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Abstract

To navigate the complex social world, individuals need to represent others' mental

states to think strategically and predict their next move. Strategic mentalizing can be

classified into different levels of theory of mind according to its order of mental state

attribution of other people's beliefs, desires, intentions, and so forth. For example,

reasoning people's beliefs about simple world facts is the first-order attribution while

going further to reason people's beliefs about the minds of others is the second-order

attribution. The neural substrates that support such high-order recursive reasoning in

strategic interpersonal interactions are still unclear. Here, using a sequential-move

interactional game together with functional magnetic resonance imaging (fMRI), we

showed that recursive reasoning engaged the frontal-subcortical regions. At the stim-

ulus stage, the ventral striatum was more activated in high-order reasoning as com-

pared with low-order reasoning. At the decision stage, high-order reasoning

activated the medial prefrontal cortex (mPFC) and other mentalizing regions. More-

over, functional connectivity between the dorsomedial prefrontal cortex (dmPFC)

and the insula/hippocampus was positively correlated with individual differences in

high-order social reasoning. This work delineates the neural correlates of high-order

recursive thinking in strategic games and highlights the key role of the interplay

between mPFC and subcortical regions in advanced social decision-making.
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1 | INTRODUCTION

Strategic reasoning about other's mental states and predicting their

behaviors in terms of such states are the main determinants of

social competence. The ability to reason about beliefs, desires, and

intentions of another individual like one's own is referred to as

mentalizing or theory of mind (ToM) (Premack & Woodruff, 1978),

which is crucial to human social reasoning and social success. ToM

reasoning entails a hierarchical classification of mental state

attribution that allows individuals to recursively infer other's mental

states (Hedden & Zhang, 2002; Perner & Wimmer, 1985). Reason-

ing other's beliefs about real events are first-order ToM reasoning.

For example: “I think that you believe that the box contains a pen-

cil.” However, first-order reasoning cannot adequately describe

human interactions. In complex social interactions, people need to

take into account that the other person also holds beliefs about the

minds of other people, and so on (Bhatt & Camerer, 2011). Social

inferences based on the ToM often take a recursive form, such as
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the second-order ToM reasoning: “I think that you think that I

think….”
A classic false-belief paradigm, the “Sally-Anne” task, is known

for examining the first-order mental state attributions. For example, a

participant was asked about where Sally thought her marble was after

Anne moved the marble when Sally left the room (Wimmer &

Perner, 1983). Research in developmental psychology found that chil-

dren could generally pass this standard false-belief task by age

4 (Astington & Hughes, 2013), but would take a few more years of

maturation to pass a similar task that required the second-order ToM

(Fu, Xiao, Killen, & Lee, 2014; Keysar, Lin, & Barr, 2003; Symeonidou,

Dumontheil, Chow, & Breheny, 2016; Tager-Flusberg & Sullivan,

1994). Even healthy adults are not perfect in performing all kinds of

strategic tasks requiring high-order ToM reasoning, suggesting the

presence of cognitive limits or difficulties in iterated thinking (Bhatt &

Camerer, 2005; Brandenburger & Li, 2015; Camerer, 2009; Coricelli &

Nagel, 2009; Hedden & Zhang, 2002).

The neural basis of first-order ToM has been extensively studied

using false-belief tasks. Increased brain activity was found in the

medial prefrontal cortex (mPFC), temporoparietal junction (TPJ), supe-

rior temporal sulcus (STS), and precuneus (PC) when human subjects

represented other's false beliefs (Carrington & Bailey, 2009; Dodell-

Feder, Koster-Hale, Bedny, & Saxe, 2011; Gallagher et al., 2000;

Gallagher & Frith, 2003; Saxe & Kanwisher, 2003; Schurz, Radua,

Aichhorn, Richlan, & Perner, 2014; Spunt et al., 2015). These false

belief tasks usually involve a situation in which one's models of the

world are different from models of others' mental states. Typically,

the tasks require participants to be observers, that is, having no inter-

actions with characters in the scenarios so their own benefits of the

task would not be affected by their predictions of the characters. This

kind of false belief task is not suitable to investigate neural mecha-

nisms underlying recursive reasoning in social interaction, especially

when the depth of ToM can affect reasoners' social outcomes. It is

intriguing to find out whether high-level strategic thinking recruits the

putative ToM neural network (e.g., mPFC, TPJ, STS) or involves other

special brain regions adapted specifically for high-order reasoning.

The answer to this research question may help us understand whether

ToM is a domain-general concept, or it is a multidimensional con-

struct. It may also contribute to our understanding of the variability in

the human ability to make inferences about the minds of others in

complex social interactions (Conway, Catmur, & Bird, 2019). Following

this, it is also critical to identify the neural correlates of the heteroge-

neity observed in human complex strategic behavior, which may help

to explain why some people are able to deeply think about others to

gain more successful social outcomes while some make decisions

without considering others' behavior.

Only a few studies have examined higher-order ToM reasoning

using a range of simple yet interactive games. In strategic interper-

sonal games, players have to infer each other's beliefs as one player's

outcome is dependent on the other player's choice and vice versa. For

example, (Coricelli & Nagel, 2009) showed that subjects who reasoned

using high-level ToM to play the “beauty contest” game had increased

activity in the mPFC relative to subjects who reasoned using low-level

ToM. Another neuroimaging study found that activity in anterior

mPFC tracked the degree of changes in the prediction of other's strat-

egies given one's own play in an inspection game (Hampton,

Bossaerts, & O'Doherty, 2008). Yoshida, Seymour, Friston, and

Dolan (2010) further found that activity in mPFC coded participants'

uncertainty about co-players' actions while the level of recursion they

engaged in during decision-making was represented in the dorsolat-

eral prefrontal cortex (dlPFC). In addition, Zhu, Mathewson, and

Hsu (2012) using a competitive game found that prediction errors for

reward were coded in the ventral striatum (VS) while prediction errors

for belief updating on the opponent's actions were coded in the ven-

tral striatum as well as the rostral anterior cingulate cortex (ACC).

Taken together, these findings seem to point out the important role

of the prefrontal cortex in encoding beliefs of others to predict future

behaviors during social interaction.

However, in the studies of social interaction, mentalizing is often

embedded in probabilistic social learning tasks in which opponents'

choices are not fully predictable due to their social preferences

(e.g., over short-term gains or long-term gains) and insufficient com-

putational resources (e.g., decision-makers not certain about their

partners' level of strategic reasoning ability). Game theory often

assumes players are more rational than they may be capable of in real-

ity (Camerer, 1991). In this case, mentalizing and probabilistic learning

may be mingled together and hard to differentiate. In deterministic

games, however, players can apply a more analytic, rule-based mecha-

nism of recursive reasoning, which may substantially differ from the

probabilistic one. It is unclear whether the pattern of neural activity in

probabilistic social learning holds true in deterministic situations.

Here, we aimed to investigate the neural correlates of recursive rea-

soning in a deterministic game in which the unique optimal option

chosen by the opponents can be inferred by participants before mak-

ing choices at each step.

Therefore, we adapted a sequential-move game from previous

studies to investigate the neural correlates of recursive reasoning

within the context of a marble drop game (Hedden & Zhang, 2002;

Meijering, Van Rijn, Taatgen, & Verbrugge, 2012). In this marble drop

game, two players make the decision sequentially and their outcomes

are affected by each other's choice. Importantly, perfect information

is embedded in the game in which both players have common infor-

mation about the possible payoffs for each action so that the outcome

of each action is predictable. This game provides a tool to investigate

whether players in strategic interactions mentally process other's

thoughts and beliefs, and if so, how the mental processing unfolds. To

achieve the goal of the task, the first player at the first decision point

(i.e., the first trapdoor in Figure 1a) has to apply second-order ToM

reasoning: think about what Player 2 at the second decision point

believes about Player 1's decision at the final decision point.

