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Abstract: Meltblown (MB) nonwovens as air filter materials have played an important role in
protecting people from microbe infection in the COVID-19 pandemic. As the pandemic enters the
third year in this current global event, it becomes more and more beneficial to develop more functional
MB nonwovens with special surface selectivity as well as antibacterial activities. In this article, an
antibacterial polypropylene MB nonwoven doped with nano silicon nitride (Si3N4), one of ceramic
materials, was developed. With the introduction of Si3N4, both the average diameter of the fibers and
the pore diameter and porosity of the nonwovens can be tailored. Moreover, the nonwovens having a
single-side moisture transportation, which would be more comfortable in use for respirators or masks,
was designed by imparting a hydrophobicity gradient through the single-side superhydrophobic
finishing of reactive organic/inorganic silicon coprecipitation in situ. After a nano/micro structural
SiO2 precipitation on one side of the fabric surfaces, the contact angles were up to 161.7◦ from 141.0◦

originally. The nonwovens were evaluated on antibacterial activity, the result of which indicated that
they had a high antibacterial activity when the dosage of Si3N4 was 0.6 wt%. The bacteriostatic rate
against E. coli and S. aureus was up to over 96%. Due to the nontoxicity and excellent antibacterial
activity of Si3N4, this MB nonwovens are promising as a high-efficiency air filter material, particularly
during the pandemic.

Keywords: PP meltblown nonwoven; silicon nitrile (Si3N4); filtration; antibacterial materials;
superhydrophobicity

1. Introduction

With the current COVID-19 pandemic still ongoing, there is a growing demand for
functional materials, such as core filtration materials for respirators or masks [1,2]. At
present, meltblown (MB) nonwovens made from polypropylene (PP) are the most widely
used core layer for air filtration applications such as facial masks and air conditioning filter
element [3]. The MB nonwovens are usually doped with materials and electrostatically
charged after processing to optimize their filtration performance. Notably, quite a few
studies have shown that respiratory diseases caused by bacteria and viruses are mostly
transmitted by droplets or aerosols in the air [4–7]. Moreover, the long-term survival
of bacteria and viruses on the surface of personal protective equipment (PPE) includ-
ing face masks would cause potential risks of cross-contamination and postinfection to
the users [8–11]. These put forward even higher requirements on the filtration perfor-
mance of filter materials and at the same time, antibacterial functionalization has attracted
increasing attention.

It is well-known that nonwoven surgical gown materials are typically finished with
“three repellent and antistatic/directional water-transfer” to endow them with both perfor-
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mance and comfort [12,13]. The nonwovens can also be finished so as to make the inner
side close to the skin possess a higher hydrophobicity, providing an effective means of
achieving unidirectional moisture transfer [14,15]. The forming of micro/nano structural
SiO2 could be ordinarily used as affordable fiber or fabric superhydrophobicity [16,17].

In general, the approaches to imparting antibacterial activity to nonwovens include
surface finishing and blending modification of raw materials. The finishing process is
commonly employed to introduce antibacterial agents into fabrics possessing a high
strength, such as woven fabrics [18,19], spunlace nonwovens [20–22], needle-punched
nonwovens [23] and spunbonded nonwovens [24,25]. In contrast with these fabrics, melt-
blown nonwovens are not suitable for the antibacterial finishing process due to their poor
strength [26–28]. To prepare antibacterial meltblown nonwovens, it is more convenient
and cost-effective to use blending modification, which applies antibacterial agents directly
into a polymer raw material before web forming. The obtained antibacterial activity is
also lasting. Limited by high-temperature MB processing, inorganic nanometals or metal
oxides are generally used as antibacterial agents [29–31], and the silver compounds have
especially been proved to be very effective. However, the potential hepatotoxicity of silver
is still a concern, and its long-term effects on mammalian cells remain unclear [32,33].
The antibacterial mechanism of metal oxides is mainly photocatalytic, such as ZnO/PP
antibacterial fibers [31], which hardly play an efficient role under less or no-light condi-
tions. Ceramic materials have also been widely used in medical fields including dentistry,
orthopedics and so on, due to its nontoxicity and lack of side effects. The antibacterial
properties of ceramic materials have been gradually discovered recently. For example, the
nanosized Si3N4 was coated or incorporated in polymer films as an antibacterial material,
which showed good antibacterial activity [34,35], and its antibacterial mechanism is being
gradually explored [36,37].

