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ABSTRACT

Protein–protein interactions play a key part in most biological processes and understanding their mechanism is a funda-

mental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of para-

mount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking

simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a

protein surface. From the analysis of the protein interfaces generated by a massive cross-docking experiment using the 168

proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked

together, we show that it is also possible to predict a protein’s binding residues without having any prior knowledge regard-

ing its potential interaction partners. Evaluating the performance of cross-docking predictions using the area under the

specificity-sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5

AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that

are scattered on the protein surface show that their distribution and growth will depend on the protein’s functional group.

Finally, in several cases, the binding-site predictions resulting from the cross-docking simulations will lead to the identifica-

tion of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the

original benchmark.
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INTRODUCTION

Because of their essential role in performing, coordi-

nating and regulating the majority of cell activities, pro-

teins are undeniably amongst the most fascinating and

complex macromolecules in living systems. Over recent

decades, numerous studies have been devoted to the

molecular properties and functions of individual pro-

teins. However, proteins often fulfil their roles through

interactions, and are capable of forming large edifices

that can act as complex molecular machines.1 Transient

interactions also form a complex protein network that

controls these machines as well as a host of other cellular

processes. As a consequence, protein–protein interactions

(PPI) play a central role in biological systems,2–4 defin-

ing the interactome of an organism, or, as elegantly

expressed by Robinson et al. the molecular sociology of

the cell.5

Many experimental approaches are used to investigate

PPI, including yeast two-hybrid,6,7 tandem affinity puri-

fication8,9 and mass spectroscopy10 (see ref. 11 for a

general review). These approaches have enabled PPI

maps to be established for various organisms, including
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yeast,12 Escherichia coli,13 Drosophila melanogaster,14

Caenorhabditis elegans15 and humans.16 Experimental

mapping of interactomes however suffers from several

drawbacks. It involves expensive experiments and, despite

continued progress, it still suffers from inaccuracies and

generates significant numbers of false positives and nega-

tives.17–19 As a complementary approach to in vitro

methods, several in silico methods have also been devel-

oped for predicting binary protein interactions. Many of

them are based on protein sequence information, using

gene clustering or phylogenetic profiling.20–26 However,

although these methods can predict interactions they do

not provide any atomic-level information on the confor-

mation of the complex or on the origins of its formation

and stability. Another approach has been to develop so-

called template methods, which predict interactions

between pairs of proteins that are homologous (either

globally, or at the interface region) to pairs of proteins

within known binary complexes. These methods have

achieved good results, but are naturally limited by the

quality and coverage of the available template data-

base.27–29 Still, important aspects of PPI, such as the

influence of the crowded cellular environment,30–32 or

the time-dependence of these networks,33–35 cannot be

addressed via any of these approaches.

Molecular modeling potentially offers an alternative

route for identifying protein interactions, while at the same

time providing structural models for the corresponding

complexes and insight into the physical principles behind

complex formation. In particular, the characterization on

the molecular level of protein interfaces represents a key

issue from a therapeutic point of view, since these PPI sites

are potential targets for drugs designed to modulate or

mimic their effects.36 As a consequence, numerous inter-

face prediction methods have been developed over the last

years, which combine evolutionary and structural, and

sometimes experimental, information.37–40 In this per-

spective, docking methods, which were originally developed

to predict the structure of a complex starting from the

structures of two proteins that are known to interact,41 are

of specific interest. The collection of docking poses between

two protein partners can be used to derive a consensus of

predicted interface residues. Following the NIP (Normal-

ized Interface Propensity) approach that was originally

developed by Fernandez-Recio et al.,42 docking calcula-

tions have been used for binding sites predictions both in

simple docking studies,43–47 i. e. studies involving only

protein partners that are already known to interact, and

complete cross-docking (CC-D) studies, which involve per-

forming docking calculations on all possible protein pairs

within a given dataset.48,49

After an early CC-D study on a reduced test set,48 the

computational power of the public World Community

Grid, has allowed us to carry out CC-D calculations on

the complete Mintseris Docking Benchmark 2.0,50 which

comprises 168 proteins forming 84 known binary com-

plexes. A first analysis of the PPI energies and interfaces

resulting from this large scale study (14,196 potential

binary interactions) showed how the combination of

docking and evolutionary information could improve

partner identification within the benchmark.51 This

work focuses more specifically on the information that

can be obtained using the PIP (Protein Interface Propen-

sity) value regarding the protein binding sites, which

does not necessitate any prior knowledge regarding a

protein’s interaction partner. In addition, we developed a

clustering algorithm for residues with a high interface

propensity, that is, residues that are the most commonly

found in protein interfaces resulting from docking calcu-

lations. This new approach shows how the distribution

of potential binding patches on a protein surface will

depend on the functional category this protein belongs

to. Finally, we highlight several cases where cross-docking

calculations will lead to the identification of alternate

protein binding sites corresponding to interaction part-

ners that are not included in the original dataset.