In a sequential-move game with finite reasoning steps, the game

theory assumes that players should use backward induction, that is,

the process of thinking backward from the final decision point to

decide how to achieve the highest payoff (Aumann, 1995; Osborne &

Rubinstein, 1994). Although backward reasoning is an efficient way to

maximize payoff because the optimal outcome is known at each
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decision point, it is not the only kind of strategy adopted under

second-order attribution in strategic games (Bergwerff, Meijering,

Szymanik, Verbrugge, & Wierda, 2014). By using the two-players mar-

ble drop game, Bergwerff et al. (2014) proposed that a combination of

forward and backward reasoning yields a faster solution (i.e., a smaller

number of reasoning steps) than backward induction does. Based on

previous studies, we counted the reasoning steps (see the methods)

to attain each possible payoff using forward reasoning plus

backtracking to model the neurocognitive subprocesses underlying

different levels of strategic thinking. In our model of strategic thinking,

F IGURE 1 Experimental design. (a) Task procedure. There are two types of trials in this game (i.e., Prediction for computer and Decision for
self). On Prediction trials, we presented the green word “Your prediction” on top of the screen with the stimuli. During these trials, participants
were asked to record their prediction about the decision of the computer at the second decision point/trapdoor by choosing an option labeled
“Go” or “Stop.” On the contrary, on Decision trials, we presented the red word “Your decision” on top of the screen with the stimuli. When
seeing this, participants were asked to make a choice about what they should do at the first decision point/trapdoor. The order of trials was
pseudo-randomly determined for each participant: four trials under the same type of the game were presented consecutively, followed by a long
ITI (i.e., a fixation crosshair) for 14 s; after that, another four trials from the other game type were presented sequentially. Every four trials
consisted of two trials of low-order ToM reasoning and two high-order ToM reasoning. (b) Experimental conditions. There were four unique
types of trials based on the combination of level of reasoning (low- vs. high-order ToM reasoning) and game type (decision for self vs. prediction
for computer). The levels of reasoning were designed by manipulating the payoff structures
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a high ToM agent would first think by forward reasoning about how

other people get the highest possible payoff, and then figured out

how that would affect their own highest possible payoff by using

backward reasoning.

The normative solutions of sequential-move games require recur-

sive modeling of other players' thinking to its full depth. However,

empirical evidence shows that individuals often fail to fully employ

back-and-forth recursive reasoning, possibly due to the limits in work-

ing memory and cognitive resources (Carlson, Moses, & Breton, 2002;

Schiebener & Brand, 2015). In the present study, we included two

types of games that required different depths of recursive reasoning

to investigate the neural representation of high-order ToM and low-

order ToM reasoning. Items used in the high-order ToM condition

were carefully designed to require the second-order ToM reasoning

to make the best move. In the low-order ToM condition, participants

did not have to think about what Player 2 might think about what

they would do at the last decision point because the payoff for Player

2 in bins C and D were either lower or higher than bins A and B (see

the methods). In this case, Player 2 could make an optimal decision

regardless of Player 1's decision at the last decision point. We also

included a manipulation in which participants had to make predictions

about player 2's move. In the high-order ToM condition, player 2 had

to reason about what Player 1 would do at the next stage. In this case,

Player 2 was required first-order reasoning. In the low-order condi-

tion, Player 2's decision was independent of player 1's next move and

only zeroth-order reasoning (i.e., considering only one's own desires

and facts) was needed.

Since generating the internal predictions of others is essential for

constructive sequential decisions for oneself when playing the game,

we specifically examined this prediction process by asking participants

to predict others' next move. This third-person (i.e., anticipation of

other's move) perspective allowed us to determine whether the

second-order ToM network (second vs. first order) for self-decision is

also involved in the reasoning for other agent (first vs. 0th order) dur-

ing the time of anticipation. Our design allowed us to contrast high-

order reasoning with low-order reasoning in both first-person and

third-person perspectives, and also allowed us to examine whether

the neural activity in response to each level of ToM reasoning modu-

lated by the number of reasoning steps. We predicted that the mPFC

would be more engaged in the condition that requires high-order rea-

soning, given its important role in encoding the computation, mainte-

nance, and proactive use of the perspective signal to guide the

selection of appropriate action (Hillebrandt, Dumontheil, Blakemore, &

Roiser, 2013). Previous studies posited that mentalizing and reward-

based learning may share similar Bayesian inference mechanisms

(Ahn, Krawitz, Kim, Busemeyer, & Brown, 2013; Aitchison &

Lengyel, 2017; Baker & Tenenbaum, 2014; Behrens, Hunt, Woolrich, &

Rushworth, 2008; Devaine, Hollard, & Daunizeau, 2014; Khalvati

et al., 2019; Robalino & Robson, 2012; Zhu et al., 2012). Hence, we

hypothesized that the striatum, a region known to encode both

reward and social prediction errors (Báez-Mendoza & Schultz, 2013;

Daniel & Pollmann, 2014; Fliessbach et al., 2007; Joiner, Piva, Turrin, &

Chang, 2017; Pagnoni, Zink, Montague, & Berns, 2002), might be

involved in the condition that requires high-order reasoning, especially

at the stimulus stage. We further predicted that the mPFC would

interact with other regions, such as the hippocampus and insula, areas

involved in memory-based learning and strategic uncertainty

(Eichenbaum, 2017; Nagel, Brovelli, Heinemann, & Coricelli, 2018;

Seger & Cincotta, 2006; Tavares et al., 2015), to determine individual

differences in the ability to implement high-level reasoning.

2 | MATERIALS AND METHODS

2.1 | Participants

Thirty-one right-handed volunteers (13 women; mean age ± SD,

22.92 ± 2.60 years) were paid to participate in the fMRI study. Partici-

pants reported no neurological or psychiatric history and had a normal

or corrected-to-normal vision. Participants were given Singapore dol-

lar S$20 (�S$1 = US$0.73) for showing-up and a performance-based

bonus (see below). All participants provided informed consent and the

study was approved by the local Institutional Review Board. One of

these subjects (woman, age 20) was excluded for image analysis due

to technical problems in fMRI data collection. The data that support

the findings of this study are available on request from the

corresponding author. The data are not publicly available due to pri-

vacy or ethical restrictions.

2.2 | Experimental design and task

To examine neural correlates of the process of ToM reasoning in a

sequential two-player task, we modified the three-stage turn-tasking

game (Hedden & Zhang, 2002; Meijering et al., 2012) using an fMRI

event-related design. In this game (see the example in Figure 1b), the

white marble was dropped onto trapdoors that were controlled by

one of the players: if the trapdoor was blue, the blue player controlled

the trapdoor; if the trapdoor was yellow, the yellow player controlled

it. Both players were to take turns to remove the color-coded trap-

doors to control the path of the white marble towards a bin that maxi-

mized payoff. In this experiment, the color of the trapdoor was fixed

across participants, which means Player 1 (participant in this game)

always controlled the blue trapdoor at the first and third trapdoors/

decision points, and Player 2 always controlled the yellow trapdoor at

the second decision point. The white marble was led either to another

trapdoor or a bin containing payoffs. There were always four bins

(labeled A, B, C, and D) and four possible payoffs for both players,

ranking from worst to best, that is, ranging from 1 to 4. Each bin con-

tained many blue and yellow marbles. The number of marbles of the

player's own color determined their own payoff. The goal of this game

for a player was to obtain as many marbles (points) as possible,

irrespective of the points the other player earned. Therefore, to

achieve the goal, both players had to remove the trapdoors (either

“go” or “stop”) sequentially to control the ending point of the white

marble to result in a unique payoff for each player.
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On each trial, the game began at bin A, and Player 1 had to decide

whether to stop the white marble at bin A or let the white marble go

to bin B. If Player 1 decided to go to bin B, it then became Player 2's

turn. Similarly, Player 2 then decided whether to stop at bin B or go to

bin C. If Player 2 decided to go to bin C, the turn passed back to

Player 1 who had to make the final decision of whether to stop at bin

C or go to bin D. In either case, the game ended after this final deci-

sion of Player 1. However, the game ended immediately if at any

stage either player decided to stop in the current bin during their turn.