In this research, nano-Si3N4 ceramic materials were doped into PP by a twin-screw
extruder to produce antibacterial masterbatches, which were transferred as raw material
into antibacterial MB nonwovens during the meltblown process, which were further fin-
ished with superhydrophobicity on one side. The as-prepared nonwovens were evaluated
on their filtration properties and antibacterial activities, with prospective applications in
air filtration, including respirators and masks with a high-efficiency filtration performance
and good antibacterial property.

2. Experimental
2.1. Materials

Polypropylene (melt flow rate, MFR: 1500 g/10 min, melting temperature: 165 ◦C)
was kindly provided by Shandong Dawn SWT Technology Co., Ltd. (Yantai, China). Nano-
Si3N4 (average particle size: 20 nm) was purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). Anhydrous ethanol (99.7%) and ammonia solu-
tions (AR) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Tetraethyl silicate (98%) was purchased from Macklin Biochemical Technology Co., Ltd.
(Shanghai, China). The silane coupling agent (KH550) was purchased from Hangzhou Jacic
Chemical Co., Ltd. (Hangzhou, China). Nutritional AGAR CM107 and nutritional broth
CM106 were purchased from Beijing Luqiao Technology Co., Ltd. (Beijing, China). Es-
cherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 were obtained from Shanghai
Luwei Technology Co., Ltd. (Shanghai, China).

2.2. Preparation of PP/Si3N4 Antibacterial Pellets for MB

To obtain PP antibacterial pellets as MB raw material with nano-Si3N4 dispersed
fully and evenly, the blending of nano-Si3N4 particles with PP was carried out in a Bench-
top Twin-Screw Extrusion Pelletizing Line (LTE16-40+, Labtech Engineering Co., Ltd.,
Samutprakarn, Thailand) with two feeders.

Firstly, PP and Si3N4 were added into the main feeder and one side of the extruder,
respectively, and extruded, cooled and pelletized; the antibacterial masterbatch containing
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20 wt% of Si3N4 was prepared, as shown in Figure 1. Secondly, the other PP/Si3N4 pellets
as raw materials for MB nonwovens containing 0.6%, 0.8% and 1.0% of Si3N4 were prepared
according to Table 1 and named SiN0.6, SiN0.8 and SiN1.0. The processing parameters of the
twin-screw extruder are shown in Table 2, mainly including temperature sets in different
zones. The screw rotation speed of the main feeder was 80 r/min and that of the side feeder
was dynamically adjustable to be adaptable for the dosage.
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batch and other pellets.

Table 1. The recipe of raw materials for MB nonwovens.

Raw Materials SiN0.6 SiN0.8 SiN1.0

PP, % 97 96 95
Antibacterial masterbatch (20% Si3N4) 3 4 5

Table 2. Processing parameters of twin-screw extruder.

Zone 1 and 2, ◦C Zone 3 and 4, ◦C Zone 5 and 6, ◦C Zone 7 and 8, ◦C Zone 9 and 10, ◦C

160 170 175 170 165

2.3. Preparation of Antibacterial MB Nonwovens

The MB nonwovens were prepared on an MB lab line (SH-RBJ, Shanghai Sunhoo
automation equipment Co., Ltd., Shanghai, China) and the MB process is illustrated in
Figure 2. The raw material pellets were fed into the hopper, melted in the screw extruder
and then extruded through the spinneret. At the same time, the air flow with a high
temperature was blown out through both sides of the spinneret to draft the melt flow. The
microfibers were uniformly collected on the receiving device to form web. The main online
parameters of the melt-blown process are shown in Table 3.
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Table 3. The main online parameters of melt-blown process.