MATERIALS AND METHODS

Cross-docking calculations

In this section, we describe the MAXDo (Molecular

Association via Cross Docking) algorithm that was devel-

oped for CC-D studies.48 Since CC-D involves a much

larger number of calculations than simple docking, we

chose a rigid-body docking approach using a reduced

protein model in order to make rapid conformational

searches.

Protein dataset

All simulations were performed using the unbound

conformations of the proteins from the Docking Bench-

mark 2.0 of Mintseris et al.50 with the exception of 12

antibodies for which the unbound structure is unavail-

able and the bound structure was used instead. Any fur-

ther reference to these proteins uses their name, or the

Protein Data Bank (PDB) code52 of the experimental

complex they belong to with the r or l extension denot-

ing a receptor or a ligand protein respectively. For exam-

ple, 1AY7_r and 1AY7_l refer to barnase (receptor) and

barstar (ligand) in the barnase-barstar complex 1AY7.

The coordinates for the bound and unbound structures

of both receptor and ligand proteins are available in the

PDB and can also be found at the following address:

http://zlab.bu.edu/zdock/benchmark.shtml. The 84 binary

complexes listed in the Docking Benchmark 2.0 cover

three broad biochemical categories and three difficulty

categories related to the degree of conformational change

in the protein-protein interface upon complex formation.

They are classified as Enzyme-Inhibitors (E, 23 com-

plexes, enzymes with a r extension and inhibitors with a
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l extension after the PDB code), Antibody-Antigen (A,

10 complexes, antibodies with a r extension and antigens

with a l extension after the PDB code), Bound Antibody-

Antigen (AB, 12 complexes, bound-antibodies with a r

extension and antigens with a l extension after the PDB

code) and Others (O, 36 complexes). Note that for three

cases in the AB category, namely 1IR9, 1KXQ and 2HMI,

there was an inversion in the pdb files names, the anti-

gen protein has a r extension and the bound antibody

has a l extension after the PDB code.

Reduced protein representation

We use a coarse-grain protein model developed by

Zacharias,53 where each amino acid is represented by

one pseudoatom located at the Ca position, and either

one or two pseudoatoms representing the side-chain

(with the exception of Gly). Ala, Ser, Thr, Val, Leu, Ile,

Asn, Asp, and Cys have a single pseudoatom located at

the geometrical center of the side-chain heavy atoms. For

the remaining amino acids, a first pseudoatom is located

midway between the Cb and CÇ atoms, while the second

is placed at the geometrical center of the remaining side-

chain heavy atoms. This description, which allows differ-

ent amino acids to be distinguished from one another,

has already proved useful both in protein–protein dock-

ing53–55 and protein mechanics studies.56–58

Interactions between the pseudoatoms of the Zacharias

representation are treated using a soft LJ-type potential

with appropriately adjusted parameters for each type of

side-chain, see Table I in Ref. 53. In the case of charged

side-chains, electrostatic interactions between net point

charges located on the second side-chain pseudoatom were

calculated by using a distance-dependent dielectric constant

e 5 15r, leading to the following equation for the interac-

tion energy of the pseudoatom pair i,j at distance rij:

Eij5
Bij

r ij8
2

Cij

r ij6

� �
1

qiqj

15r 2ij

where Bij and Cij are the repulsive and attractive LJ-type

parameters respectively, and qi and qj are the charges of

the pseudoatoms i and j.

Systematic docking simulations

Our systematic docking algorithm (see Supporting

Information Fig. S1) is derived from the ATTRACT pro-

tocol53 and uses a multiple energy minimization scheme.

For each pair of proteins, the first molecule (called the

receptor) is fixed in space, while the second (termed the

ligand) is used as a probe and placed at multiple posi-

tions on the surface of the receptor. The initial distance

of the probe from the receptor is chosen so that no pair

of probe-receptor pseudoatoms comes closer than 6 Å.

Starting probe positions are randomly created around

the receptor surface with a density of one position per

10 Å2, and for each starting position, 210 different ligand

orientations are generated, resulting in a total number of

start configurations ranging from roughly 100,000 to

450,000 depending on the size of the receptor.

During each energy minimization, the ligand protein is

kept at a given location over the surface of the receptor

protein, using a harmonic restraint to maintain its center

of mass on a vector passing through the center of mass of

the receptor protein. The direction of this vector is defined

by two Euler angles h and u, (where h 5 u 5 08 was chosen

to pass through the center of the binding interface of the

receptor protein) as shown in Supporting Information Fig-

ure S1. By using a Korobov grid59 and varying the Euler

angles from 08!3608 and 08!1808 respectively, it is possi-

ble to uniformly sample interactions over the complete sur-

face of the receptor and to represent its binding potential

using 2D energy maps (each point corresponding to the

best ligand orientation for the chosen u/u pair). These

maps where developed during the first phase of this project

for validating the docking algorithm.48

Computational implementation

Each energy minimization for a pair of interacting

proteins typically takes 5 s on a single 2 GHz processor.