Therefore, the outcome of each game could be any one of four bins

based on the combination of actions of two players. It is worth noting

that if players did not believe that their partner would adopt strategic

thinking by taking the full path of the game into account, it would be

no longer true that players' their own best response would reflect

their strategic reasoning ability. To make sure participants' perfor-

mance would not be influenced by their assumption of others' ratio-

nality, participants were informed that they were playing against a

fully rational computer-simulated agent. They were told that such

agent cared about their own payoffs and had a unique goal to achieve

their possible highest payoffs while playing the game with them. This

is also in line with the game theory which assumes that all players are

rational and know that others are also rational. Accordingly, whether

the opponent is a human being or a computer-simulated agent should

not make difference because the opponent is assumed to always

choose the optimal choice in game theory. Researchers have shown

that ToM performance in this paradigm is not affected by whether the

opponent is a virtual partner or a purported human opponent

(Hedden & Zhang, 2002).

2.3 | Procedure

Since the more complex choice was at the first decision point at

which player 1's decision depended upon what Player 2 might do if

the game progresses to bin B, participants were always assigned to

the role of Player 1. By doing this, we were able to discriminate the

use of level of reasoning of the participants. In addition, to classify

the use of the level of reasoning based on strategic mental models

from the perspective of self and other, participants were also asked

to predict what the other player might do at the second decision

point. Participants were told to imagine that the white marble had

rolled to the second decision point. Participants were informed that

the other agent would play rationally, and the computer-simulated

agent would also assume the participant was rational. Participants

understood that both players' goals were to maximize their individual

payoffs and the game was a non-cooperative game (e.g., the agent

did not play with or against you).

In total, there were four unique types of trials based on the com-

bination of the level of reasoning (low- vs. high-order ToM reasoning)

and game type (decision for self vs. prediction for computer). Sixteen

unique payoff structures were used for low- and high-order reasoning

separately, resulting in 32 trials for each type of game (see the payoff

structures for more details). In total, there were 64 trials in this task.

The presentation of the task is shown in Figure 1a. Trials started with

a fixation intertrial interval (ITI) of 1.5–3.5 s (jittered), after which a

four-bin game appeared. On Prediction trials, we presented the green

word “Your prediction” on top of the screen with the stimuli. In these

trials, participants were asked to record their prediction about the

decision of the computer by choosing an option labeled “Go” or

“Stop.” On the contrary, on Decision trials, we presented the red

word “Your decision” on top of the screen with the stimuli. When

seeing this, participants were asked to choose what they should do at

the first decision point. To give the participants enough time to think

about their choices and conduct the experiment within the time con-

straint of the scanner, participants were told to give an answer within

20 s, upon which the stimuli disappeared without recording the

response.

The position (left/right) of the two options such as “Go” and

“Stop” was counterbalanced across trials. The order of trials was

pseudo-random: four trials under the same type of the game were

presented consecutively, followed by a long ITI (i.e., a fixation cross-

hair) for 14 s; after that, another four trials from the other game type

were presented sequentially. We specifically used this design to make

sure the participants would not be exhausted from switching deci-

sions for different agents (i.e., self and computer) and could concen-

trate on the reasoning for the same agent. Every four trials consisted

of two trials of low-order ToM reasoning and two high-order ToM

reasoning, and the order of the level of reasoning (i.e., high and low) in

every four trials was randomized across participants. In addition, the

order of the two game types was counterbalanced across participants

(the order was: prediction followed by decision or vice versa).

Participants were told that for each game in which they achieved

their goal, they would be rewarded one point, and they would be paid

according to the total number of points they accumulated (1 point = 50

cents). Thus, they had a monetary incentive to maximize the number

of points. To familiarize the participants with the setup of the sequen-

tial two-player game before they entered the scanner, participants

were first asked to make a decision for one trivial two-bin game that

did not require ToM reasoning and 1 three-bin game that require

first-order ToM reasoning. Later on, all participants were asked to

familiarize the rules of the four-bin game and completed a short ver-

sion of the task which included all four types of trials in equal quanti-

ties (i.e., one for each condition and all these four trials were not used

for the formal study). This practice allowed the participants to play

the game without learning from history.

2.4 | Payoff structures

The payoff structures of the current experiment were provided in

Table S1. Notably, the configuration of payoffs determined the com-

plexity of the reasoning required of the players (both Player 1 and

Player 2). For example, Player 1 would immediately remove the left-

side trapdoor if bin A contained his/her highest number of marbles. In
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this case, player 1 would ignore the rest of the possible actions and

did not have to reason about Player 2's beliefs. Therefore, such payoff

structures were excluded since they did not involve any recursive rea-

soning. More importantly, to identify the neural basis related to high-

order reasoning and low-order reasoning, two different payoff struc-

tures were selected so that the depth of ToM reasoning mastered by

the participants could be derived from the manipulations of the game

(for the manipulations of the payoff structures of high- and low-order

ToM reasoning, please refer to the supplementary materials).

2.5 | Number of steps for strategic reasoning

To model the cognitive process of the strategy in reasoning about the

mental states of others, we constructed the number of steps that an

agent used to yield the optimal outcome based on previous papers

(Bergwerff et al., 2014; Meijering et al., 2012). The current experiment

provided complete and perfect information to both players. Namely,

the optimal outcome was known at each decision point. Thus, one

could apply forward and backward reasoning to determine the optimal

outcome for each player when it was the player's turn to move

(Bergwerff et al., 2014; Hedden & Zhang, 2002). According to our cur-

rent design of the experiment, we proposed a way to measure the

reasoning steps for four types of trials. If Player 1 made the decision

based on ToM reasoning, Player 1 would reason about the mental

content of Player 2 and realized that Player 2 had a goal of her/his

own. Similar to Player 1, Player 2 would predict the behavior of Player

1 when making her/his decision. A high ToM agent would think about

how other people could get to the highest possible payoff and how

that would turn out to affect his/her highest possible payoff.

In this case, forward reasoning (find out which bin contained the

highest possible payoff in a forward sequence) and backtracking

(predicted the sequential move in a backward sequence) were

required to determine whether the highest possible payoff was acces-

sible to self and other. Specifically, in our design, the participant who

employed this strategy would begin by taking the perspective of the

opponent and find out the bin that contained the highest possible

payoff for the opponent (forward reasoning), and then used backward

reasoning to find out whether that particular bin was reachable by

predicting the trapdoors the opponent would want to open, to finally

reach a decision on whether to move the trapdoor at the first decision

point. Following this strategy, we quantified the reasoning steps nec-

essary for each trial with respect to the number of recursive thinking

between two players. Identifying the neural correlates underlying

steps of different levels of reasoning may help to explain the cognitive

process engaged in interpersonal ToM reasoning. Table S2 shows the

number of steps of forward reasoning plus backtracking strategy,

computed by counting the number of times a value was attended. Fol-

lowing a previous study (Bergwerff et al., 2014), each time two values

in different bins were compared and it was counted as two steps. This

was because the participants had to attend both values. Counting

details for the two trials of high- and low-order reasoning were pro-

vided in the supplementary materials.

2.6 | fMRI data acquisition

Imaging was performed on a Siemens PRISMA 3T MRI scanner

(Siemens, Erlangen, Germany) with a 32-channel head coil. Functional

images were collected using a 2-dimensional multiband single-shot

T2*-weighted, echo-planar imaging (EPI) sequence (78 slices, 2 mm-

thickness; TR = 1,000 ms; TE = 31.40 ms; flip angle = 60�; FOV =

220 mm; matrix size = 88 × 88; voxel size: 2.5 × 2.5 × 2.0 mm3). We

used a multiband acceleration factor of six and scans were acquired in

an oblique axial plane covering the whole brain. A high-resolution

(1.0 × 1.0 × 1.0 mm3) T1-weighted MPRAGE anatomical image (TR =

2,300 ms; TE = 2.22 ms; flip angle = 8; 1 mm-thickness) was acquired

for registration and normalization of functional data to the standard

brain. The total acquisition time for MPRAGE was 4 min and 52 s. The

average duration of the functional scan time for each participant was

14 min. Head padding was used for each subject to minimize head

motion. To dampen the scanner noise, headphones and earplugs

were used.