Zone 1, ◦C Zone 2, ◦C Zone 3, ◦C Zone 4, ◦C Spinneret, ◦C Hot Air, ◦C Air Pressure, MPa Distance to Roller, cm

170 200 225 230 225 250 0.23 20

2.4. Superhydrophobic Finishing on One Side of As-Prepared Nonwovens

The superhydrophobic finishing was carried out by in situ synthesis of silicon dioxide
and precipitated on the surface of the nonwovens [38,39]. Firstly, solution A was prepared
by adding 4.5 mL of tetraethyl silicate (TEOS), 1.0 mL of silane coupling agent (KH550) and
40.5 mL of anhydrous ethanol to a 250 mL beaker, and then MB nonwoven fabric cut into
2 cm × 2 cm size was floated on the surface of solution A and gently stirred with magnetic
stirrers for 1 h. A solution B containing 9 mL of deionized water, 1.5 mL of ammonia water
and 34.5 mL of anhydrous ethanol was dropped into the solution A slowly in 1 h and held
for 3 h. Finally, the nonwovens were dried in an oven at 130 ◦C for 5 min.

2.5. Morphologies, Structures and Properties

The morphologies of the obtained nonwoven were observed by a scanning electron
microscope (SEM, Phenom Pro, Eindhoven, The Netherlands). About 2.0 mm × 2.0 mm
nonwoven sample bonded to a conductive tape was sprayed by gold for 60 s in an SBC-12
small ion sputtering instrument (Beijing, China). Then, it was observed in the SEM and
under a 10 kV of electron accelerating voltage.

Nano Measurer 1.2.5 software was used to measure the fiber diameter and to calculate the
average diameter of fibers in the as-produced nonwoven web and their diameter distributions.

The structures of raw materials and as-produced nonwovens were characterized by
means of Fourier transform infrared spectroscopy (FTIR). The nano-Si3N4 was treated
by the pressing disk method before tested and the as-produced nonwoven was tested in
attenuated total reflection (ATR) mode.

The contact angle of the nonwoven material was measured by a contact angle analyzer
(JY-PHb, Jinhe, China). Firstly, 5 µL of water was dropped on the surface of the nonwoven
material, and then it was photographed. Finally, the contact angle was measured by the
angle measurement method.

The thermal properties of antibacterial masterbatches or nonwovens were analyzed
on a differential scanning calorimeter (DSC, Q2000, TA instruments, New Castle, DE, USA).
The 5 mg sample was weighed and heated from 25 ◦C to 250 ◦C at a rate of 10 ◦C/min in a
nitrogen atmosphere of 50 mL/min. The temperature was kept for 10 min and then cooled
to 25 ◦C at the same rate. Moreover, the thermogravimetric analyzer (TGA) chart was also
given from 25 ◦C to 750 ◦C at a rate of 10 ◦C/min in a nitrogen atmosphere of 50 mL/min.

2.6. Filtration Test

The pore size distribution of MB nonwovens was measured using the pore size meter
TOPAS PSM-165 (Frankfurt, Germany). All samples were 25 g/m2 in basis weight, cut into
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disc-like samples with a diameter of 25 mm, put on a fixture with an internal cross-sectional
area of 201 mm2 and then tested under an incrementally increasing airflow up to 70 L/min.

Air breathability was tested on the air permeability tester TEXTEST FX3300-IV (Schw-
erzenbach, Switzerland) under an air pressure of 200 Pa using a round sample having a
surface area of 20 cm2.

The filtration performance of MB nonwoven was measured by the particle filter media
test system TOPAS AFC-131 (Frankfurt, Germany). The sodium chloride aerosol particles
were generated by the polydisperse aerosol generator, and its concentration was 1.0 mg/m3.
The effective filtration area was 200 cm2 and the air flow rate was 5 m3/h.

2.7. Antibacterial Test

The antibacterial properties of SiN0.6, SiN0.8 and SiN1.0 nonwovens were evaluated by
the oscillation method according to GB/T 20944.3-2008.