As noted above, approximately 1,00,000 to 4,50,000 min-

imizations are needed to probe all possible interaction

conformations, as a function of the size of the interacting

proteins. Therefore, a CC-D search on the benchmark,

namely 168 3 168 5 28,224 receptor/ligand pairs, would

Table I
Interface Residues Prediction

Protein dataset AUC Errmin PIPmin Cov. Sen. Spec. Prec. Rand. Prec.

Complete benchmark (48161 residues) 0.77 0.29 0.09 32% 71% 71% 17% 11%
Enzymes (6757 residues) 0.73 0.33 0.12 28% 60% 76% 20% 13%
Inhibitors (2589 residues) 0.77 0.28 0.18 37% 73% 70% 35% 22%
Antigens (6669 residues) 0.72 0.33 0.10 28% 61% 74% 15% 9%
Antibodies (3873 residues) 0.90 0.16 0.11 18% 82% 87% 30% 8%
Bound-antibodies (4442 residues) 0.85 0.20 0.11 20% 78% 84% 24% 8%
Others (23828 residues) 0.75 0.30 0.08 35% 72% 68% 15% 10%

Results of the interface residues prediction using the PIP index for the complete benchmark, or depending on the protein’s biochemical type. All values in the Cov.,

Sen., Spec. and Prec. columns are obtained with the optimal PIPmin value (column 4) which corresponds to the minimum error in column 3. The Random Precision col-

umn on the far right gives the ratio of experimental interface residues over the surface residues.
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require several thousand years of computation on a single

processor. However, since each minimization is independ-

ent of the others, this problem belongs to the

“embarrassingly parallel” category and is well adapted to

multiprocessor machines, and particularly to grid-

computing systems. In the present case, our calculations

have been carried out using the public World Community

Grid (WCG, www.worldcommunitygrid.org) during the

first phase of the Help Cure Muscular Dystrophy (HCMD)

project. It took approximately six months to perform CC-

D calculations on the complete dataset of 168 proteins.

More technical details regarding the execution of the pro-

gram on WCG can be found in Ref. 60. The resulting CC-

D data is available for download at the following address:

http://www.lcqb.upmc.fr/CCDMintseris/

DATA ANALYSIS

Definition of surface and interface residues

Surface residues have a relative solvent accessible sur-

face area larger than 5%. The accessibility is calculated

with the NACCESS program,61 using a 1.4 Å probe.

Interface residues present at least a 10% decrease of their

accessible surface area in the protein bound structure

compared to the unbound form.

Interface propensity of the surface residues

In order to see whether cross-docking simulations can

give us information regarding protein interaction sites,

we use the interaction propensity approach initially

developed by Fernandez-Recio et al.42 That is, we count

the number of docking hits for each surface residue ri in

protein P1, that is, the number of times each surface resi-

due belongs to a docked interface between P1 and all its

interaction partners in the benchmark. In earlier

works,48,51 we used a Boltzmann weighting factor which

would favor docked interfaces with low energies. As a

consequence, for a given protein pair P1P2, all interfaces

with a 2.7 kcal.mol21 or more energy difference from

the lowest energy docked interface would have a Boltz-

mann weight lower than 1% (see ref. 51 for more

details). Here, in order to limit the number of docked

interfaces that would have to be reconstructed for deter-

mining the interface residues, which is the time consum-

ing part of the analysis process, we chose to calculate the

residues PIP (Protein Interface Propensity) values using

only the lowest energy docking poses within this 2.7

kcal.mol21 energy criterion, therefore we have

PIPP1P2
ðiÞ5 Nint;P1P2

ðiÞ
Npos;P1P2

where Npos,P1P2 is the number of retained docking poses

of P1 and P2 (which will vary with protein P2) satisfying

the energy criterion, and Nint,P1P2(i) is the number of

these conformations where residue i belongs to the bind-

ing interface. Finally, the PIP value for a given residue i

belonging to protein P1 taking into account the CC-D

calculations within the whole benchmark will simply be

the average PIP of this residue over all the possible part-

ner proteins P2, that is

PIPP1
ðiÞ5hPIPP1P2

ið Þip2

PIP values are comprised between 0 (the residue does not

appear in any docked interface) and 1 (the residue is pres-

ent in every single docked interface involving protein P1)

and will be used for the prediction of binding sites. For

each protein pair in the benchmark, between 1 and 215

docking poses were kept using the 2.7 kcal.mol21 energy

criterion, with an average of 11 docking poses (see Sup-

porting Information Fig. S2a in the supplementary mate-

rial for the distribution of the number of conserved poses

for each protein pair), and for 60% of the protein pairs,

five docking poses or less are kept after filtering on the

interaction energy. These low statistics on each individual

protein pair are compensated by the fact that every pro-

tein was docked with 168 different partners. Eventually,

for each protein in the benchmark, between 900 and 4000

docking poses were used for to calculate the residues PIP

values (see Supporting Information Fig. S2b).

