nanofibrous layer.
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Figure 6. Immunocytochemistry results of the co-cultured scaffolds. (Scale bar = 200 µm). HaCaT cells were seeded 3
days (72 h) after NHDF seeding. On day 4 (96 h) after NHDF seeding, the HaCaT created a layer, which was stained by
cytokeratin-14. Beneath the HaCaT layer, the NHDF produced a layer stained by fibronectin.

3.6. In Vivo Wound-Healing Study

After implantation of the scaffolds in nude mice, most of the wound areas were filled
with new skin tissue in either the PCL/keratin multi-layer scaffold implantation group
(PCL/keratin group) or PCL multi-layer scaffold implantation group (PCL group) at 2
weeks. However, the scar remained in the PCL group, but the PCL/keratin group healed
with a smooth surface (Figure 7A). In addition, from the analysis of wound areas over two
weeks, the healing speed in the PCL/keratin group was significantly faster than that of the
PCL group on days 7 and 14 (Figure 7B).
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Figure 7. In vivo wound-healing results of PCL and PCL/keratin scaffolds. (A) Optical images of the wound areas of mice,
and (B) analysis of the wound-healing performances using the PCL and PCL/keratin scaffolds (* p < 0.05).

The amount of epithelialization was evaluated using H&E staining. The epidermis
was easily identified in all images, showing the presence of polarized basal keratinocytes,
a spinous layer composed of cuboidal, differentiating keratinocytes, a granular cell layer,
and finally the outermost stratum corneum composed of flattened dead cells (Figure 8).
The dermis layers, mainly the papillary layer adjacent to the epidermis, and the reticular
layer, denoted by a greater concentration of thick collagen fiber cells and bundles, were
also evident.
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The production of collagen in the dermal layer is important for skin strengthening.
Thus, collagen deposition was evaluated using Masson’s trichrome stain. The epidermis
and dermis were easily recognized in the immunostaining of collagen-I in Figure 8 for
all treated wounds and the control wound. However, the control wound was poor in
granulated tissue, and no hair follicles or sebaceous glands were observed. In addition,
a high concentration of fibroblasts and weak formation of type I collagen fibers were
observed. These features indicate that the control wound was in an early proliferative
stage, even though the wound appeared closed and fully epithelialized.

4. Discussion

Both cell proliferation and organization are essential for the proper healing of deep
skin wounds. The ideal scaffold for skin regeneration should (1) provide an instant cover
for the wound, (2) inhibit wound infection, (3) accelerate wound closure, (4) guarantee
the proliferation of various types of cells, and (5) assist proper arrangement of these cells
for regeneration and the prevention of scar formation. Thus, multi-layered scaffolds are
recognized to have potential as scaffolds for skin regeneration by accelerating wound
closure and rebuilding the original histological structure of the skin [31]. In our study, we
fabricated a multi-layered scaffold with PCL and keratin for skin wound regeneration.

Keratin is an insoluble protein that mainly exists in epithelial tissues and can be
extracted from feathers, nails, hooves, wool, and human hair [32,33]. Keratins can self-
assemble and be crosslinked to produce porous or fibrous scaffolds [32,34–37]. In particular,
keratin is widely used as a wound dressing or scaffold for skin regeneration [38], as
keratin promotes cell adhesion or the proliferation of keratinocytes or fibroblasts [20,21].
Although keratin has poor mechanical properties, various studies have been conducted to
improve mechanical strength, while having good cell affinity, through mixing with various
biomaterials [39–43].

Electrospinning is a useful method for the fabrication of nanofiber membranes with
various polymers [44]. Electrospun membranes have high porosity, which increases the per-
meability of oxygen and nutrition [45]. Nanofibers have a high surface-to-volume ratio and
possess features similar to those of the natural ECM of skin, thereby leading to increased
cell adhesion, migration, and proliferation [45]. During electrospinning, the mixing ratio
of keratin and the polymer affects the viscosity and conductivity [46]. By increasing the
keratin content, the viscosity of the polymer decreases, and the conductivity increases [46].
Polymer contents higher than 10 wt% are known to be sufficient for avoiding the breakage
of the electrically driven jet [47]. In the case of PCL, since it is a synthetic polymer with
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hydrophobicity, when an electrospinning membrane is manufactured using a PCL/keratin
mixture, the cell affinity increases as the amount of keratin increases. However, a high
content of keratin could produce droplets or beaded nanofibers [48]. Electrospinning with
100% keratin can produce ribbon-like anomalous conformations [49]. In our experiment, as
the content of keratin increased, it was difficult to make nanofibers. Therefore, in this study,
the optimal keratin ratio (PCL:keratinic extract = 50:50) condition for stably producing
nano/microfibers within the specifications of our electrospinning system was secured. At
that ratio, no bead or ribbon-like conformation was found during the electrospinning of
the nanofibers and microfibers.