3. Results and Discussion
3.1. Fiber Morphologies, Structures and Properties of MB Nonwovens

As shown in Figure 3, the average fiber diameters of PP, SiN0.6, SiN0.8 and SiN1.0
nonwovens were 2.0 µm, 2.1 µm, 2.2 µm and 2.8 µm. Occasional coarse fibers were also
observed in these nonwoven webs, possibly due to large particles or defect aggregates of
Si3N4 causing a local blockage of the spinneret more or less, so that the melt flow was ejected
unevenly. Overall, with the increase of Si3N4 content, the viscosity of the masterbatches
was increased and MFR decreased (Figure S1), indicating a deteriorated fluidity of the PP
melt and ultimately leading to thickened fiber diameters in the nonwoven webs.
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3.2. Contact Angles (CAs) of MB Nonwovens

Owing to the uniform and well-distributed web of MB nonwovens, the so-called
upper side and lower one of nonwovens had similar properties. The SiO2-treated side of
nonwoven web in contact with the finishing solution was called the lower side and the other
side called the upper side. The solution and process of hydrophobic finishing were shown
in Figure 4a,b and the hydrophobic finishing occurred only on the lower side of nonwoven
because of PP having a lower density than water and having a hydrophobicity with a CA of
about 142◦. Micro-nano structural SiO2 was formed and in situ precipitated on the surface
of the nonwoven (Figure 4c), which afforded the nonwoven superhydrophobicity and the
CA was increased significantly from 142.3◦ to 161.7◦ (Figures 3e and 4g). The CA of the
upper side was little changed (Figure 4d,f). It was indicated that the micro-nano structural
SiO2 growing on the fibers’ surface led to chemical and structure hydrophobicity [39].
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CAs of as-prepared MB nonwovens: (d) the upper side and (e) the lower side prior to finishing;
correspondingly, (f) the upper side and (g) the lower side after the finishing.

3.3. Thermal Properties of MB Nonwovens

The as-prepared nonwovens were also characterized by means of a DSC-TGA, and
as shown in Figure 5, it indicated the thermal performance curves of nonwoven materials
with different Si3N4 contents. The melting points of the PP, SiN0.6, SiN0.8 and SiN1.0
nonwovens were 166.9 ◦C, 167.3 ◦C, 167.1 ◦C and 167.3 ◦C (Figure 5a), which did not
change very much, and all completely melted at above 180 ◦C of processing temperature.
The decomposition temperatures based on 5% of weight loss were reached (Figure 5d),
which were 414.9 ◦C, 413.3 ◦C, 411.4 ◦C and 413.2 ◦C for the PP, SiN0.6, SiN0.8 and SiN1.0
nonwovens, respectively. In general, the addition of Si3N4 did not change the melting point
and decomposition temperature of PP obviously. It could be completely melted at 230 ◦C
and would not be decomposed, which showed that the processing conditions in Table 3
were suitable.
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3.4. Structures Analysis (FT-IR) of MB Nonwovens

As shown in Figure 6, the characteristic peaks of the –CH3 stretching vibration of PP
were at 2949 cm−1 and 2867 cm−1 and those of the –CH2– stretching vibration at 2917 cm−1

and 2839 cm−1. The peaks at 1455 cm−1 and 1376 cm−1 were the bending vibration of the
C–H bonds. The peaks at 1035 cm−1 and 923 cm−1 were attributed to the Si–N vibration,
and the peaks at 578 cm−1 and 441 cm−1 to the Si–O vibration. Due to the low content,
these peaks of Si3N4 did not appear in the nonwovens, which indicated that the addition
of Si3N4 did not affect the structures of PP.
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3.5. Pore Size and Air Permeability

The pore size and permeability of as-prepared nonwovens was tested to investigate
the effect of nano Si3N4 on them. As shown in Figure 7, the average pore sizes of PP,
SiN0.6, SiN0.8 and SiN1.0 nonwovens were 15.9 µm, 16.2 µm, 16.9 µm and 17.5 µm, and
the air permeability 535 mm/s, 537 mm/s, 540 mm/s and 544 mm/s. Pure PP nonwo-
ven had the narrowest pore size distribution, while SiN1 nonwoven had the widest pore
size distribution. With the increase of Si3N4 content, the average diameter of nonwo-
ven fibers became coarse and the diameter distribution became wide, which increased
the permeability.
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3.6. Filtration Performance

The filtration performance of MB nonwovens is generally indicated by its quality
factor (QF) calculated based on the following Equation (1).