Evaluation of the binding sites prediction

Considering the PIP values results for all the residues,

we define as predicted interface residues, residues whose

PIP value lies above a chosen cutoff, and we can use the

classical notions of sensitivity, specificity and the error

function to evaluate their efficiency for the identification

of protein interaction sites. Sensitivity (Sen.) is defined

as the number of surface residues that are correctly pre-

dicted as interface residues (true positives, TP) divided

by the total number of experimentally identified interface

residues in the set (T). Specificity (Spe.) is defined as the

fraction of surface residues that do not belong to an

experimental protein interface and that are predicted as

such (true negatives, TN). Additional useful notions that

are commonly used include the positive predicted value

(PPV, also called precision, Prec.), which is the fraction

of predicted interface residues that are indeed experi-

mental interface residues (TP/P), and the negative pre-

dicted value (NPV), which is the fraction of residues that

are not predicted to be in the interface and which do

not belong to an experimental interface (TN/N).

An optimal prediction tool would have all notions

(Sen., Spe., Prec. and NPV) equal to unity. If this cannot

be achieved, a compromise can obtained by minimizing

a normalized error function based on the sensitivity and

specificity values, which is comprised between 0 and 1

and defined as:

Predicting Binding Sites From Cross-Docking
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Norm:Err:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Sen:ð Þ21 12Spe:ð Þ2

q
=
ffiffiffi
2
p

On a classic receiver operating characteristics (ROC)

curve (with the sensitivity plotted as a function of 1-

specificity) the minimum error corresponds to the point

on the curve that is the farthest away from the diagonal

(which corresponds to random prediction).

Clustering surface residues

In order to visualize how binding patches composed

of residues with the highest PIP values can form on a

protein surface, we use the following clustering algo-

rithm: for a given protein, its surface residues are

ordered following their PIP value. Starting with the resi-

due with the largest PIP, each surface residue leads to the

creation of a new isolated cluster, or, if any of its heavy

atoms is <5 Å away from the heavy atoms of a residue

already included in a cluster, is added to an already exist-

ing cluster. This process is implemented as long as the

average PIP value of every cluster is larger than a given

threshold named PIPclust. PIPclust is a relative value, and

is expressed as a percentage of the maximum PIP value

found on a single protein surface. For PIPclust 5 100%

only the residue with the largest PIP value on this spe-

cific surface is selected, while for PIPclust 5 0% all surface

residues are selected and form a single cluster covering

the whole protein’s surface. We define a protein’s cluster-

ing profile as the curve showing the number of clusters

on its surface as a function of the PIPclust criterion.

RESULTS

We must recall that, since the point of this work is to

investigate the general binding behavior of protein surfa-

ces with no prior knowledge of the binding partners, and

not the correct docking of experimentally known part-

ners, which can be achieved via other more effective but

much more computationally demanding methods,62 we

did not evaluate the quality of the best structural predic-

tions for the 84 docked complexes. However, in an ear-

lier work,48 where we performed cross-docking

simulations on a limited test-set involving 12 proteins

(using their bound structures), our method was able to

predict correctly the position of the ligand protein with

respect to its receptor with an rsmd of the Ca

Figure 1
(a) ROC curve of the PIP prediction. The diagonal dotted line corre-
sponds to random predictions. The dashed arrow indicates the lowest

error point. (b) Enrichment of the interface residues from the 168 pro-
teins in the Benchmark 2.050 using the PIP index shown by comparing

the fraction of true interface residues detected (sensitivity, solid line)
with the total fraction of residues detected (coverage, dashed line) as a

function of the PIP cutoff. The vertical dotted line corresponds to the

position of the optimal PIP cutoff leading to the minimal error func-
tion shown in Figure 1a. (c) Precision as a function of the PIP cutoff.

The dashed horizontal line corresponds to random predictions.
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pseudoatoms below 3 Å; thus validating the quality of

the force-field used in the MAXDo program. Further-

more, this force-field, which was originally developed by

Zacharias for protein-protein docking,53 has been suc-

cessfully used on numerous occasions for the prediction

of protein complex structures, especially during the

CAPRI contest where the unbound structures of the pro-

tein partners are used.54,63,64

Identification of protein interaction sites

Figure 1(a) gives us a quantitative view of the results

using the sensitivity and specificity notions defined in the

Methods section. The ROC curve for the complete dataset

(which contains >48,000 protein residues) with the varia-

tion of the sensitivity and specificity of the predictions is

plotted in Figure 1(a), while Figure 1(b) shows the selec-

tion of residues potentially belonging to a protein interface

as a function of a PIP cutoff comprised between 0 and 1.

