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Introduction
The reverse-phase protein array (RPPA) is a fast developing 
technology that can measure the expression and phosphoryla-
tion of hundreds of proteins in thousands of samples in a single 
experiment. It has been applied to a plethora of areas of bio-
medical studies,1–8 and the utility has been well established.2,5 
In an RPPA experiment, samples (tumors, cell lines) are lysed 
and the lysates are printed on a series of cellular film–coated 
glass slides. Each slide is stained with an antibody usually 
originating from mice, rabbits, or goats. The primary antibody 
binds with the target protein in the lysate, and the second-
ary antibody serves as the anchor of the dye used. The slides 
are scanned, and the resulting images are quantified to obtain 
the signal intensity of the spots. A major advantage of this 

platform is that experiments can be tailored to measure the 
biologically and pharmaceutically interesting protein markers 
and proteins in disease-specific pathways. The platform also 
faces challenges such as the validation of the antibodies, the 
time spent on a single experiment, the difficulty of precisely 
controlling the total amount of targeted samples due to lip-
ids and other tissues in the samples, and the relatively small 
number of markers that can be measured in an experiment, 
especially when compared to genomic platforms such as gene 
expression arrays, single nucleotide polymorphism (SNP) 
arrays, and next-generation sequencing.

A major bioinformatics challenge stemming from the 
issues above is the normalization of the data. In our expe-
rience, two main concerns rise when using the raw protein 
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concentration data. One is the unknown and potentially 
different total amount of proteins (loadings) of different sam-
ples on the slides. Although the total proteins in the lysate are 
gauged before they are printed, the procedure is confounded 
by lipids and other biological materials in the samples, and 
therefore, the total amount of protein in each sample is only 
a rough estimate. An effect of varying loading is the unreal-
istically high correlation coefficients between random pairs of 
proteins if loading is not properly corrected. It can also cause 
false results when the proteins are clustered. Another chal-
lenge is the nonlinearity of variances. If we plot the differences 
against the mean of the logarithmic data for a pair of samples 
(the MA-plot, and the difference is “M” and the mean is “A,” 
usually a regular sample and a reference sample, or two similar 
samples),9 M is often seen to be variable across the spectrum of 
A, especially at the upper range of A (sometimes at the lower 
range of A). Ideally, the data cloud in such plots, when well 
normalized, should align with a horizontal line, and M should 
also have a small variance from the horizontal line when two 
samples are similar, as we do not expect more frequent changes 
in protein expression between two samples when A is high or 
low, unless there is a biological basis to believe otherwise.

The R package SuperCurve9–12 (http://bioinformatics.
mdanderson.org/Software/supercurve/) has been widely used 
to quantify the protein concentrations in the dilution series, 
and several normalization methods have been developed 
based on SuperCurve-generated data. The loading control 
(LC) method has been used extensively,3–8 and variable slope 
normalization (VS) has been integrated in SuperCurve (both 
described in the Methods section).

Here we propose the invariant marker set method in the 
context of RPPA and compare it with several other normal-
ization methods found in the literature. The gene expression 
microarray community has long been using the concepts of 
invariant gene set and reference sample for normalization,13 
and it has been recently extended to use a virtual reference 
sample, the average of a group of samples, to replace the single 
reference sample.14 To the best of our knowledge, it has not 
been used to normalize RPPA data. There is a real need for 
the RPPA platform in that one or more slides from a stored 
print batch may be stained a fairly long time after the stain-
ing of the bulk of slides. In this case, adding one or more new 
slides will change the new, enlarged data set, which may cause 
inconsistency between the new data and the old data; if the 
information such as the medians of the invariant data protein 
set is stored from a prior round of analysis, it can potentially be 
used for normalization of the later-added slides.

