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The segmentation of high-grade gliomas (HGG) using magnetic resonance imaging (MRI)
data is clinically meaningful in neurosurgical practice, but a challenging task. Currently,
most segmentation methods are supervised learning with labeled training sets. Although
these methods work well in most cases, they typically require time-consuming manual
labeling and pre-trained models. In this work, we propose an automatically unsupervised
segmentation toolbox based on the clustering algorithm and morphological processing,
named AUCseg. With our toolbox, the whole tumor was first extracted by clustering on
T2-FLAIR images. Then, based on the mask acquired with whole tumor segmentation, the
enhancing tumor was segmented on the post-contrast T1-weighted images (T1-CE)
using clustering methods. Finally, the necrotic regions were segmented by morphological
processing or clustering on T2-weighted images. Compared with K-means, Mini-batch
K-means, and Fuzzy C Means (FCM), the Gaussian Mixture Model (GMM) clustering
performs the best in our toolbox. We did a multi-sided evaluation of our toolbox in the
BraTS2018 dataset and demonstrated that the whole tumor, tumor core, and enhancing
tumor can be automatically segmented using default hyper-parameters with Dice score
0.8209, 0.7087, and 0.7254, respectively. The computing time of our toolbox for each
case is around 22 seconds, which is at least 3 times faster than other state-of-the-art
unsupervised methods. In addition, our toolbox has an option to perform semi-automatic
segmentation via manually setup hyper-parameters, which could improve the
segmentation performance. Our toolbox, AUCseg, is publicly available on Github.
(https://github.com/Haifengtao/AUCseg).

Keywords: glioma, unsupervised segmentation, MRI, toolbox, clustering
June 2021 | Volume 11 | Article 6799521

https://www.frontiersin.org/articles/10.3389/fonc.2021.679952/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.679952/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.679952/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.679952/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.679952/full
https://github.com/Haifengtao/AUCseg
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xiaoyong_zhang@fudan.edu.cn
https://orcid.org/0000-0001-8965-1077
https://doi.org/10.3389/fonc.2021.679952
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.679952
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.679952&domain=pdf&date_stamp=2021-06-14


Zhao et al. AUCseg for Unsupervised Gliomas Segmentation
INTRODUCTION

High-grade gliomas (HGG) are the most common type of central
nervous cancer among adults. It has the characteristics of rapid
growth, blurred margins, irregular shapes, and invading into the
surrounding tissue (1). Currently, HGG segmentation in
magnetic resonance imaging (MRI) plays an important role in
clinical treatment (2). Manually labeling gliomas in MRI images
by doctors has been regarded as the gold standard of tumor
segmentation. But it is a tedious and time-consuming job. Several
studies have reported that the variabilities of manual tumor
segmentation are over 20% (2–4). In the past two decades,
computer-aided methods for the segmentation of HGG have
been used to save time for clinicians and address the problem of
manual variabilities. Despite the emergence of many excellent
algorithms in recent years, the segmentation of HGG is still a
challenging job (5).

Deep learning-based methods have achieved high Dice
similarity in HGG segmentation. The U-net (6) based network
architectures were widely used in this task and performed well.
Myronenko et al. (7) proposed a 3D U-net with autoencoder
regularization, which ranked the top-1 in BraTS2018. Later, Jiang
et al. (8) using the two-stage cascaded U-net won the first prize in
BraTS2019. Recently, T Henry et al. (9) took first place in
BraTS2020 by a deep supervised 3D U-net. Although these
supervised methods perform well for HGG segmentation, they
require a large amount of labeled data. However, labeling tumors
manually not only requires medical expertise, but also is a time-
consuming task.

By contrast, clustering is an unsupervised method, which does
not require labeling data for training. Vijay J et al. proposed an
HGG segmentation method based on K-means clustering, which
can quickly segment the whole tumor from 2D images (10). But
simply clustering could cause inaccurate results because of the
image noise. To solve this, Tripathy et al. (11) improved the fuzzy
c-means with spatial context information and intuitionistic set,
also named SIFCM. However, this method is time-consuming.
Cai et al. proposed the FGFCM algorithm, which reduced the
computing time by only considering the partial value instead of
the whole image size (12). However, the above advanced clustering
methods have not been applied to HGG segmentation because of
the lack of a suitable pipeline.