In Figure 1(a), the dotted diagonal corresponds to a ran-

dom sampling of surface residues and divides the ROC

space into areas of correct (above the diagonal) and incor-

rect (below the diagonal) classification. The greatest dis-

tance between the ROC curve and the diagonal yields the

lowest error estimate, which is indicated by a dashed arrow

in Figure 1(a). With a minimum error of 0.29 [see Sup-

porting Information Fig. S3(a)], the optimal PIP cutoff

[0.09, vertical dotted line in Fig. 1(b)] enables us to select

32% of the residues with a sensitivity of 71% and a speci-

ficity of 71% for the interface residues. These results are

comparable to those that were obtained in our previous

work cross-docking the unbound structures of 12 proteins

from a reduced dataset and which led to 30% coverage and

70% and 75% sensitivity and specificity, respectively. To

measure the efficiency of our predictions independently of

the cutoff value, we can also use the area under the curve

(AUC) value, which is 0.77 for the black line in Figure 1(a)

(while random predictions would yield an AUC value of

0.50). Finally, Figure 1(c) shows the variation of the preci-

sion with the PIP cutoff. Experimental interface residues

represent only 11% of all the surface residues from our

data set, which corresponds to the random precision value

that would be obtained with a PIP cutoff set to 0. Increas-

ing the PIP cutoff will increase the precision and the speci-

ficity of the prediction while decreasing the sensitivity. For

example, setting the PIP cutoff to 0.4 would lead to a 40%

precision, 98% specificity, but only 17% sensitivity.

Influence of conformational changes upon binding

Conformational changes upon binding usually define

the difficulty level for docking experimentally identified

complexes. The Docking Benchmark 2.0 comprises three

groups labelled as rigid (63 complexes), medium (13 com-

plexes) and difficult (8 complexes), which present average

RMSDs of the Ca atoms from the interface residues of

0.82 Å, 1.63 Å and 3.67 Å, respectively. Interestingly, the

prediction of binding interfaces using the PIP values per-

forms slightly better for the medium, than for the rigid

and difficult groups with average AUCs of 0.78 for the

medium group, and 0.77 for the rigid and difficult groups

respectively (see Supporting Information Table S1).

Influence of the protein biochemical type for protein inter-
face prediction

Using the biochemical categories discussed above

(Enzymes, Inhibitors, Antigens, AntiBodies, Bound

Figure 2
PIP predictions depending on the protein biochemical type with the

same color code in both panels. (a) ROC curves, the diagonal dotted
line corresponds to random predictions. (b) Precision/Sensitivity curves,

the dashed horizontal lines correspond to random predictions for each
biochemical group.

Predicting Binding Sites From Cross-Docking

PROTEINS 1413



AntiBodies and Others) (see Table I), we obtained the

ROC curves of the PIP predictions for each of these sub-

groups [see Fig. 2(a)]. We can observe noticeable varia-

tions in the quality of the predictions depending on the

protein type. While the curves for proteins from the

Others group (purple line) and inhibitors (green line)

stay close to the overall curve (black line), the predic-

tions for enzymes and antigens interfaces appear to be

much less effective, with ROC curves (in red and yellow

respectively) below the overall curve, an increased mini-

mum error function (0.33 for both groups, compared to

0.29) and decreased AUCs of 0.73 and 0.72 respectively.

In contrast, interfaces from antibodies (both in the

unbound, AB, and bound, BAB, groups), are better pre-

dicted than average, with ROC curves (dark and light

blue lines) above the overall one, reduced minimum

errors of 0.16 and 0.20 respectively, and increased AUCs

of 0.90 and 0.85 respectively.

Instead of using the classic Sen./(1-Spe.) ROC curve,

one can also evaluate the performance of the PIP predic-

tions with the Precision/Sensitivity (Recall) curve like

what has been done by Hwang et al. for the prediction

of binding interfaces from simple docking calculations.47

In that case the random AUC is no longer a constant

and will depend on the proportion of experimental inter-

face residues in each dataset, which corresponds to the

Figure 3
Average number of binding clusters on the protein surface as a function of the PIPclust threshold (a) Complete benchmark, (b) Others, (c) Enzymes,
(c) Inhibitors, (e) Antibodies, (f) Bound antibodies, (g) Antigens.

L. Vamparys et al.
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Random Precision column on the far right of Table I. Fig-

ure 2(b) shows the Precision/Sensitivity curves for the

complete benchmark (in black) and all the functional

subgroups. Once again we can observe a striking differ-

ence between the antigens (yellow line), with predictions

that are barely above the random line, and the antibodies

(dark blue), which present a curve that is markedly

above all the others.

Clustering binding patches on the protein
surface

Using the clustering algorithm presented in the Mate-

rial an Methods section, we can plot an average cluster-

ing profile for the complete benchmark, see Figure 3(a).