2.7 | fMRI data preprocessing

SPM12 (www.fil.ion.ucl.ac.uk/spm/) was used for preprocessing and

general linear model (GLM) analysis. The first eight volumes were dis-

carded, and the remaining volumes were realigned to the first volume.

The anatomical image was then co-registered to the mean functional

image after motion correction and segmented, generating parameters

for normalization. All volumes were subsequently normalized to the

Montreal Neurological Institute (MNI) space and resampled to

2 × 2 × 2 mm3 isotropic voxel. The normalized functional images were

then spatially smoothed with Gaussian kernel with 8 mm FWHM. A

high-pass temporal filter with a cutoff of 128 s was applied to remove

low-frequency drifts.

2.8 | fMRI data analysis

For each subject, a GLM was built (Friston et al., 1994). Only trials

with correct response were included in the GLM analysis for each par-

ticipant (number of subjects = 30, mean trial ± SD for Decision Low:

14 ± 2; Decision High: 10 ± 3; Prediction Low: 15 ± 1; Prediction Sec-

ond: 13 ± 3, of 16 trials for each condition). At the first level, the indi-

vidual data were analyzed by constructing sets of delta (stick)

functions at the onset of the stimulus and at the time of the response

(durations = 0). Because the current experiment was self-paced, the

trial-by-trial variations of the reaction time served as the jittered inter-

stimulus interval. Such a design allowed us to separate neural signals

from the stimulus and response phases.

Each phase had four task-related regressors of interest: decision

high, decision low, prediction high, and prediction low. This model

allowed us to investigate: (a) the neural differences between decision

high and decision low at both phases; (b) the neural differences

between prediction high and prediction low at both phases. All
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regressors were further modulated by the number of steps that were

computed using the abovementioned procedures to allow us to inves-

tigate how the brain activity engaged in different levels of strategic

thinking was modulated by the reasoning step. All these regressors

were convolved with a canonical hemodynamic response function

(HRF). Following this, the multicollinearity of the multiple regres-

sion factor matrix was tested. The variance inflation factor (VIF)

for each regressor in the GLM model was low (all VIFs <2; VIF > 5

or 10 suggesting potential multicollinearity), indicating weak

multicollinearity in the current design matrix (Mumford, Poline, &

Poldrack, 2015). To regress out movement-related effects, the six

scan-to-scan motion parameters were included as additional regres-

sors. Parameter estimates from contrasts in single participant models

were entered into the second level random-effect analysis to carry

out a one-sample t test on whether the activation during a contrast

was significantly different from zero (Penny & Holmes, 2004). As a

robustness check, we also built a model with durations = 2 s for each

regressor and found qualitatively similar results to the above main

model.

To further investigate the neural correlates of the heterogeneity

observed in the ability of human strategic reasoning, we ran two

whole-brain regression analyses using mean percentages of accuracies

of participants' task performance in the high-order reasoning games

as covariates associated with the corresponding contrasts that were

estimated from the first-level analysis: (a) the neural response of deci-

sion high versus decision low with individual task performance in the

decision high condition as a covariate and (b) the neural response of

prediction high versus prediction low with individual task performance

in the prediction high condition as a covariate.

To investigate functional connectivity patterns during ToM rea-

soning, we implemented generalized psychophysiological interaction

(gPPI) analyses using a toolbox (https://www.nitrc.org/projects/gppi)

(McLaren, Ries, Xu, & Johnson, 2012). Given that we found the rela-

tionship between individual high-order reasoning ability and the (deci-

sion high vs. decision low) effect at the left insula and left

hippocampus (see the results), we investigated the task-dependent

functional connectivity that the insula and hippocampus had with

other regions using PPI (Friston et al., 1997; O'Reilly, Woolrich,

Behrens, Smith, & Johansen-Berg, 2012). The seed regions were cre-

ated using a 10-mm diameter sphere in the left insula (peak MNI coor-

dinate: −38, −6, −2) and left hippocampus (peak MNI coordinate:

−18, −20, −10) as defined by the whole-brain regression analysis. In

addition, to reveal the functional connectivity patterns in the predic-

tion trials, another seed region was defined as a 10-mm sphere in the

right caudate (peak coordinate MNI: 16, 18, 16) using the peak voxel

from the corresponding significant cluster to the second-level regres-

sion effect with the accuracy in the prediction high condition.

For each first-level analysis, we first extracted the de-convolved

time series within the seed region as the physiological regressor. We

then define all regressors in the designed GLM as the psychological

regressors. These two terms were multiplied as the PPI regressors. All

these regressors were convolved with the canonical HRF to model

the BOLD signal. In addition, six head-motion parameters were

included as covariates to account for residual motion effects. We fur-

ther carried out whole-brain regression analyses between gPPI con-

nectivity estimates and participants' task performance. The contrasts

between the PPI regressors (decision high vs. decision low and predic-

tion high vs. prediction low) for each participant were used separately

at the second-level analysis with their corresponding behavioral index

as a covariate.

To identify brain activity with considerable individual differences

in complex strategic processing, we discussed results surviving after a

voxel-level height threshold at p < .005 and cluster-level family-wise

error (FWE) correction at p < .05. We also reported results at an

uncorrected voxel-wise threshold of p < .001 with a cluster-wise

threshold of p < .05 after FWE correction (See the tables for all brain

activations). In addition, small volume correction (SVC) with peak

FWE corrected p-values (p < .05) was used on a priori regions of inter-

est previously implicated in mentalizing and interpersonal strategic

thinking: ventral striatum (MNI, x, y, z = ± 10, 10, −6 mm), mPFC (x, y,

z = ± 5, 60, 5 mm) (Yoshida et al., 2010), insula (x, y, z = ± 42, 0, 0 mm)

(Bhatt & Camerer, 2005), dorsal anterior cingulate cortex (dACC) (x, y,

z = ± 6, 30, 18 mm) (Apps, Green, & Ramnani, 2013), inferior frontal

gyrus (x, y, z = ± 40, 10, 28 mm) (Van der Meer, Groenewold, Nolen,

Pijnenborg, & Aleman, 2011), hippocampus (x, y, z = ± 22, −17,

−15 mm) (Tavares et al., 2015), and left and right caudate defined by

the corresponding automated anatomical labeling mask (Tzourio-

Mazoyer et al., 2002). For each coordination-based ROI, a 10 mm

radius was used. False discovery rate (FDR, p < .05 level) was applied

for multiple corrections among ROIs where appropriate.

3 | RESULTS

3.1 | Behavioral results

Thirty-one subjects' data were included in the behavioral data analy-

sis, although one participant's brain data were excluded in the fMRI

analysis due to technical problems. We omitted no response trials for

analyses (0.6% of all trials across all participants). A correct response

in each trial was identified if the participant's choice matched the opti-

mal decision in each trial (see Table S1). That is, to make a correct

choice, participants should move the trapdoor correctly to obtain the

highest possible marbles for themselves (decision for self) or others

(prediction for computer) in each trial. Figure 2a depicts the mean per-

centage of accuracy of participants' task performance for the four

conditions. To examine the mean accuracy scores in four conditions

of the game, a two-way repeated measure ANOVA using the game

type (decision/prediction) and the level of reasoning (low/high) as

independent factors and the mean percentage of accuracy score as

the dependent variable was performed. The analysis revealed a mar-

ginally significant interaction effect between the game type and the

level of reasoning (F[1,30] = 3.270, p = .081, ηp2 = 0.098). Further, post

hoc analysis showed that the mean percent accuracy scores in the

condition of low-order reasoning (decision low, mean ± SE: 87.634

± 1.650%) were significantly higher than the scores in the condition of
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high-order reasoning (decision high: 65.282 ± 2.284%, p < .001) when

making decisions for self at the first decision point. Similarly, the accu-

racy scores in the condition of low-order reasoning (prediction low:

93.952 ± 2.275%) was significantly higher than the scores in the con-

dition of high-order reasoning (prediction high: 79.637 ± 2.145%,

p < .001) when predicting the computer's choice at the second deci-

sion point. As expected, significant main effects of game type

(F[1,30] = 34.937, p < .001, ηp2 = 0.538) and level of reasoning

(F[1,30] = 63.508, p < .001, ηp2 = 0.679) were found. These results sug-

gest that the depth of reasoning affects individuals' speculative

behavior, regardless of thinking from the perspectives of self or other.