QF = − ln(1− η)/∆p (1)

where η represents the filtration efficiency in 100%, and ∆p represents the pressure drop
in Pa.
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The filtration efficiency of PP, SiN0.6, SiN0.8 and SiN1.0 nonwovens was 96.3%, 96.1%,
95.7% and 95.2%, respectively, and the pressure drops were 22.2 Pa, 21.4 Pa, 21.1 Pa and
20.5 Pa, respectively (Figure 8a). Accordingly, the filtration quality factors were 0.149 Pa−1,
0.152 Pa−1, 0.149 Pa−1 and 0.148 Pa−1 (Figure 7b), respectively, which stated that the addi-
tion of Si3N4 decreased the filtration efficiency and pressure drop. Based on Figures 7 and 8,
it was concluded that the fibers of nonwovens became coarser with the increase of Si3N4
content, which led to the increase of material pore size, and finally resulted in the decrease
of the filtration performance.

Polymers 2022, 14, x FOR PEER REVIEW 10 of 13 
 

 

where η represents the filtration efficiency in 100%, and ∆p represents the pressure drop 

in Pa. 

The filtration efficiency of PP, SiN0.6, SiN0.8 and SiN1.0 nonwovens was 96.3%, 96.1%, 

95.7% and 95.2%, respectively, and the pressure drops were 22.2 Pa, 21.4 Pa, 21.1 Pa and 

20.5 Pa, respectively (Figure 8a). Accordingly, the filtration quality factors were 0.149 Pa−1, 

0.152 Pa−1, 0.149 Pa−1 and 0.148 Pa−1 (Figure 7b), respectively, which stated that the addition 

of Si3N4 decreased the filtration efficiency and pressure drop. Based on Figures 7 and 8, it 

was concluded that the fibers of nonwovens became coarser with the increase of Si3N4 

content, which led to the increase of material pore size, and finally resulted in the decrease 

of the filtration performance. 

 

Figure 8. Filtration performance diagram of nonwoven materials with different Si3N4 content: (a) 

filtration efficiency and pressure drop; (b) quality factor. 

3.7. Antibacterial Properties 

The antibacterial properties of nonwovens, SiN0.6, SiN0.8 and SiN1 were evaluated 

according to GB/T 20944.3‐2008, and the antibacterial function of Si3N4 was explored. Its 

bacteriostatic rate was calculated following Equation (2): 

%100
W

QW
Y

t

tt 
−

=  (2) 

where Y is the bacteriostatic rate of the samples, and Wt is the mean value of the living 

bacteria concentration in the beaker after 18 h of oscillation contact of three pairs 

(CUF/mL). Qt is the mean value of the living bacteria concentration in the flask after 18 h 

of oscillation contact of three antibacterial samples (CUF/mL). The evaluation results were 

shown in Table 4. 

SiN0.6, SiN0.8 and SiN1.0 nonwovens had bacteriostatic rates of 97.01%, 97.13% and 

97.17%, respectively, against E. coli. The antibacterial rates of antibacterial nonwovens 

containing 0.6%, 0.8% and 1.0% Si3N4 against Staphylococcus aureus were 97.09%, 97.17% 

and 97.21%, respectively, which showed that PP nonwovens doped with 0.6% of nano 

Si3N4 had good antibacterial activity. There are three antibacterial mechanisms of Si3N4. 

Firstly, the electric charge carried on the surface inhibits the growth of bacteria. Secondly, 

Si3N4 can change the wettability of the material and destroy the environment for bacterial 

reproduction. At last, Si3N4 reacts with water in the environment, in which some products 

drive bacterial lysis through chemical reactions on the surface [40]. The entire reaction of 

chemisorption, oxidation and dissolution on the surface of Si3N4 is shown in Equations (3) 

and (4) below. 