As expected, for a maximum threshold PIPclust 5 1, we

find a single cluster formed by the residue with the larg-

est PIP value on the protein surface. As the threshold

decreases, the number of clusters will either increase,

when high-PIP residues are scattered on different parts

of the surface, or decrease, since adding a residue that

belongs to two disjoint clusters will lead to their merging

and the formation of a single cluster. The average num-

ber of clusters on the ensemble of protein surfaces will

pass through a maximum value hNclustimax 5 2 for

PIPclust 5 60%, before decreasing and reaching a final

value hNclusti5 1 for PIPclust 5 0%, where all surface resi-

dues are selected. Figure 4 presents the progressive bind-

ing clusters growth on the protein surface for

representative proteins from the enzyme, inhibitor, anti-

body and antigen categories. For example, reading the

first line on Figure 4 from right to left shows how bind-

ing clusters (in blue), will increase in size and number

on the surface of the a-amylase enzyme (1BVN_r) upon

decreasing the PIPclust threshold value. As could be

expected, there are important variations in the proteins

individual cluster profiles, in particular regarding the

maximum number of clusters that can be found on the

protein surface, which is comprised between 1 and 21

and appears to be strongly correlated with the proteins

size (see Supporting Information Fig. S4). The position

of the PIPclust threshold corresponding to this maximum

will also vary widely from one protein to the other.

Influence of the protein biochemical type on the clustering
profile

Figure 3(b–g) show the average clustering profiles for

the six biochemical categories that are represented in the

Figure 4
Evolution of the binding clusters (shown in blue) growth on a protein surface (red background) as a function of the PIPclust threshold for represen-
tative cases of different functional categories. The column on the far right shows the individual clustering profile for each protein.
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benchmark. As seen in Figure 3(b,c), proteins from the

others and enzymes categories present an average profile

that is similar to the general cluster profile from Figure

3(a), while inhibitors [Fig. 3(d)] have a somewhat flatter

profile, with a maximum cluster number under 2. This is

probably due to the fact that, since inhibitors represent

the smallest proteins on the benchmark, their surface is

only large enough for two clusters at most, which will

rapidly merge into a single one as the PIPclust criterion

decreases. On the second line of Figure 4 we can see for

example how the tendamistat inhibitor (1BVN_l) only

presents one or two binding clusters, which will cover

most of its surface at an early stage (PIPclust around 60%

and under).

On the other hand, the average profiles for proteins

from the antibody [bound, Figure 3(e), or unbound, Fig.

3(f)] and antigen [Fig. 3(g)] categories are very specific.

Antibodies usually present a single dominant cluster that

Figure 5
Mapping the PIP values on a protein’s surface, high PIP residues are shown in blue and low PIP residues are shown in red. The reference experi-

mental partner is shown in a black cartoon representation, while the alternate partner is shown in green. (a) HIV1 reverse transcriptase (2HMI_l),
with FAB28 (2HMI_r) and DNA (2HMI). (b) Colicin E7 nuclease (7CEI_r), with Im7 immunity protein (7CEI_l) and Colicin E7 (1UNK). (c)

Im7 immunity protein (7CEI_l), with Colicin E7 nuclease (7CEI_r) and DNA (1PT3). (d) CMTI-1 squash inhibitor (1PPE_l), with Bovine trypsin
(1PPE_r) and EETI-2 squash inhibitor (1W7Z). (e) T-cell receptor b (1SBB_r), with Enterotoxin B (1SBB_l) and T-cell receptor b (2AXH).
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will grow on the protein surface, and alternative binding

patches will only appear at a later stage for low values of

the PIPclust criterion (under 40%). As an illustration, the

third line of Figure 4 shows the binding clusters growth

in the case of the FAB Hyhel63 antibody (1DQJ_r), with

a very late coverage of the protein surface. On the oppo-

site, antigens will often present various disjoint binding

clusters on their surface for high values of the PIPclust cri-

terion (around 70%), which will afterwards merge in a

single binding patch as the PIPclust criterion keeps on

decreasing, see for example the fourth line in Figure 4

with the case of the pancreatic a-amylase antigen

(1KXQ_l). The individual clustering profiles for all the

proteins in the dataset are available in the Supporting

Information Figure S5.

When false positives turn out to be true
positives: the case of proteins with multiple
interfaces

Promiscuity, or multispecificity, is a frequent feature

in the protein world65,66 and a key issue when trying to

predict proteic interfaces, since many proteins can

actually present multiple binding sites, even when inter-

acting with a single partner.67 This is also the case for

proteins from the docking benchmark 2.0, and the appa-

rent failure of cross-docking for predicting experimental

binding sites can result from the detection of alternative

interfaces formed by the protein with other biomolecular

partners. For example, Figure 5(a) presents the case of

HIV1 reverse transcriptase (2HMI_r). The prediction of

the binding site between this antigen and the FAB 28

antibody (2HMI_l) leads to a AUC value of 0.71, which

is slightly smaller than the average AUC obtained for the

prediction of interface residues in antigens (see Table I).