Negative control slides (NC) have been stained with 
mouse, rabbit, and goat antibodies without the primary anti-
body (ie, only the secondary antibody is used), mainly for the 
purpose of quality control. Ideally, they should have very low 
signals relative to the normal slides, but in reality, this is very 
hard to achieve, leaving considerable amount of spot signals 
when quantified. We consider this signal as the measurement 

of nonspecific binding and proportional to the total amount of 
proteins in the samples. With these assumptions, we attempted 
to use the negative control measurements as a surrogate of the 
total amount of proteins, knowing that the signals on these 
slides are much lower than the majority of the regular slides 
(Fig. 1). NC have been used for RPPA data before, but in a 
different context in that the negative control is used as a pre-
dictor in a model.15

Global median centering (GMC) and subtraction of a 
“housekeeping protein” (HK) have been discussed before,12 
but we will discuss it again for comparison. The Robust Z 
normalization16 (see Methods) is potentially attractive, as 
some statistical regressions such, as LASSO, require stan-
dardized data.17

Methods
The samples. The majority of the samples printed on 

the RPPA slides used in this study were solid tumor samples 
from The Cancer Genome Atlas (TCGA) Project (http://
cancergenome.nih.gov/), and a small fraction of the samples 
are cancer cell lines. There are 48 control samples, 299 stom-
ach adenocarcinoma samples, 50 Glioblastoma multiforme 
samples, 260 low-grade glioma samples, 164 prostate adeno-
carcinoma samples, 205 thyroid carcinoma samples, and 30 
other samples. Most of the TCGA samples are from solid 
primary tumors, with a tiny fraction of metastatic samples. 
Per TCGAs data use policy, we have the permission to use 
the data before the publication of the disease-specific marker 
papers because the aim of the current research is development 
and comparison of methodologies (http://cancergenome.nih.
gov/publications). All the TCGA samples are unique on the 
slides. The control cell line samples include two breast cell 
lines (MDA-MB-231 and MDA-MB-468), either control or 
stimulated with a growth factor, a leukemia cell line Jurkat, 
either control or treated with an anti-Fas agent, and a mixed 
lysate from multiple cell lines, with six replicates.

Lysate Preparation. Both the TCGA tumor samples 
and the cancer cell lines were prepared by the University of 
Texas MD Anderson Cancer Center RPPA Core Facility. 
Cellular protein concentration was determined by bicin-
choninic acid reaction (Pierce, Rockford, IL). Five serial two-
fold dilutions were performed in lysis buffer containing 1% 
sodium dodecyl sulphate (SDS) (dilution buffer). The diluted 
lysates were spotted on nitrocellulose-coated FAST slides 
(Whatman, Schleicher & Schuell BioScience, Inc., Keene, 
NH) by a robotic GeneTAC (Genomic Solutions, Inc., Ann 
Arbor, MI) G3 arrayer or an Aushon Biosystems (Burling-
ton, MA) 2470 arrayer. The antibody validation and sample 
preparation protocols can be found at the website of the  
Core Facility (http://www.mdanderson.org/education-and- 
research/resources-for-professionals/scientif ic-resources/
core-facilities-and-services/functional-proteomics-rppa-core/
index.html). Two hundred and three (203) proteins, including 
total and phosphorylated proteins, were included in this study.
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Antibody Probing and Signal Detection. The DAKO 
(Carpentaria, CA) catalyzed signal amplification system was 
used for antibody blotting. Each slide was incubated with 
a primary antibody (Supplemental Table 1) in the appropriate dilu-
tion. The signal was captured by biotin-conjugated secondary 
antibody and amplified by tyramide deposition. The analyte 
was detected by avidin-conjugated peroxidase reactive to its 
substrate chromogen diaminobenzidine. Subsequently, the 
slides were individually scanned (Cannon Scan 9000F, Can-
non U.S.A. Inc., Melville, NY) and quantitated using Array-
Pro Analyzer (Media Cybernetics, Inc., Rockville, MD). This 
software provides automated spot identification, background 
correction, and individual spot intensity determination.