Although keratin promotes cell adhesion or the proliferation of keratinocytes or
fibroblasts [20,21], if keratin is lost during the electrospinning process, the intended per-
formance may not be achieved. The presence of keratin was measured through FT-IR
spectrum analysis of the fabricated electrospun fiber, and amide I (1600–1700 cm−1), amide
II (1480–1580 cm−1), and amide representing keratin III (1220–1300 cm−1) peaks were
observed in the spectrum. This result revealed that keratin was safely settled in the fiber
during the manufacturing process of the electrospun fibers.

The stable inclusion of keratin in the electrospun fibers during long-term cell culture
is an important factor for achieving the purpose of this study. To confirm this inclusion, the
weight lost over time was measured after immersing the electrospun scaffolds in PBS. The
electrospun scaffolds showed only 8% weight loss in PBS for 30 days; however, they did
not degrade linearly over time. The degradation of keratin may be accelerated by various
enzymes distributed in the body under the skin of a mouse. However, the high stability of
keratin in the long-term in vitro experiment for 30 days might indirectly prove the stability
of keratin in an animal for 2 weeks.

The local geometry of the scaffold, such as porosity, pore size, fiber diameter, and local
compliance, is important in interactions between cells and scaffolds as the cells sense those
local geometry features [50]. Thus, proper designing of the local geometry depending on
the cell type of the target tissue is essential [51,52]. In our study, keratinocytes showed
superior proliferation on nanofibers, while fibroblasts showed superior proliferation on
microfibers. In addition, the proliferation of both keratinocytes and fibroblasts increased
on the keratin-containing scaffold compared to the pure PCL scaffold.

To create a multi-layer scaffold, we fabricated nanofibers as the upper layer for ker-
atinocyte cultivation, and fabricated microfibers as the lower layer for fibroblast cultivation.
It is a well-known concept that resemblance to histological or anatomical structures leads to
similar physiological functions [53]. Accordingly, many researchers have produced multi-
layer artificial skins with multiple layers of the epidermis, dermis, and hypodermis [31]. In
our study, we mimicked the epidermis by fabricating nanofiber layers of 100 µm thickness,
with keratinocytes cultured on this layer, and the dermis by fabricating 300 µm thick
nanofiber layers in which fibroblasts were cultured. Fibroblasts must infiltrate into the
scaffold where the fibroblasts are assigned to regenerate the proper dermal layer; however,
fibroblast infiltration should not progress to the epidermal layer. The pore size or porosity
is a determining factor for cell migration into the scaffold [54]. In our study, the pore size
of the nanofiber layer ranged from 4.52 to 4.82 µm. We believe that these pore sizes could
inhibit the infiltration of fibroblasts into the nanofiber layer. The cross-sectional area of the
multi-layer scaffold after cell culture of keratinocytes and fibroblasts showed that fibrob-
lasts did not infiltrate the nanofiber layers. Furthermore, the keratinocytes and fibroblasts
were found to more efficiently proliferate and form distinctively different layers on the
PCL/keratin scaffold than on the PCL scaffold. Keratinocytes on the PCL/keratin scaffold
formed a thicker layer on the upper nanofiber layer than on the PCL scaffold. Moreover,
fibroblasts on the PCL scaffold did not have a sufficient layer thickness compared with
those on the PCL/keratin scaffold.

A multi-layer scaffold that mimics the histological structure of skin is known to induce
proper healing of damaged skin by stimulating the regeneration of the dermis and re-
epithelialization [55,56]. In our study, we observed that wound closure was markedly faster
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when the wound was covered with the PCL/keratin scaffold with cultured keratinocytes
and fibroblasts than the pure PCL scaffold with cultured keratinocytes and fibroblasts.
Based on histological examination, epithelialization and keratinocyte proliferation in the
epidermis were superior in the PCL/keratin scaffold relative to the PCL scaffold. The
proliferation of fibroblasts on PCL/keratin was also superior to that on PCL scaffolds.
Further, the collagen deposition of the PCL/keratin scaffold was superior to that of the PCL
scaffold. The keratinocytes and fibroblasts cultured on multi-layer PCL/keratin scaffolds
appeared to cause better skin wound healing than keratinocytes and fibroblasts cultured
on multi-layer PCL scaffolds.

5. Conclusions

In this study, a skin substitute was developed to reconstruct a multi-layer of the
epidermis and dermis by combining optimized electrospun nano- and micro-sized fibers.
By incorporating human keratin into the skin substitute, we provided a more suitable
3D environment for keratinocytes and fibroblasts. After co-culture of keratinocytes and
fibroblasts on the multi-layer PCL/keratin scaffold, we used the skin substitute for wound
healing in animals. This scaffold was found to result in better wound healing than the
PCL-only scaffold. The developed scaffold with multiple cells suggests a new possibility
for the regeneration of the epidermal and dermal layers for deep skin defects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13162584/s1, Figure S1: Analysis of the degradation of PCL/keratin membrane
(Comparison between day 0 and day 7).
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