Coloring the antigen’s surface using the PIP values result-

ing from cross-docking, we can see that we only have a

weak binding signal [Fig. 5(a), left panel, in white] for

the antigen/antibody binding site. However, the 2HMI

complex also comprises a DNA double strand that binds

HIV1 reverse transcriptase on the opposite side of the

antibody binding site [Fig. 5(a), center panel]. As we can

see in the right panel from Figure 5(a), the antigen sur-

face residues surrounding the DNA double strand present

high PIP values (in blue), which means that our proce-

dure can lead to the prediction of binding sites with a

molecular partner (in that case DNA) that do not belong

to the benchmark used for the cross-docking calcula-

tions. We used the list of alternate interfaces and partners

that has been established by Martin and Lavery49 for

proteins from the Docking Benchmark 4.068 (which

comprises many complexes from the 2.0 version) and

found out several other cases of proteins with a low

AUC value where the binding patches formed by surface

residues with high PIP-values correspond to experimental

interfaces with alternate biomolecular partners.

Figure 5(b,c) show how cross-docking lead to the predic-

tion of an alternate protein binding site for then enzyme

colicin E7 nuclease (7CEI_r) and a DNA binding-site for

its inhibitor, the Im7 immunity protein (7CEI_l). More

alternate interfaces are shown in Supporting Information

Figure S6 with the references partner and the alternate

partner systematically shown in black and green, respec-

tively. Using the PiQSi webserver,69 we also searched for

alternate experimental interfaces for the two proteins in

the benchmark which presented the poorest binding site

predictions (as expressed by their AUC value, see Sup-

porting Information Fig. S7), namely the CMTI-1 squash

inhibitor (1PPE_l, AUC 5 0.21, green dot surrounded by

a red circle in Supporting Information Fig. S7) and the

T-cell receptor b (1SBB_r, AUC 5 0.33, purple dot sur-

rounded by a red circle in Supporting Information Fig.

S7). Interestingly, in both cases the alternate binding sites

predicted via the PIP-values matches with the interfaces

formed in homodimeric structures as can be seen on Fig-

ure 5(d,e).

DISCUSSION

Conservation of the interacting interfaces
throughout cross-docking calculations

We have shown that the PIP index provides useful

information on residues more likely to be involved in

protein-protein interfaces, although its performance

depends on the protein family (see Fig. 2). Antigen

surfaces in particular, seem to be more difficult to locate

than the other interaction sites, including those of anti-

bodies. Interestingly, this result agrees with the observa-

tions of Kowalsman and Eisenstein.70 In their work

analysing protein-protein docking models, they showed

that interaction interfaces are enriched with high inter-

face propensity residues, with the exception of antigenic

sites. Both enzymes and inhibitors yield similar results

regarding the interface propensity of their interface core

residues (that is, residues that are totally buried in the

experimental protein interface). In contrast, while anti-

body binding sites seem very well defined, including an

important proportion of core residues with high inter-

face propensity, antigen interfaces on the contrary are

enriched with residues that have low interface propen-

sities. Distinctions between enzyme/inhibitor and anti-

gen/antibody interfaces have also been noted in other

studies,71–75 reflecting the fact that, while both surfaces

evolve to promote binding in the former case, only the

antibody surface evolves in the latter.

Our cross-docking results also show how the different

evolutionary histories of antigens and antibody proteins

impact their surface binding properties. In Figure 2(a,b),

we can see that enzymes and inhibitors have comparable

ROC curves, while the PIP index performs much better

for the determination of antibody interfaces than for
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antigens. In Figure 2(b), it is quite striking that unbound

antibodies are the only functional group for which it is

possible to make precisions that combine a high preci-

sion (above 50%) and high sensitivity (80%). Another

interesting feature of Figure 2 is that unbound antibodies

(dark blue curve) perform better that bound antibodies

(light blue curve) for the prediction of interface residues.

This somewhat puzzling result may explained by the fact

that, in the case of bound antibodies, the protein inter-

face underwent specific conformational changes so as to

specifically fit a given antigen, leading to a decrease of

the quality of binding with every other potential partner.

In contrast, for unbound antibodies, the protein interface

may be less adapted to the specific antigen, but performs

better with all the other proteins. This effect also appears

when looking at the average AUC for the three classes

denoting conformational changes upon binding in the

benchmark, with cross-docking on proteins from the

medium category leading to slightly better binding site

predictions than for protein from the rigid and difficult

groups. Again, the unbound structure of proteins in the

rigid group might be already adapted to their specific

partner and less suitable for arbitrary docking, while a

random partner will dock more easily on the unbound,

and therefore unadapted, structure of a protein from the

medium group. On the other hand, the conformational

change undergone upon binding for proteins from the

difficult group might this time be too important, thus

making the binding site predictions more complicated

for these systems. Interestingly, we would observe the

opposite effect when looking at the prediction of interac-

tion partners within the benchmark,51 that is, proteins

from the rigid group would naturally perform better

than those from the medium and difficult groups, since

their unbound structure is already adapted to the specific

partner we were looking for, thus highlighting the fact

that partner and binding site prediction for protein are

two different issues that each have to be dealt with via

specific tools. In particular, while efficient binding site

prediction tools, using for example evolutionary data,25

are nowadays available, binding partner prediction seems

to be a much more complex problem which is still diffi-

cult to address.48,51

Proteins from the antibody and antigen
groups show specific PIP clustering profiles