Estimation of Relative Protein Concentration. The  
R package SuperCurve was used to estimate the relative pro-
tein concentration in each dilution series. Briefly, the observed 
spot signal intensity data of all the dilution series on a slide 
are used to estimate the initial parameters of a sigmoid curve 
(the minimum α, the maximum β, and the slope γ). These 
parameters are then used to estimate the median effective con-
centration (EC50) for each dilution series on a given slide by 
solving the nonparametric model10:

	 y g xij i j ij= + +( ) ,EC50 ε

where yij is the observed expression level at the ith dilu-
tion step in the jth sample, xi is the dilution step (1 through 
5 in the current experiments, and can be centered), εij is the 
observation error, and g is an unknown function representing 
a nondecreasing curve. The resulting data (raw data) are in log2 
scale, and saturated and very low values are truncated (if less 

or higher than the maximum and minimum by two times of 
the SD of the residuals from model fitting).

Methods of Normalization. We compared the fol-
lowing eight methods for normalizing RPPA data. Some of 
those methods have been previously used specifically in the 
context of RPPA, whereas other methods are either general 
purpose or used in the context of gene expression data, as 
indicated.

Invariable protein set normalization (Inv). In this method, 
the proteins are ranked in each sample, and the variance of 
the ranks for each marker is calculated across all the sam-
ples. The method was originally proposed for normalizing 
gene expression data,14 but we are proposing a variant of 
the method in the context of RPPA data normalization. 
The protein with the highest rank variance is discarded. The 
remaining markers are again ranked within each sample, 
and the protein with the highest rank variance is again dis-
carded. The process is repeated in an iterative fashion until 
the number of remaining markers reaches a predetermined 
integer. Here we kept 100 markers. Each marker is trimmed, 
ie, the 25% highest values and the 25% lowest values in the 
entire data set are removed, and a virtual reference sample is 
created by averaging the remaining values of every protein 
across all the samples. In cases where all the values of a given 
protein are excluded, the top and bottom percentages need to 
be lowered. Each sample is normalized to the virtual refer-
ence sample by lowess smoothing using a MA-plot approach, 
ie, smoothing the M values (difference between the target 
sample and the reference sample, in log2) against the A value 
(mean of the target and reference samples, in log2), and the 
adjusted or normalized values are generated using the residu-
als of the fit.14

Loading control. In this RPPA-specific method, (i) the 
median expression value is subtracted from each protein 
(median centering); (ii) the median expression value is cal-
culated and subtracted from the data from step (i) for each 
sample.2–5,7

Tukey’s median polish. This general purpose method is 
essentially a nonparametric equivalent to analysis of variance. 
The row medians and column medians are subtracted alter-
nately until the process converges, ie, until the proportional 
reduction in the sum of absolute residuals is less than a small 
positive number ε or until the number of iterations reaches a 
predetermined integer.18 The overall median is also estimated. 
Here we add the overall median back to the residuals as the 
normalized data. This should be a very robust approach if  
the numbers of samples and markers are reasonably large in 
the data. We include it only for the purpose of comparison.

Global median centering. In this RPPA-specific method, 
the median expression value of each sample is simply sub-
tracted from the raw data of all the proteins for the sample.12,19 
While this may be the least “intrusive” method, ie, with few-
est steps from the raw data, the sample median estimate is still 
biased when the number of markers is low, eg, ,100.
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Subtraction of HK. In this RPPA-specific method, 
GAPDH is used as a HK, and its value is subtracted from that 
of other proteins for each sample.12

Variable slope normalization. This RPPA-specific method 
regards the data for different slides as having different sigmoi-
dal slopes from the curve estimated with common quantifi-
cation methods.20 The slopes are estimated and divided after 
the markers are median centered and before the samples are 
median centered.12

Subtraction of NC. To normalize the data, the raw protein 
concentration values of the NC are subtracted from the raw 
protein concentration values of the slides stained with anti-
bodies from the corresponding antibody/animal source. For 
instance, if a slide is stained with a mouse antibody, the slide 
is normalized using the mouse negative control slide and the 
same for rabbit antibodies. NCs have been previously used for 
RPPA data, but in a different context in that the negative con-
trol is used as a predictor in a model.15

Robust Z normalization (Z’). This general purpose method 
is the robust counterpart of the standard score.16 The normal-
ized data for the ith protein and jth sample is calculated as:

	 ′ = −X Xij ij i i( ) / ,MED MAD

where Xij is the raw data for the ith protein in the jth sample 
( j =  1, 2, …, s), and MEDi and MADi are the median and 
median absolute deviation, respectively, of the ith protein. The 
s can be the total number of samples on a slide or the number 
of samples in a sample subset.