To assess possible learning effects, we compared the first half of the

experiment with the second half and found no significant effects

involving the session, p values >.15, which suggests that human par-

ticipants may not be able to increase their performance in ToM rea-

soning over repeated trials.

Additionally, correlation tests were conducted to examine the

relationships between the accuracy scores of the four types of trials.

The FDR (p < .05 level) was used to adjust for the number of associa-

tions we tested. First of all, we investigated whether one's ability to

F IGURE 2 Behavioral performance. (a) Mean percentage accuracy and (b) Mean reaction time as a function of game type and level of
reasoning. Error bars represent the within-subjects SE (Morey, 2008). Each dot represents trial-averaged data per participant, for each condition.
(c–f) Scatterplots for the relationship between mean percentage accuracies in four conditions (prediction high, decision high, prediction low, and
decision low). The size of a black circle is proportional to the number of observations. The gray area represents the 95% confidence interval of the
linear regression line
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predict the opponent's behavior was correlated with one's own ability

in making optimal decisions in the same type of trials. The percent

accuracy in the prediction high condition was positively correlated

with the percent accuracy in the decision high condition across all par-

ticipants (Figure 2c, Spearman correlation coefficient: rs = .653, FDR-

corrected p = .004, n = 31), indicating that the mental model of the

opponent's knowledge and strategy in the high-level ToM reasoning

condition predicts subsequent self-related decision. However, the

percent accuracy in the prediction low condition was not correlated

with the percent accuracy in the decision low condition (Figure 2d,

rs = −.011, FDR-corrected p = .952, n = 31). As the manipulation of

the trial type of the prediction low requires the zeroth-order ToM

which considers only one's own desires, beliefs, and goals, the perfor-

mance in the Prediction Low condition may not be able to effectively

facilitate self-reasoning on a higher level. People could predict the

behavior of an opponent based only on the outcome of the opponent.

As shown in Figure 2d, most of the participants' accuracy scores in

the prediction low are larger than 85%, which may suggest that the

reasoning in this condition is not as complicated as other conditions.

We also found that the percent accuracy in the prediction low condi-

tion was not correlated with the percent accuracy in the prediction

high condition (Figure 2e, rs = .253, FDR-corrected p = .227, n = 31),

while the percent accuracy in the decision low condition was posi-

tively correlated with that in the decision high condition (Figure 2f,

rs = .464, FDR-corrected p = .018, n = 31). These correlation results

suggest that zeroth-order reasoning may tap into a distinct mecha-

nism from other levels of reasoning. Higher-level ToM could not be

predicted given their ability in zeroth-order ToM reasoning.

In addition to the mean percentage of accuracy score, a two-way

repeated-measures ANOVA using the game type and the level of rea-

soning as independent factors and the mean reaction time (RT) of

choosing the correct responses as the dependent variable was con-

ducted. Our results showed a significant interaction effect between

the game type and the level of reasoning (F[1,30] = 6.573, p = .016,

ηp2 = 0.180, Figure 2b). Further, post hoc analysis showed that the

mean reaction time in the decision low condition (8.475 ± 0.156) was

significantly faster than the RT in the decision high condition (8.940

± 0.216, p = .042). Similarly, the RT in the prediction low condition

(6.853 ± 0.169) was significantly faster than the RT in the prediction

high condition (7.935 ± 0.192, p < .001). In addition, significant main

effects of game type (F[1,30] = 32.682, p < .001, ηp2 = 0.521) and level

of reasoning (F[1,30] = 17.015, p < .001, ηp2 = 0.362) were found.

These results suggest that the complexity of the task can affect the

time needed for recursive thinking.

Furthermore, linear mixed-effect models using the LME4 package

in R statistical software (version 3.6.1; R Core Team, 2019) with subject

ID treated as a random intercept were carried out to examine whether

the number of reasoning steps was predictive of the reaction time of

the correct response in different types of trials. For each condition, the

model included the number of steps as a fixed effect and reaction time

as the dependent variable. The main effect of the reasoning step was

found for each condition (decision high: β = .208, SE = .091, t = 2.294,

p = .023; decision low: β = .158, SE = .069, t = 2.306, p = .022; prediction

high: β = .728, SE = 0.156, t = 4.656, p < .001; prediction low: β = .559,

SE = 0.126, t = 4.454, p < .001). All four main models were compared

with their own null model in which we only put the random effect of

the participant. The Akaike information criterion (AIC; Akaike, 1974)

was calculated for each model to see whether our main model for each

condition was better (with lower AIC) than its null model. As expected,

the AIC of all models with the number of steps was lower than the AIC

of their null models. These results suggest that people were able to rea-

son sufficiently deeply based on the internal reasoning strategy.

3.2 | Neuroimaging results

3.2.1 | Brain activation at the response phase

Figure 3a,b depict activation patterns at the response phase. Table 1

lists all significant peak activations related to the experimental factors.

Compared with decision low, decision high at the decision phase

showed greater activations in the left mPFC (Figure 3a), right STS, and

left posterior cingulate cortex (PCC). In contrast, Prediction High

showed greater activations in the left middle frontal gyrus (MFG),

extending to the left mPFC (Figure 3b) when compared with predic-

tion low. Another large cluster was found in the bilateral PCC, left

TPJ, and left STS. We performed conjunction analysis between the

decision high versus decision low and prediction high versus predic-

tion low and found significant activation in the mPFC (peak MNI coor-

dinate: x, y, z = 0, 60, 8, pFWE <.05, SVC, voxel size = 132).

When making decisions for self in the higher-order reasoning

(decision high), the right dACC/dmPFC and right insula showed

greater activations when the latent reasoning step of strategic think-

ing increased (Figure 4a, left panel). Greater activation was also found

in the dACC/dmPFC when the reasoning step was increased in the

decision low condition (Figure 4a, right panel). With regard to the neu-

ral patterns in reasoning steps in the prediction conditions, we found

that increasing reasoning step in prediction high activated the right

inferior frontal gyrus (IFG, Figure 4b, left panel), while increasing rea-

soning step in Prediction Low activated the bilateral MFG, bilateral

ventromedial prefrontal cortex (vmPFC), left inferior temporal gyrus

(ITG), left precuneus, and bilateral inferior parietal lobule (IPL,

Figure 4b, right panel).

3.2.2 | Brain activation at the stimulus phase

At the stimulus phase, we examined the effects of the decision high

versus decision low contrast and prediction high versus prediction low

contrast. Table 1 summarizes the neural activity during the stimulus

phase across participants. Notably, greater activity in the bilateral ven-

tral striatum (VS) was found in both contrasts (decision high

vs. decision low and prediction high vs. prediction low, see Figure 3c,

d), while the reverse contrasts (decision low vs. decision high and pre-

diction low vs. prediction high) yielded no significant effects. No sup-

rathreshold clusters were found for the parametric modulation of

2136 ZHEN AND YU



reasoning steps at the stimulus phase. Besides, brain activity during

the stimulus stage did not show any significant correlations with the

participants' task performance. In addition, we created the mean time

courses across all participants shown in Figure 3e–h. The time courses

were related to the onset of the events and were derived from four

regions of interest (ROIs) which were selected based on the results of

the main GLM (peak MNI coordinate, mPFC: −8, 52, 12 from decision

high vs. decision low at the response stage; mPFC: −14, 50, 30 from

prediction high vs. prediction low at the response stage; VS: −12,

2, −10 from the decision high vs. decision low at the stimulus stage;

VS: −14, 6, −6 from the prediction high vs. prediction low at the stim-

ulus stage). These four ROIs were defined by 6-mm spheres with

corresponding MNI coordinates as the center using Marsbar (Brett,

Anton, Valabregue, & Poline, 2002). The mPFC significantly reacted

for the decision high and prediction high conditions at the response

stage while the ventral striatum built rapidly for the decision high and

prediction high conditions at the stimulus stage. These time courses

showed that activity patterns at the response stage were different

from those at the stimulus stage, suggesting that the two stages were

dissociated at the neural level.