22232243 H6N2OiS3NH4OiS3OH6NiS ++→+→+  (3) 

Figure 8. Filtration performance diagram of nonwoven materials with different Si3N4 content:
(a) filtration efficiency and pressure drop; (b) quality factor.

3.7. Antibacterial Properties

The antibacterial properties of nonwovens, SiN0.6, SiN0.8 and SiN1 were evaluated
according to GB/T 20944.3-2008, and the antibacterial function of Si3N4 was explored. Its
bacteriostatic rate was calculated following Equation (2):

Y =
Wt −Qt

Wt
× 100% (2)

where Y is the bacteriostatic rate of the samples, and Wt is the mean value of the living
bacteria concentration in the beaker after 18 h of oscillation contact of three pairs (CUF/mL).
Qt is the mean value of the living bacteria concentration in the flask after 18 h of oscillation
contact of three antibacterial samples (CUF/mL). The evaluation results were shown
in Table 4.

Table 4. Evaluation of antibacterial activity of as-prepared nonwovens.

Test Bacteria (Wt),
CUF/mL

SiN0 (Qt),
CUF/mL

SiN0.6 (Qt),
CUF/mL

SiN0.8 (Qt),
CUF/mL

SiN1.0 (Qt),
CUF/mL

SiN0
(Y), %

SiN0.6 (Y),
%

SiN0.8 (Y),
%

SiN1.0 (Y),
%

Escherichia coli 2.27 × 107 2.21 × 107 6.79 × 105 6.51 × 105 6.42 × 105 2.64 97.01 97.13 97.17
Staphylococcus

aureus 2.71 × 107 2.62 × 107 7.89 × 105 7.68 × 105 7.55 × 105 3.32 97.09 97.17 97.21

SiN0.6, SiN0.8 and SiN1.0 nonwovens had bacteriostatic rates of 97.01%, 97.13% and
97.17%, respectively, against E. coli. The antibacterial rates of antibacterial nonwovens
containing 0.6%, 0.8% and 1.0% Si3N4 against Staphylococcus aureus were 97.09%, 97.17%
and 97.21%, respectively, which showed that PP nonwovens doped with 0.6% of nano
Si3N4 had good antibacterial activity. There are three antibacterial mechanisms of Si3N4.
Firstly, the electric charge carried on the surface inhibits the growth of bacteria. Secondly,
Si3N4 can change the wettability of the material and destroy the environment for bacte-
rial reproduction. At last, Si3N4 reacts with water in the environment, in which some
products drive bacterial lysis through chemical reactions on the surface [40]. The entire
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reaction of chemisorption, oxidation and dissolution on the surface of Si3N4 is shown in
Equations (3) and (4) below.

Si3N4 + 6H2O→ 3SiO2 + 4NH3 → 3SiO2 + 2N2 + 6H2 (3)

3SiO2 + 6H2O→ 3Si(OH)4 (4)

4. Conclusions

One novel type of antibacterial MB nonwovens was prepared by introducing nano-
Si3N4 ceramic and single-sided superhydrophobicity. The side of nonwovens treated with
superhydrophobicity by a sol-gel method of SiO2 could reach a contact angle (CA) of up to
161.7◦, which helped improve the effect of single-side moisture transport. The introduction
of the Si3N4 content did not change the properties or performance of the as-prepared MB
nonwovens in terms of their morphologies, structures, thermal properties and pore size
filtration effect, except it substantially enhanced the antibacterial performance. At only
0.6% of Si3N4 addition, the bacteriostatic rate against Escherichia coli and Staphylococcus
aureus could be up to 97%, and with the increase of the content of Si3N4, the antibacterial
activity would be higher. Due to its low toxicity, this antibacterial MB nonwoven could
play an important role to protect people from bacteria or viruses, and it could be especially
significant during the pandemic caused by COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14142952/s1, Figure S1: Flow rates of masterbatch melt
with different Si3N4 contents.
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