An in Silico Experiment to Test Loading Correction. 
This experiment was designed to test the performances of the 
normalization methods regarding the fold changes between 
groups of samples and the distribution of sample medians. Since 
there are five twofold dilution steps for each sample (steps 1–5, 
with the lysate diluted to 100%, 50%, 25%, 12.5% and 6.25%, 
respectively, of the original concentration), the protein concen-
tration from a dilution series with steps 1–4 would double that 
from a dilution series with steps 2–5 when estimated by Super-
Curve. Therefore, we have created a pseudo-slide from each 
original slide by first randomly selecting half of the samples 
and taking the steps 1–4 and steps 2–5 of each original five-
step dilution series, ie, generating a pair of pseudo-samples 
from each original sample [we call them high-concentration 
(H) and low-concentration (L) samples, respectively]. To avoid 
potential bias due to the proportion of the L samples, three 
scenarios were considered: the ratio of the number of H sam-
ples to the number of L samples was 1:1, 10:1, or 1:10. Then 
the fold changes were evaluated using only the paired H and L 
samples. We would expect that these differences will be ren-
dered to near zero after an effective loading correction, and the 
median values of all the samples will be similar.

Immunohistochemistry/Florescence in Situ Hybrid-
ization Data. In breast cancer, the immunohistochemistry 
(IHC)/florescence in situ hybridization (FISH) measurements 

of three key proteins in breast cancer estrogen receptor (ER), 
progesterone receptor (PR), and Human Epidermal Growth 
Factor Receptor 2 (HER2) are usually available as part of 
clinical information of the patients. We took advantage of this 
independent data to help test our data normalization meth-
ods. The original clinical data are available at TCGA’s data 
portal (the file “clinical_patient_brca.txt” at https://tcga-data.
nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/
tumor/brca/bcr/biotab/clin/, as of July 2013). The positive 
and negative calls for ER and PR were taken directly from 
the file. For HER2, a sample was “positive,” “equivocal,” and 
“negative” if the IHC level was 3+, 2+, and 1+, respectively. 
For the equivocal ones, and FISH score was used to help with 
the decision (positive if FISH score was .2.2 and negative if 
FISH score was ,1.8). Only the samples with clear positive 
and negative calls were used. We compared the mean protein 
expression (total protein), measured with RPPA, between the 
positive and the negative groups by t-statistic.

Evaluation Criteria. MA-plots were used to judge the 
performance of variance correction. The disperses of distri-
butions of the sample medians and the distribution of the 
differences between the paired high- and low-concentration 
samples in the simulated data were used to evaluate the per-
formance of loading correction. Lin’s concordance correlation 
coefficient (CCC)21 was also used to judge how the normaliza-
tion methods affect the closeness between replicate samples 
and closely related proteins. A high CCC requires that the 
two variables under comparison not only have high a Pearson 
correlation but also have a regression line close to the line of 
intercept 0 and slope 1.

Results and Discussion
Distribution of the between-protein and between-

sample correlations. We calculated all the pairwise Spearman 
correlation between the proteins and the samples and plotted 
them in Figure  2 (the curve from the raw data is covered 
by the Z ’ one, as theoretically the ranks of the protein data 
within each sample does not change merely by that pro-
cedure). The curves in Figure 2A are the separately sorted 
Spearman ρ values. For the raw data, the protein–protein 
correlation are mostly positive and more than a half are 
greater than 0.5, which is an exaggeration of reality, where 
we expect the positive and negative correlation coefficients 
are largely equal. The NC and HK methods resulted in the 
very similar ρ values as the raw data did. The other methods, 
Inv, LC, median polish (MP), GMC, and VS, all reduced 
the protein–protein correlations to a realistic level, ie, about 
half positive and half negative.