In addition to clustering-based methods, other unsupervised
segmentation methods have been investigated for HGG
segmentation. Guo et al. (13) reported a semi-automatic
method for the segmentation of HGG based on active contour,
which was evaluated on 20 cases (a small portion of BraTS2013
training data) and could segment the whole tumor (WT), the
tumor core (TC), necrotic (NC) and enhancing tumor (ET).
However, this method requires a region of interest (ROI)
provided by the user. Juan-Albarracıń et al. (14) further
proposed an automatic strategy for the HGG segmentation
based on Gaussian Hidden Markov Random Field (GHMRF)
on the 21 cases from BraTS2013. However, this method is slow
and takes 140 ± 32 minutes for the whole segmentation pipeline.
N. Sauwen et al. (15) proposed a method based on hierarchical
non-negative matrix factorization (HNMF) and gained
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acceptable segmentation performance on two independent
cross-site datasets (21 cases and 14 cases, respectively).

Although the above unsupervised methods achieved
acceptable performance, they used a small dataset with limited
sample size so that the conclusions may result in bias. To provide
clinicians with more robust and reliable assistance, a much larger
dataset should be used to have a more thorough evaluation.
Moreover, a ready-to-use toolbox is a big advance for its clinical
translation. To address these issues, we aim to propose an
automatically unsupervised tumor segmentation strategy based
on clustering and morphological methods, and to evaluate our
method on BraTS2018, a much larger dataset that includes over
200 cases (2–4). Furthermore, we release our segmentation
pipeline as a toolbox to provide clinicians with assistance.
METHODS

Pipeline
The pipeline is shown in Figure 1. There are three steps for
preprocessing: 1) skull-stripping; 2) co-registration on different
MRI modalities; 3) Normalization (0~1).

For segmentation, the core concept of this pipeline is based on
the pathological and radiological characteristics of HGG. In the
T2-FLAIR images, the HGG edema region shows higher signal
intensity than other regions due to high water content. In post-
contrast T1-weighted images (T1-CE) images, enhancing area
shows a significantly higher signal intensity, which means the
damage to the blood-brain barrier. Based on the above two
features, the edema and enhancing area of the tumor can be first
segmented from T2-FLAIR images and T1-CE images by
clustering and selecting the subclass with the highest intensity.
According to the characteristics of tumor growth, edema is
generally located on the boundary of the tumor, while the
necrotic (NC) area is generally within the tumor. Therefore, we
can fill the connected domain inside the edema region by
analyzing the connected components and regard the edema
region as the part of the whole tumor (WT) region. After that,
the WT was used as the ROI on T1-CE images and segment the
enhancing tumor (ET) on it using clustering. The tumor core
(TC) is composed of NC and ET.

Additionally, because NC often occurs in the interior of the
rapidly growing area of the tumor (the enhancing area), the
necrotic area can be segmented using the connected component
analysis. However, due to image quality and clustering accuracy,
the segmented enhancing regions may not constitute a closed
connected domain. When there is little or no enhancing regions,
our pipeline still performs well for the segmentation of WT and
TC. Note that for these cases the NC cannot be segmented
directly due to lacking a completely connected domain. To solve
the problem, we propose an alternative solution that segments
the tumor core by clustering intensities in the T2 images instead
of T2-FLAIR images (Supplementary Figure S1). Therefore, the
NC region can be segmented by subtracting ET from TC. With
above concept, the WT, the TC, the ET, and the NC can be
successfully segmented in most cases.
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FIGURE 1 | Schematic diagram of our automatic unsupervised pipeline. The orange and green boxes indicate a hyper-parameter there.
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Moreover, we also provide an option to segment two or more
tumors (Supplementary Figure S2). When there is more than
one tumor, the hyper-parameter ‘ROI’ (Table 1) is provided for
tumor segmentation. Then tumors can be segmented using our
pipeline one by one.

Based on the proposed pipeline, our method has the five
hyper-parameters as shown in Table 1.

Clustering Algorithms
K-Means and Mini-Batch K-Means
K-Means clustering is an unsupervised unstructured iterative
partitioning method based on distance. K-means builds a
distance model:

J = Sk
j=1S

n
i=1jjxi − cj j2

�� (1)

In (1), k represents the number of classes; N is the number of
elements to be clustered; ||xi-cj||

2 is the distance between points xi
and cj, usually using Euclidean distance. The process of
clustering is to find the parameter that minimizes J. Mini-
batch K-means (16) is an optimization for K-means clustering.
The main idea of this method is that mini-batches have lower
stochastic noise than classic stochastic gradient descent, but do
not suffer the large computational cost.