Looking at the average clustering profile for proteins

in different biochemical groups, we can see a specific

binding behavior emerge for the surfaces of antibodies

and antigens. Antibodies usually present a single binding

cluster that will be located on a very specific part of the

protein surface, while antigens have several binding clus-

ters that are scattered all over the protein’s surface. These

trends are in agreement with the different performances

that are observed for the prediction of the experimental

interfaces in these two groups using the PIP values, and

again reflect the different evolutionary pressures under-

gone by the antigen and the antibody functional groups.

Cross-docking can lead to the prediction of
alternate interfaces

An interesting feature of binding sites prediction via

cross-docking simulations, is that for some cases it will

lead to the prediction of an alternate interface that corre-

sponds to the interaction of the target protein with bio-

molecular partners that are not present in the original

protein benchmark. This is the case for several proteins

in the enzyme, inhibitor, antigen and others categories,

for which, at first sight, the binding site predictions via

cross-docking seemed to be working badly, as shown

from their weak AUC values compared to the average

obtained for their functional category. In particular, it is

quite striking that for two cases (the antigen HIV1

reverse transcriptase and the inhibitor Im7 immunity

protein), this alternate binding site is actually a DNA

binding site while the cross-docking experiment was

exclusively performed on PPI. Alternate predicted inter-

faces can also correspond to the interfaces found in

homodimeric structures of the protein under study. In

their work on arbitrary protein-protein docking,49 Mar-

tin and Lavery could list 59 cases of protein with multi-

ple interfaces. For over one half (31 proteins) of these

cases, arbitrary docking would target the alternate experi-

mental interface instead of the reference experimental

interface corresponding to the binding partner present in

the docking benchmark. In our case, for those nine pro-

teins (shown in Fig. 5 and Supporting Information Fig.

S6) where alternate experimental interfaces were found,

taking into account all the experimental interfaces resi-

dues (both from the reference and the alternate interface)

for the evaluation of the binding site predictions via

cross-docking leads to a slight increase of the AUC (from

0.74 to 0.75) and a noticeable increase of the method’s

precision as can be seen on Supporting Information Fig-

ure S8.

CONCLUSIONS

In this work, we use high-throughput cross-docking

calculations on a dataset of 168 protein unbound struc-

tures to develop a PIP index for the prediction of inter-

face residues on the protein surface. The PIP index does

not require any prior knowledge of a protein’s potential

interaction partners, and its predictive power depends on

the protein functional group and is poorer for antigens.

We also develop a clustering algorithm which permits to

group together surface residues with high PIP-values.

The resulting clustering profiles for the various biochem-

ical categories show remarkable differences, especially

between the antibody and antigen groups, thus
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suggesting that the binding ability of the surface residues

actually holds some information regarding a protein’s

potential function. To the best of our knowledge, this is

the first time such a clustering analysis has been per-

formed on proteins surfaces, and that a close connection

between a protein’s function and its binding behaviour

has been established. Finally, the PIP index can also lead

to the prediction of alternate interface that are not pres-

ent in our original benchmark, but are still biologically

significant. This means that the evaluation of its predic-

tive power, that is based only on the prediction of a

restricted number of proteic interfaces already present in

the docking benchmark, is probably well underestimated.

The regular finding of alternate experimental interfaces

which concur with our cross-docking predictions also

highlight the fact that defining «true negatives» when

dealing with PPI is actually a difficult matter.

In future work, we plan to apply the analysis tools

that have been developed within the frame of this first

experiment to the results from the cross-docking calcula-

tions subsequently performed on a much-larger protein

database (made of 2246 proteins) that has been used in

the second stage of the HCMD project. This database

comprises a subset of >200 proteins that are known to

be mutated and over-expressed in neuromuscular disor-

der. Combining data resulting from cross-docking simu-

lations and evolutionary approaches, we aim to retrieve

key information regarding the function, binding sites

and potential binding partners of these target proteins.

Globally it is quite remarkable how a simple coarse-

grain rigid approach can still bring us many information

on protein sociology. Just like we cannot expect every sin-

gle individual in a group to behave the same way, a pro-

tein will not always behave and bind the way we expect

it to, no matter how exact or detailed our protein model

might be. Because proteins, like people, are complex sys-

tems, driven by a profusion of parameters that we cannot

hope to identify in their entirety. However, if we set aside

individual cases, that cannot, and should not, be trusted

to tell us exactly how a protein behaves, and now turn

our attention to the statistical data emerging from high-

throughput calculations, we can still retrieve valuable

information regarding proteins general binding behav-

iour and function.
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