For the pairwise sample-to-sample correlation 
(Fig.  2B), the ρ values from all the methods were sorted 
by the order of the ρ values derived from the raw data  
(a black line covered by other lines neat the top of the plot). 
All the methods other than VS, MP, and Z’ gave similar 
or identical results, as subtraction of a constant does not 
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affect the ranks of the proteins in each sample (ie, LC, 
GMC, NC, and HK). As we will discuss later, the high 
sample-to-sample correlation is not as much a concern as 
the protein-to-protein.

Loading Correction. Figure  3A shows the distribu-
tions of the sample medians for the actual raw data and the 

normalized data using different methods. All the sample 
medians are centered at or near 0 except the NC one. The 
curves from the raw data and the HK- and Z’-normalized 
data are very widely dispersed. We would like to see nar-
rower dispersions, which are an indication of more effec-
tive loading correction. In this sense, MP, VS, Inv, and 
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Table 1. The variances of the differences of the normalized data for two replicate samples per cell line control on the RPPA slides (see text).

Control Names Raw Inv LC MP GMC NC VS HK Z’

Mixed lysate 0.139 0.046 0.139 0.139 0.139 0.152 0.276 0.139 0.164

468 Control 0.137 0.039 0.137 0.137 0.137 0.147 0.335 0.137 0.199

468 EGF 0.158 0.04 0.158 0.158 0.158 0.163 0.432 0.158 0.251

231 Control 0.117 0.033 0.117 0.117 0.117 0.119 0.295 0.117 0.172

231 IGF 0.113 0.033 0.113 0.113 0.113 0.115 0.297 0.113 0.168

Jurkat control 0.114 0.029 0.114 0.114 0.114 0.114 0.27 0.114 0.159

Jurkat fas 0.12 0.036 0.12 0.12 0.12 0.12 0.292 0.12 0.166

Note: The Inv method corresponds to the least variances.

LC are much better performers than HK, Z’, and NC. 
The GMC method inherently generates 0  medians for all 
samples and the curve is not shown in the figure to reduce 
the crowdedness of the figure.

We performed an in silico experiment to test the per-
formance of the methods. As described in the Methods sec-
tion, the fold difference (twofold) was simulated at the spot 
signal intensity level. The densities of the differences between 
all the high- and low-concentration sample pairs for all the 
proteins were plotted in Figure 3B. We can see that the dif-
ferences are essentially kept in the raw data (1 on the x-axis 
corresponds to twofold), although there is an overestimation 
in the fold change, as shown by the heavy tail on the right-
hand side. All the normalization methods resulted in differ-
ences that are centered or near 0 except for the Z ’ and VS 
methods. Of the former methods, the Inv method has the 
narrowest distribution next to MP. Figure 3C shows the dis-
tributions of the median protein levels of the samples. Again, 
the Inv and MP generated very narrow spikes, as well as LC. 
In both cases, MP generated very narrow peak by definition. 
Depending on the converging iteration the procedure ends 
at, the sample medians can be all 0 or a group of very similar 
small numbers.

Variance Stabilization. The MA-plot between pairs 
of control samples (duplicates from the same cell line) helps 
examine the variance nonlinearity problem. The first MA-
plot in Figure 4 (from raw data) shows a curvature in the data 
cloud, and the latter does not center at 0. The Inv method had 
the best performance, as the data cloud is narrower and more 
concentrated toward the 0 line. MP and VS distorted the 
shape of the data cloud, and the other methods did not change 
the shapes of the data clouds substantially from the raw data 
counterpart. Table 1 shows that the variances of M values are 
the least for the Inv method (some methods have the same 
variances due to simply shifting of the data between them).