Fuzzy C Means (FCM)
FCM introduces the concept of membership degree in fuzzy
mathematics based on k-means clustering. After introducing a
membership degree, the distance model becomes as follows:

uij
� �

= arg  min Sc
j=1S

n
i=1u

m
ij j xi − cj
�� ��j2,

s:t: Sc
j=1uij = 1 i = 1, 2, 3,…, nð Þ

(2)

FCM algorithm is used for clustering, which is to solve the
minimum value of equation (2). The umij is the membership of
element i for class j. It is a conditional extremum problem. The
local extremum can be obtained by using the Lagrange multiplier
method to incorporate the constraint conditions into the model.

Gaussian Mixture Model (GMM)
GMMuses a probability model to express the clustering prototype.
Multidimensional Gaussian distribution is hypothesized for each
class. The Gaussian mixture distribution is as:
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pM(x) = Sc
j=1aj · p xjmj,Sj

� �
 ,    Sc

jaj   =   1 (4)

Where formula (3) is the multi-dimensional Gaussian
distribution, Ʃ is the covariance matrix, µ is the mean vector.
Formula (4) represents the Gaussian mixture distribution.
Where aj represents the mixture coefficient and the probability
of the Jth Gaussian distribution. The maximum likelihood
method is used to solve the parameters of equation (5):

aj,mj,Sj

� �
= arg  maxa ,m,   S ln P n

i pM(xi)ð Þ (5)

Since equation (5) contains hidden variables, the Expectation-
Maximization (EM) algorithm is generally used to optimize
parameters. After the Gaussian distribution is known, we
divide the elements according to the posterior probability
corresponding to the prototype, that is:

li = arg  maxj∈ 1,2,:::,kf g
aj · p xijmj,Sj

� �

Sk
l=1al · p xijml ,Slð Þ (6)

Morphological Methods
The morphological methods were used for dilation and
connected components analysis. The connected component
analysis is to find the aggregation region of the same voxel.
There are three levels of connectivity for 3D images. The
analysis of connected components adopts the accelerated
algorithm proposed by Wu et al. (17), which greatly reduces
the computing time. Dilation refers to local maximum
substitution, which is to calculate the maximum value of pixels
in the region covered by the core to replace centrosomes, as shown
in equation (7).

dstdilate(x, y) = max
(x0 ,y0)∈kernel

src(x0, y0) (7)

Evaluation
Multi-parametric MRI images of 210 HGG patients from
BraTS2018 (2–4) training sets were used to evaluate the
pipeline. Our method was implemented with Python3.6, and the
main external packages included Numpy, Scikit-learn, Scikit-
image, and so on. The experiments were run at the workstation
DELL FC430 with CentOS 7.5.1804, Intel (R) Xeon(R) E5-2640 v4
2.4GHz and the memory 256GB. To search for the most suitable
clustering method, the main hyper-parameters of the model were
set as the default value shown in Table 1. K-means++ method or
K-means is adopted in the clustering to initialize the clustering
center. Dice coefficients, false-positive volume fractions, and false-
negative volume fractions were calculated to evaluate the
segmentation results. We also adjusted the hyper-parameters to
evaluate the performance of our pipeline and analyzed the
hyper-parameters distribution. Because the hyper-parameter
‘roi’ is subjective, we mainly adjusted the remaining four
hyper-parameters.
TABLE 1 | Hyper-parameters in our pipeline.

Hyper-params Default Describe

n_cluster1 5 Number of clustering for WT segmentation.
n_cluster2 3 Number of clustering for ET segmentation.
ROI None If you provide a ROI, the raw image will be cropped

by it. If more than one tumor present, it is required
to provide ROIs of each tumor for the segmentation.

nc_seg_mode cc We provide two modes to segment the necrotic
region, ‘cc’ and ‘t2’. If the ET region could not wrap
up the NC area, it would be better to choose mode
‘t2’. When you choose ‘t2’, the T2 image must be
provided.

n_cluster3 3 Number of clustering for TC segmentation. If the
“cc” is chosen as the ‘nc_seg_mode’, n_cluster3 will
not be used.
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RESULTS

Comparison of Clustering Algorithms
Using the same default hyper-parameters, we compared tumor
segmentation results with different clustering methods. It can be
found that K-means is faster than other methods (Table 2).