3.2.3 | Neural correlates of individual differences
at the response phase

To further investigate whether the neural activation reflected individ-

ual differences in the reasoning ability (i.e., mean percentage of

behavioral accuracy) at the high-order strategic thinking, the whole-

brain regression analyses at the group level were performed. The

results showed that individual differences in strategic reasoning ability

were negatively correlated with the activity in the bilateral hippocam-

pus, bilateral insula, midcingulate cortex (MCC), and occipital cortex in

the contrast between decision high and decision low (Figure 5a). That

is, participants who had better performance in high-order reasoning

showed less activation in the bilateral hippocampus, bilateral insula,

and MCC when deciding for self at the first decision point. In contrast,

a positive correlation was found between individuals' strategic reason-

ing ability and activity in the right caudate when comparing prediction

high with prediction low (Figure 5b), suggesting that participants who

had better performance in predicting other's strategic behaviors

showed greater activation in the right caudate. Table 2 lists all signifi-

cant peak activations for the whole-brain regression analyses.

The individual differences in the strategic reasoning ability were

also found in the functional connectivity between the seed regions of

the left hippocampus (peak MNI coordinate: −18, −20, −10), left

insula (peak MNI coordinate: −38, −6, −2) and right caudate (peak

MNI coordinate: 16, 18, 16) and other brain areas during decision-

making. With increases in individuals' accuracy of strategic decision,

the left insula showed more positive functional connectivity with the

left dACC/dmPFC, right superior frontal gyrus (SFG), and right thala-

mus in the contrast between decision high and decision low

(Figure 5c, left panel). The results suggest that participants who had

better performance in high-order reasoning showed stronger levels of

coupling between the left insula and left dACC/dmPFC when making

decisions in the high-order reasoning condition compared with the

low-order reasoning condition. In addition, stronger functional

F IGURE 3 Brain activation for the contrasts. (a) Comparison of the brain activity between decision high and decision low at the response
phase. (b) Comparison of the brain activity between prediction high and prediction low at the response phase. (c) Comparison of the brain activity
between decision high and decision low at the stimulus phase. (d) Comparison of the brain activity between prediction high and prediction low at
the stimulus phase. The color bars represent statistical t-values. Results were displayed using an uncorrected voxel-wise threshold of p < .005
(warm color) and p < .001 (red-hot color) to show the full extent of the activations. (e–h) Finite impulse response (FIR) event-related time courses
for the four brain areas of interest
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TABLE 1 Brain activations in the general linear model (GLM) analysis of the task

MNI coordinates

Contrast Region BA
R/
L/M x y z

t
score Voxels

Brain activation at the stimulus phase

Decision high versus decision

low

Ventral striatuma – R 16 10 −14 3.32 23

Ventral striatuma – L −12 2 −10 3.83 28

Prediction high versus

prediction low

Ventral striatuma – R 12 2 −2 4.68 261

Ventral striatumb – L −14 6 −6 5.20 1,140

High versus low Fusiform gyrusb 37 R 34 −40 −16 6.03 1,945

Occipital cortex 18 R 10 −78 −2 4.06

Ventral striatumb – L −18 8 −10 5.87 1,442

Ventral striatumb – R 12 4 −8 5.13

No suprathreshold clusters were found for the above reverse contrasts

Brain activation at the decision phase

Decision high versus decision

low

Medial prefrontal cortexb 10 L −8 52 12 5.64 4,056

Superior temporal sulcusb 21 R 46 −38 0 4.86 1,427

Posterior cingulate cortex 23 L −6 −48 28 4.06 1,142

Prediction high versus

prediction low

Posterior cingulate cortexb 31 L −10 −58 36 4.87 8,040

Posterior cingulate cortexb 31 R 10 −54 32 4.80

Temporoparietal junctionb 39 L −48 −60 18 4.34

Occipital cortex – R 34 −76 2 4.55 2,430

Cerebellumb – R 32 −78 −26 4.35

Superior temporal sulcusb 21 L −58 −32 −10 4.49 1,156

Middle frontal gyrusb 6 L −38 8 54 4.37 2,274

Medial prefrontal cortex 9 L −14 50 30 3.89

High versus low Precuneusb 7 R 8 −68 34 5.52 22,914

Posterior cingulate cortexb 23 L −6 −22 32 5.49

Temporoparietal junctionb 39 L −54 −64 18 5.46

Medial prefrontal cortexb 10 L −4 52 20 4.77

Cerebellum – L −44 −62 −40 5.16

Middle temporal gyrusb 21 L −62 −34 −14 4.74

Cerebellumb – R 36 −78 −30 4.90 5,814

Superior temporal sulcusb 22 R 66 −22 −4 4.83

No suprathreshold clusters were found for the above reverse contrasts

Increasing step for decision high Dorsal anterior cingulate cortex/dorsomedial

prefrontal cortexa
32 R 14 30 16 3.24 63

Insulaa – R 38 2 −8 3.32 14
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connectivity was also found between the left hippocampus and the

bilateral dACC/dmPFC when contrasting between decision high and

decision low as individuals' high-order reasoning ability increased

(Figure 5c, right panel). When contrasting prediction high with

prediction low, positive functional connectivity was seen between

right caudate and left insula as the reasoning ability to predict other's

strategic behaviors increased (Figure 5d). Table 3 lists all significant

peak activations for the PPI second-level analyses.

TABLE 1 (Continued)

MNI coordinates

Contrast Region BA
R/
L/M x y z

t
score Voxels

Decreasing step for decision

high

Posterior cingulate cortex 31 L −6 −66 36 4.33 1,804

Posterior cingulate cortex 23 R 10 −56 26 3.45

Increasing step for decision low Dorsal anterior cingulate cortex/dorsomedial

prefrontal cortexa
32 M 0 30 22 3.12 50

Increasing step for prediction

high

Inferior frontal gyrusa 44 R 34 10 24 3.49 79

Increasing step for prediction

low

Middle frontal gyrusb 8 L −34 24 44 6.39 4,555

Ventromedial prefrontal cortex 24 L −8 38 2 3.90

Ventromedial prefrontal cortex 10 R 8 52 −2 3.27

Inferior temporal gyrus 20 L −56 −24 −24 5.81 1,399

Inferior parietal lobuleb 39 L −52 −54 38 5.30 3,173

Precuneus 7 L −6 −62 62 3.54

Middle frontal gyrus 9 R 34 22 34 4.71 1,353

Cerebellumb – R 34 −68 −46 4.69 1,759

Inferior parietal lobule 7 R 40 −46 58 4.19 1,210

Note: Results were reported surviving after a voxel-level height threshold at p < .005 and cluster-level family-wise error (FWE) correction at p < .05.

Coordinates reported were based on the Montreal Neurological Institute (MNI) coordinate system.

Abbreviations: BA, Brodmann area; L, left; M, middle, R, right.
aIndicates significance after small volume correction with peak FWE corrected p-values (p < .05). False discovery rate (FDR, p < .05 level) was applied for

multiple corrections among ROIs where appropriate.
bIndicates results survived at an uncorrected voxel-wise threshold of p < .001 with a cluster-wise threshold of p < .05 after FWE correction.