Association of the RPPA Data with IHC/FISH Data. 
Figure  5  shows the t-statistics from comparing the positive 
and negative groups for ER, PR and HER2 as measured by 
IHC/FISH. The t-statistics are low overall for PR. Five nor-
malization methods, Inv, LC, MP, GMC, and NC, produced 
similar results for all three hormones. With the same degrees 

of freedom for each hormone, we simply use the t-statistic 
instead of the P-value for this purpose. Since this comparison 
is cross-platform, we put high emphasis on this test.

Concordance Between Replicate Samples and Closely 
Related Proteins. The concordance between a pair of 
phosphorylated proteins is very different for different proteins 
(Fig. 6A). Of the six pairs we have found in the data, the pAkt 
pair and pS6 pair have high CCC values regardless of normal-
ization methods, and the other pairs vary dramatically. This 
could be due to the fact that different phosphorylation sites of 
the same protein can be very different events. For the concor-
dance between replicate samples (Fig. 6B), the methods with 
high CCC values are essentially those that have high sample-
to-sample correlations as shown in Figure 2B.

Conclusion
We have compared the performance of nine different normal-
ization methods (including no normalization) for SuperCurve-
based RPPA data. This is the first time the invariant marker 
set–based method has been applied on RPPA data and has 
performed well with respect to loading effect correction, vari-
ance stabilization, and association with IHC/FISH data. With 
regards to loading effect correction, the NC had wide spreads 
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Figure 5. The t-statistics from comparing the mean protein values 
between the positive and negative groups for ER, PR, and HER2.  
Note: The positive and negative calls were determined from IHC/FISH 
assays.
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in the distributions of the sample medians and simulated high/
low-concentration pair differences. The VS method, although 
performs well in correcting loading bias using simulated 
differential loadings at another level–the simulation was based 
on the SuperCurve output, not on the very basic level of spot 
signal intensity11–did not perform as well in the current simula-
tion. The rest of the methods also have strengths in one aspect 
and weakness in another aspect in these tests.

We consider our simulation of generating pairs of pseudo-
samples a novel approach. The spatial correction step usually 
occurring in SuperCurve10 was not performed here because 
the high-concentration and low-concentration sample pair 
are inherently together, and they are located at randomly 
determined locations on the slides. An alternative is to run 
SuperCurve separately on the high-concentration and low-
concentration samples, but the results may be not comparable.

Discussion
The fact that the fold change in the raw data is greater than 
1 (log2 scale) needs further investigation. A hypothesis is 
that for a five-step dilution series, the signal detection for the 
most diluted, eg, the fourth and fifth, spots are less sensitive 
than for the first few stops. If this is the case, the calculated 
fold changes should be lower for strong-signal pairs than for 
weak-signal pairs (indeed, the median difference is 1.146 for 
the bottom 25% weak-signal pairs and 1.003 for the top 25% 
strong-signal pairs).

When some proteins are high in all samples and others 
are low in all samples, it creates an effect similar to the sample 
loading effect that causes falsely high correlations between 
proteins. The high correlation coefficients between samples 
are more tolerable than between proteins in that proteins are 
inherently different in expression/phosphorylation levels due 
to biology and/or antibody affinity, although the latter cause is 
less desirable than the former (they are confounded and hard 
or impossible to separate).

There is a potential risk of over-normalization in some of 
these methods. For example, the MP method very effectively 

adjusted the loading effect and showed good correlation 
with the IHC/FISH data, it condensed the data spots in the 
MP-plot. Also, new patterns have formed in the MA-plots 
corresponding to VS and Z’ (Fig. 4).

To our knowledge, LC is the most commonly used 
method in the field, and to our comfort, it did fairly well in the 
three performance tests discussed earlier, but Inv performed 
even better: it did as well as LC in the IHC/FISH test, and 
better in the loading correction and variance stabilization test. 
In the future, we will test the algorithm on more data sets and 
fine-tune the parameters.
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