The DICE coefficients of segmentation with different
clustering methods are shown in Table 3. The dice coefficient
lower than 0.5 is considered as failed detection. The highest mean
values of DICE coefficients and success rates are shown in bold. It
can be seen that GMM has the best performance in our pipeline.

Table 4 shows the DICE, false positive, and false negative of
segmentation results with GMM clustering in this pipeline. The
whole tumor segmentation under this parameter has a problem
of over-segmentation, while the segmentation of the tumor core
and enhancing region has a problem of under-segmentation.
One possible reason for the problem is that we use the same
default parameters for different cases.

As shown in Figure 2, theWT, the TC, and the ET area can be
isolated using our method. TC is composed of NC and ET areas.

Adjusting Hyper-Parameters
Table 5 shows the segmentation result after adjusting the hyper-
parameters, including ‘n_cluster1’, ‘n_cluster2’, ‘nc_seg_mode’,
and ‘n_cluster3’. Compared with the results before adjusting
shown in Table 4, there is a great improvement in Dice and
Success Case rate.

For the whole 210 cases, the distribution of adjusted hyper-
parameters ‘n_cluster1’, ‘n_cluster2’, and ‘n_cluster3’ was plotted
in Figure 3A using the kernel density estimation method. The
distribution of ‘nc_seg_mode’ was shown in Figure 3B. We
could find that the suitable ‘n_cluster1’ is mainly in the range of
3~10, and both ‘n_cluster2’ and ‘n_cluster3’ were mainly in the
range of 3~5. As for the ‘nc_seg_mode’, ‘cc’ and ‘t2’ were equally
likely to be chosen. So, there are mainly 96 (8*3*4) choices,
because the ‘n_cluster3’ would not be used if ‘cc’ was chosen.
In practice, we do not have to try every possible option and
Frontiers in Oncology | www.frontiersin.org 5
adjust the parameters in the order of ‘n_cluster1’, ‘n_cluster2’,
‘nc_seg_mode’, and ‘n_cluster3’. For clustering, the large number
of subclasses always means big FN. We can use this to speed up
the tuning of parameters.

Comparison With Other
Unsupervised Methods
As shown in Table 6, we compare our methods with several state-of-
the-art unsupervised methods. With our method, the WT, TC, and
ET can be automatically segmented using default hyper-parameters
with Dice score 0.8209, 0.7087, and 0.7254, respectively, which are
similar to the published methods. Note that we tested our methods
in 210 cases from BraTS2018, which is almost 10 times larger than
the datasets other methods used. Another highlight is that the
average computing time of our toolbox for each case using the
default hyper-parameters is 19 seconds. If adjusted hyper-parameters
are used, the average computing time for the segmentation of each
case is 22 seconds, which is still comparable to the default setting. As
shown in Table 7, both settings are at least 3 times faster than other
unsupervised methods.
DISCUSSION

We propose an automatically unsupervised clustering method
for 3D-segmentation of HGG on multi-parametric MR images.
Compared with previous unsupervised methods, our method
achieved a stable performance in BraTS2018 dataset including
210 subjects, which is much larger than the previous studies. On
the other hand, our method takes less computing time (Table 7).
Therefore, it may have a broad application, such as clinical
translation, preprocessing for supervised learning, etc.

Comparison of Unsupervised
Learning Methods
Among the methods of unsupervised learning, the method-based
Markov random field and gaussian hybrid model (GHMRF)
TABLE 2 | Computing time per patient (second).

K-means Mini-batch K-means GMM FCM

Time 10.28 ± 1.95 14.49 ± 3.64 19.12 ± 4.27 181.20 ± 51.87
The value in bold means the best performance.
TABLE 3 | Dice index of different clustering methods for WT, TC, and ET.