F IGURE 4 Brain activation modulated by the reasoning step at the response phase. (a) Left panel: Parametric modulation of increasing
number of reasoning steps of the high-order ToM reasoning during decision for self; Right panel: Parametric modulation of increasing number of
reasoning steps of the low-order ToM reasoning during decision for self. (b) Left panel: Parametric modulation of increasing number of reasoning
steps of the high-order ToM reasoning during prediction for the other; Right panel: Parametric modulation of increasing number of reasoning
steps of the low-order ToM reasoning during prediction for the other. The color bars represent statistical t-values. Results were displayed using
an uncorrected voxel-wise threshold of p < .005 (warm color) and p < .001 (red-hot color) to show the full extent of the activations
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4 | DISCUSSION

In the current study, we used a sequential-move interactional game to

manipulate and detect the use of level of reasoning in both first-

person and third-person perspectives. Our behavioral data showed

that high-order ToM reasoning indeed produced longer reaction time

and lower accuracy in comparison with low-order ToM reasoning,

irrespective of making the decision for self or making the prediction

for others. In the decision task, our neural data revealed that high-

order reasoning for oneself at the first decision point activated the

ToM network, including mPFC, PCC, and STS (Amodio & Frith, 2006;

Fletcher et al., 1995; Frith & Frith, 2006; Gallagher et al., 2000; Saxe,

Xiao, Kovacs, Perrett, & Kanwisher, 2004; Schurz et al., 2014; Spunt &

Adolphs, 2014). Importantly, performance in high-order condition was

negatively predicted by activity in the insula, hippocampus, and MCC.

Furthermore, individuals with better performance in the high-order

condition also showed stronger coupling between dmPFC/dACC and

insula as well as coupling between dmPFC/dACC and hippocampus.

In the prediction task, performance in high-order condition was posi-

tively correlated with activity in caudate and the functional connectiv-

ity between caudate and insula.

The difference between high-order and low-order conditions is

that the former requires second-order ToM reasoning to obtain the

highest possible payoff. We showed that the high-order condition is

more demanding in the mental process of solving the game, as

evidenced by the longer reaction time and lower accuracy.

F IGURE 5 Relationship between brain function and individual differences in high-order reasoning at the response phase. (a) Activity in the

bilateral insula and the left hippocampus negatively associated with individuals' high-order reasoning ability when comparing decision high with
decision low. (b) Activity in the right caudate positively associated with individuals' high-order reasoning ability when comparing prediction high
with prediction low. (c) Top left panel: In the displayed image, the seed region was the left insula (peak MNI coordinate: −38, −6, −2). The
positive functional connectivity between the left insula and dACC/dmPFC (peak MNI coordinate: −6, −2, 36) in the contrast of decision high
versus decision low correlated with the individuals' high-order reasoning ability. Top right panel: The positive functional connectivity between the
left hippocampus (seed region; peak MNI coordinate: −18, −20, −10) and dACC/dmPFC (peak MNI coordinate: −8, 36, 24) in the contrast of
decision high versus decision low correlated with the individuals' high-order reasoning ability. (d) The positive functional connectivity between
the right caudate (seed region; peak MNI coordinate: 16, 18, 16) and insula (peak MNI coordinate: −38, 0, −2) in the contrast of prediction high
versus prediction low correlated with the individuals' high-order reasoning ability. The scatterplots below each panel depict the correlations
between parameter estimates at the activated brain regions and individual differences in high-order reasoning. The gray shaded area represents
the 95% confidence interval of the linear regression line. The color bars represent statistical t values. Results were displayed using an uncorrected
voxel-wise threshold of p < .005 (warm color) and p < .001 (red-hot color) to show the full extent of the activations
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Interestingly, the accuracies in decision-making for oneself in the

high-order and low-order conditions were correlated with each other

but no such correlation was found for accuracies in making predic-

tions about others. In the high-order condition, performances in mak-

ing decisions and predictions were correlated. These findings suggest

that both high-order thinking processes of decision and prediction

may share common cognitive capacities. Our neuroimaging results

support this argument by showing that the mPFC was involved in

encoding the processes of high-order strategic thinking in both first-

person and third-person perspectives.

At the stimulus stage, we found that the ventral striatum was

more activated in the high-order ToM condition. The striatum,

together with other dopamine-rich brain regions, are involved in rep-

resenting reward prediction errors, the mismatch between expected

rewards and actual outcomes (Fiorillo, Tobler, & Schultz, 2003;

Schultz, 1998; Tobler, Fiorillo, & Schultz, 2005). In the reward predic-

tion error framework, individuals infer the underlying reward struc-

tures by continually using these errors to update their predictions.

Recent Bayesian theories of mind propose that individuals predict

others' actions, and reconstruct others' belief state and reward func-

tion by using Bayesian inference that is conditioned from past obser-

vations of others' behaviors (Baker, Saxe, & Tenenbaum, 2011). These

Bayesian learning models for ToM point out that mentalizing and

reward-based learning may share similar Bayesian inference mecha-

nisms (Devaine et al., 2014). Essentially, the neural basis of ToM can

be investigated as a neural prediction problem (Collette, Pauli,

Bossaerts, & O'Doherty, 2017; Koster-Hale & Saxe, 2013). The stria-

tum, with its special involvement in goal-directed learning and predic-

tion error representation, is in a preferential position to be a

candidate neural substrate of the “Bayesian ToM” and may encode

the difference between the observable behaviors and invisible mental

predictions. Interestingly, we only found strong striatal activity when

stimuli were shown but not when participants made decisions. Thus,

the specific functional significance of striatum in mentalizing has to be

investigated further.

Both decision-making and prediction in the high ToM condition

activated the mentalizing network, including mPFC, PCC, and STS

(Rilling, King-Casas, & Sanfey, 2008; Rilling, Sanfey, Aronson,

Nystrom, & Cohen, 2004; Spunt & Adolphs, 2014; Spunt &

Lieberman, 2012). These findings confirm that the mentalizing related

brain regions are recruited when individuals think recursively in strate-

gic games. Meta-analysis has shown that these regions are involved in

mentalizing across tasks (Molenberghs, Johnson, Henry, &

Mattingley, 2016; Schurz et al., 2014). Spunt and his colleagues fur-

ther showed that the mentalizing system, including mPFC, TPJ, STS,

and PCC, was sensitive to the high demand of explaining observed

actions (Spunt & Adolphs, 2014; Spunt & Lieberman, 2012; Spunt,

Satpute, & Lieberman, 2011), supporting our findings that the

mentalizing network was involved in explaining and predicting the

actions of self and others in complex situations. A majority of previous

TABLE 2 Brain regions associated with individual differences in high-order reasoning at the decision phase

MNI coordinates

Contrast Region BA R/L/M x y z t score Voxels

At the decision phase

(Decision high vs. decision low) with accuracy of decision high as a covariate

Positive correlation No suprathreshold clusters were found

Negative correlation Hippocampusa – L −18 −20 −10 5.51 220

Hippocampusa – R 18 −20 −14 3.63 72

Insulaa – L −38 −6 −2 3.88 63

Insulaa – R 44 −6 6 3.56 24

Occipital cortex 31 R 10 −70 26 4.58 3,368

Occipital cortexb 17 L −10 −74 6 4.53

Midcingulate cortex 24 R 14 −16 44 4.35 2,045

(Prediction high vs. prediction low) with accuracy of prediction high as a covariate

Positive correlation Caudatea – R 16 18 16 3.88 43

Negative correlation No suprathreshold clusters were found

Note: The results were based on whole-brain regression analysis (Voxel-level threshold p < .005 uncorrected, cluster-level p < .05 FWE correction).

Coordinates reported were based on the Montreal Neurological Institute (MNI) coordinate system.

Abbreviations: BA, Brodmann area; L, left; M, middle, R, right.
aIndicates significance after small volume correction with peak FWE corrected p-values (p < .05). False discovery rate (FDR, p < .05 level) was applied for

multiple corrections among ROIs where appropriate.
bIndicates results survived at an uncorrected voxel-wise threshold of p < .001 with a cluster-wise threshold of p < .05 after FWE correction.
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fMRI studies have mainly compared a condition with ToM demand to

a control condition that does not require the involvement of ToM.

This manipulation allowed researchers to identify ToM related neural

activities but did not permit the investigation of specific brain regions

during high-order mentalizing processes. In the current study, our

fMRI findings revealed that high-order reasoning, when compared

with low-order reasoning also activated the mentalizing network,

suggesting that the degree of mentalizing is encoded in the same

mentalizing regions. Interestingly, our results showed the mPFC acti-

vated for predicting others was more dorsal than the mPFC recruited

for making one's own choices. This resonates with previous findings

showing that dorsal mPFC is more engaged for mentalizing about

others' beliefs whereas the ventral mPFC is more specific to self-

related processing (Hu et al., 2016; Sui & Humphreys, 2015). It has

also been proposed that mPFC processes the motivational compo-

nents of ToM whereas the TPJ is more engaged in the cognitive

components of ToM, for example, representing other's beliefs

(Koster-Hale et al., 2017; Molenberghs et al., 2016; Schurz

et al., 2014). Our study supports this argument by showing that the

goal-directed mentalizing process (decision high vs. decision low)

mainly activated the mPFC.

In the decision task, we found that the number of reasoning steps

was correlated with activity in dmPFC/dACC. In the prediction task,

the number of reasoning steps was associated with activity in IFG,

vmPFC, IPL, and ITG. In general, these regions are often involved in

high demanding cognitive tasks and may represent the complexity of

calculation and planning (Grotheer, Jeska, & Grill-Spector, 2018;

Gruber, Indefrey, Steinmetz, & Kleinschmidt, 2001; Hubbard, Piazza,

Pinel, & Dehaene, 2005; Kahnt, Heinzle, Park, & Haynes, 2011; Piazza,

Pinel, Le Bihan, & Dehaene, 2007; Shenhav, Cohen, &

Botvinick, 2016). Here the number of steps was calculated based on

our model of forward reasoning plus backward tracking, and may or

may not represent the actual thinking steps taken by all participants.

Nevertheless, the calculated number of reasoning steps provides a

proxy to indicate the complexity and cognitive load of strategic think-

ing. The parametric correlation with activities in regions associated

with cognitive control and calculation suggests that a sophisticated

level of mentalizing is represented in the same brain regions as those

commonly engaged in demanding cognitive tasks.

When comparing the high-order ToM condition with the low-

order ToM condition in the decision task, our study showed that indi-

vidual differences in high-order social reasoning were negatively

TABLE 3 Functional connectivity between regions as a function of individual differences in high-order reasoning at the decision phase

MNI coordinates

Seed Contrast Region BA
R/
L/M x y z

t
score Voxels

At the decision phase

Functional connectivity of the decision high versus decision low contrast with accuracy of decision high as a covariate

Insula Positive Thalamus – R 14 −8 2 4.99 2,136

(−38, −6, −2) Superior frontal gyrus – R 10 6 64 3.81 1,064

Dorsal anterior cingulate cortex/dorsomedial prefrontal

cortexa
32 L −10 22 20 3.59 35

Negative No suprathreshold clusters were found

Hippocampus Positive Dorsal anterior cingulate cortex/dorsomedial prefrontal

cortexa
32 L −8 36 24 4.21 194

(−18, –20,
−10)

Dorsal anterior cingulate cortex/dorsomedial prefrontal

cortexa
32 R 2 32 24 4.04 127

Negative No suprathreshold clusters were found

Functional connectivity of the prediction high vs. prediction low contrast with accuracy of prediction high as a covariate

Caudate Positive Insulaa – L −38 0 −2 3.53 25

(16, 18, 16)

Negative No suprathreshold clusters were found

Note: The results were based on whole-brain regression analysis (Voxel-level threshold p < .005 uncorrected, cluster-level p < .05 FWE correction).

Coordinates reported were based on the Montreal Neurological Institute (MNI) coordinate system.

Abbreviations: BA, Brodmann area; L, left; M, middle, R, right.
aIndicates p < .05 FWE after small volume correction. False discovery rate (FDR, p < .05 level) was applied for multiple corrections among ROIs where

appropriate.
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correlated with activity in the insula and hippocampus. Moreover, the

functional connectivity between the insula/hippocampus and

dACC/dmPFC predicted the performance in high-order ToM condi-

tion. These findings suggest that individuals with better high-order

reasoning activated the insula/hippocampus less but showed stronger

coupling between the insula/hippocampus and dACC/dmPFC. One

possibility is that the insula/hippocampus in these high-performing

individuals may function more efficiently in the reasoning process.

The insula was shown to be more active in pure coordination games

which rely on intuition than in dominance-solvable games which

depend on deliberation (Kuo, Sjöström, Chen, Wang, & Huang, 2009).

Our findings may suggest that individuals who are better at high-order

reasoning may be able to recruit insula more efficiently when engag-

ing in recursive thinking. The hippocampus is known to contribute to

relational encoding which involves flexible comparison and association

between distinct items (Greene, Gross, Elsinger, & Rao, 2006). More-

over, the hippocampus is shown to subserve the unconscious rela-

tional inference, which facilitates the combination of past experience

to update knowledge (Reber, Luechinger, Boesiger, & Henke, 2012).

In our task, the participant must encode and hold in mind the results

of reasoning for each step. The hippocampus may be involved in rea-

soning decisions that depend on the memory of steps. Our research

points out that the hippocampus may have a role in deliberation and

reasoning in strategic decisions. In the prediction task, we found that

the activity in caudate and the connectivity between caudate and

insula predicted the accuracy of prediction in high-order ToM trials.

The caudate is involved in the quick generation of the best next move

(Wan et al., 2011; Wan et al., 2012). Recent human meta-analysis indi-

cates that the caudate is functionally connected with insula and plays

a primary role in integrating information from the associative regions

(Robinson et al., 2012). The increased caudate-insula coupling may

help people integrate the prediction of others' movement with self-

strategic action in the high-order ToM reasoning.

There are several worth mentioning limitations in the current

study. First, participants only needed to reason pure rational oppo-

nents' next move. It is unclear whether our findings can be extended

to uncertain social interactions in which opponents' choices are prob-

abilistic. Interpersonal uncertainty, a common character in real-life

social interactions, was minimized in our study (Yoshida et al., 2010).

Another related concern is that our task may simply tap onto the gen-

eral reasoning process rather than strategic thinking in social contexts.

A meta-analysis of neuroimaging studies on deductive reasoning

showed that general reasoning activates the lateralized brain system,

for example, posterior parietal cortex for relational arguments, IFG for

categorical arguments, and precentral gyrus for propositional argu-

ments (Prado, Chadha, & Booth, 2011). Nevertheless, future studies

may directly compare mentalizing steps with cognitive reasoning steps

to further examine the specificity of strategic thinking in the brain.

Second, performance in this task is associated with monetary rewards,

which may raise the question of whether these brain activity patterns

merely encode rewarding experiences associated with reasoning.

Although the intrinsic joy of reasoning cannot be directly measured,

our design does allow us to dissociate monetary reward with

reasoning levels by orthogonalizing the two parameters. The payoffs

in the high and low reasoning conditions were comparable, suggesting

that our fMRI findings cannot be explained by the magnitude of

rewards. Finally, it is worth noting that our model of thinking strate-

gies is an idealization, as participants may use mixed strategies. In

principle, a player can use different strategies to find the optimal solu-

tion and many possible strategies could yield the same behavioral pat-

terns. We had defined this as an inverse problem where the strategy

is to infer the thinking processes based on choices to be made. More-

over, failure to use high-order reasoning may be due to the inability to

understand another's intentions of a certain order or the lack of moti-

vation to apply strategic thinking of an appropriate order that is

demanding. Future computational work may try to capture the full

complexity of thinking processes (Toelch & Dolan, 2015).

To sum up, our research showed that the mPFC-subcortical net-

work is involved in high-order strategic reasoning, in both the pro-

cesses of decision-making for self and predicting others' choices. One

tentative neural model of strategic reasoning, although still awaiting

further validation, is that the striatum represents Bayesian-like infer-

ences at the stimulus stage while the mPFC, together with the insula/

hippocampus, encodes the depth of reasoning and associated rela-

tional inference when individuals think about the next move. Our

work highlights the key role of the interplay between mPFC and sub-

cortical regions in advanced social decision-making.
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