WT TC ET

K-means Mean ± Std 0.8248 ± 0.1092 0.6975 ± 0.1162 0.7266 ± 0.0975
Success Case 155/210 104/210 135/210

Mini-batch K-means Mean ± Std 0.8147 ± 0.1093 0.6833 ± 0.1249 0.7168 ± 0.1019
Success Case 151/210 99/210 127/210

GMM Mean ± Std 0.8209 ± 0.1051 0.7087 ± 0.1210 0.7254 ± 0.1080
Success Case 161/210 120/210 149/210

FCM Mean ± Std 0.8293 ± 0.1045 0.6874 ± 0.1158 0.7218 ± 0.0988
Success Case 147/210 100/210 126/210
June 2021 | Volume 11
The value in bold means the best performance.
TABLE 4 | Results of the GMM based HGG segmentation pipeline.

WT TC ET

DICE 0.8209 ± 0.1051 0.7087 ± 0.1210 0.7254 ± 0.1080
FPVN 0.2600 ± 0.3049 0.1228 ± 0.1714 0.2030 ± 0.3042
FNVN 0.1325 ± 0.1438 0.3732 ± 0.1648 0.3163 ± 0.162
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ranked first among the same kind of unsupervised methods in
BraTS2013 challenge (14). Supervised methods based on deep
learning have been used in the BraTS challenge since 2013. The
two-stage Cas-Cascade U-Net method proposed by Jiang et al.
won the championship in BraTS2019 (8). In addition, N. Sauwen
et al. (15) introduced more types of MRI data for HGG
segmentation, including magnetic resonance spectroscopic
imaging (MRSI) et al. They proposed a method based on
hierarchical non-negative matrix factorization (HNMF), and
tested it on two independent cross-site datasets, which reached
a higher place among unsupervised HGG segmentation methods.
Frontiers in Oncology | www.frontiersin.org 6
Compared with the above methods, our method performs well
among unsupervised methods although the performance of our
method is not as good as supervised method (Table 6).
According to BraTS2018 Leaderboard (https://www.cbica.
upenn.edu/BraTS18/lboardValidation.html), the Dice for ET,
WT, and TC are in range of 0.517~0.825, 0.618~0.913, and
0.537~0.872. Note that the performance of our method is in the
similar range with most of deep leaning-based methods for the
segmentation of brain tumors. Although some state-of-the-art
deep leaning-based models have achieved higher performance
than our method, their interpretability remains unclear. By
contrast, the clustering model we used is interpretable and
maybe easier for the clinical translation, which is another
advantage of our method.

Limitations
Although adjusting hyper-parameters can improve the
segmentation performance with default hyper-parameters, our
method does not perform well for a few cases. We have
summarized potential causes for suboptimal segmentation
FIGURE 2 | Representative segmentation results using our toolbox. The green area represents the tumor edema area; the yellow area represents the ET area; the
red area represents the NC area.
A B

FIGURE 3 | The distribution of hyper-parameters on BraTS2018 HGG training data (n=210). (A) The distribution of ‘n_cluster1’, ‘n_cluster2’, and ‘n_cluster3’.
(B) The distribution of ‘nc_seg_mode’.
TABLE 5 | Comparison of segmentation results with manually adjusted hyper-
parameters.

WT TC ET

DICE 0.8420 ± 0.0982 0.7531 ± 0.1093 0.7496 ± 0.1005
FPVN 0.1836 ± 0.2091 0.1287 ± 0.1476 0.1436 ± 0.1884
FNVN 0.1438 ± 0.1180 0.3123 ± 0.1425 0.3095 ± 0.1458
Success Case 198/210 171/210 180/210
June 2021 | Volume 11 | Article 679952
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performance with low segmentation DICE scores, which can be
roughly grouped into four categories (Supplementary Figure S3):
a) uncompleted skull stripping; b) abnormal white matter
hyperintensities caused by pathological change, such as
demyelination; c) low contrast difference between tumor and
normal tissue, and d) blurred images caused by head motion or
other reasons.
CONCLUSION

We proposed a novel 3D-unsupervised method and implemented a
toolbox based on that to automatically segment the whole HGG,
tumor core, and enhancing tumor in MR images with Dice score
0.8209, 0.7087, and 0.7254, respectively using default hyper-
parameters. Our toolbox has the option to do semi-automatic
segmentation via manually adjusting hyper-parameters, which
could further improve segmentation performance. The
combination of GMM with our method performs better than K-
means, Mini-Batch K-means, and Fuzzy C Means (FCM). Besides,
the computing speed of our method is faster than other
unsupervised pipelines. We release our toolbox to provide
clinicians with assistance.
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